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Abstract 

With the growth of power system interconnections, the economic drivers 

encourage the electric companies to load the transmission lines near their 

limits, therefore it is critical to know those limits well. One important 

limiting issue is the damping of inter-area oscillation (IAO) between groups 

of synchronous machines. In this Ph.D. thesis, the contribution of power 

system components such as load and static var compensators (SVC) that 

affect the IAO of the power system, are analysed. The original contributions 

of this thesis are as follows: 

1-Identification of eigenvalues and mode shapes of the IAO: 

In the first contribution of this thesis, the eigenvalues of the IAO are 

identified using a correlation based method. Then, the mode shape at each 

identified resonant frequency is determined to show how the synchronous 

generators swing against each other at the specific resonant frequencies. 

2-Load modelling and load contribution to damping:   

The first part of this contribution lies in identification of the load model 

using cross-correlation  and autocorrelation  functions . The second aspect is 

the quantification of the load contribution to damping and sensitivity of 

system eigenvalues with respect to the load. 

3- SVC contribution to damping:  

In this contribution the criteria for SVC controller redesign based on 

complete testing is developed. Then the effect of the SVC reactive power on 

the measured power is investigated. 

All of the contributions of this thesis are validated by simulation on test 

systems. In addition, there are some specific application of the developed 

methods to real data to find a.) the mode shape of the Australian electricity 

network, b.) the contribution of the Brisbane feeder load to damping and c.) 

the effect of the SVC reactive power of the Blackwall substations on the 

active power supplying Brisbane. 
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Chapter 1: Introduction 
 

1.1 Significance and Motivation of this Research  

Due to the expansion of loads in power systems and increasing the power 

system interconnections, the economic drivers encourage loading the 

transmission lines near their limits. Therefore, it has become more important 

to know those limits well. One limiting issue is the damping of inter-area 

oscillations (IAO) between groups of machines.  

In a multi-machine power system, rotor angle stability or in short, angle 

stability refers to the ability of the power system to maintain 

synchronization. In a power system, the rotors of all of the machines must 

be synchronised. This implies that the frequency of stator currents and 

voltages of all of machines must be the same [1]. In the steady state 

condition, the input mechanical power is equal to the output electrical power 

in each machine and speed is kept constant. If a perturbation, such as load 

changes, occurs in the power system, the equilibrium point would not be 

maintained. Consequently, for a short time the rotor angle of the generators 

will change. 
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In other words, accelerations can occur when there is lack of equality of 

input and output power for each generator. Because the acceleration of the 

rotor depends largely on angle differences, the oscillations can occur. There 

are two types of modes in the IAO: local and inter-area modes. Local modes 

are associated with the swinging of one generator against the rest of the 

system. In the inter-area modes, generators in one area swing against the 

generators of the other area [2]. 

Lack of sufficient damping torque causes the amplitude of the oscillatory 

modes to increase and this could result in excessive power oscillations. 

Therefore, understanding the IAO is essential in power systems studies. An 

important component of this is the determination of the effect of power 

system components such as load and static var compensators (SVC) on 

damping of the IAO. Accurate identification of these effects leads to more 

reasonable and reliable decision making during normal and emergency 

situations. The importance of the estimation rises as the complexity of the 

network increases. By increasing the IAO damping, the stability and 

reliability of supplying customer demand are maintained and a greater 

confidence in approaching transfer limit of power flow across major links 

can be achieved. 

The involvement of load to damping is explained from a test power system 

shown in Figure 1.1. In this figure, a synchronous generator is connected to 

the infinite bus through a transmission line and there is a load connected to 

the generator terminals. In the first case, the load is considered as a resistive 

load. In this case, if there is a step change in the voltage terminals of 
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generator, the load power LP  increases instantly. Thus, at the resonant 

frequency of the IAO, the changes in the load power are in phase with the 

voltage changes. Since the voltage changes in the test system are anti-phase 

with the changes of the generator bus voltage angle, then the active power 

changes of the resistive load do not contribute to damping. 

 
Figure 1.1: A single machine connected to infinite bus 

Now consider the case that the load is a dynamic load. In this situation, if a 

step change of voltage occurs, then due to the dynamics of the load, the load 

power does not increase instantly [3]. Therefore, at the IAO resonant 

frequency, the load changes are not in phase with the voltage angle changes 

and there is phase shift as shown in Figure 1.2. As can be seen in Figure 1.2, 

load has a component in the direction of 
.

δ  or damping torque. Thus, 

according to this figure, the load contributes positively to damping.  

G 

Load 

Infinite Bus 

LP  
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Figure 1.2: The contribution of load to damping 

 

In this thesis a method of quantifying load contribution to damping is 

developed and a criterion is proposed to achieve the maximum load 

contribution to damping, i.e. the load contribution to damping is 90
0 

a head 

of δ at the resonant frequency of the IAO. 

1.2 Approaches and Aims  

The main aspects of this thesis are to develop tools for validation of the 

contribution of load and SVC to the IAO. The focus is on the 

electromechanical modes between synchronous generators in the electrical 

network and in particular on the inter-area modes. The tool is based on 

small signal disturbances of the network and the contributions are to be 

analysed for each of the electromechanical oscillatory modes. This tool is 

for learning of the modal contribution from background disturbances caused 

by customer load variations and large disturbances such as line outage. The 

knowledge of the spectral properties of the customer load variations enables 

δ

LP  

.

δ
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identification of the modal frequencies and mode shapes. In particular, the 

main aims of this thesis are  

• Identification of eigenvalues and mode shape of the IAO of the power 

systems. 

• Load model identification and determination of load contribution to 

damping.  

• Redesigning the SVC controller to achieve maximum damping and 

identifying the effect of reactive power of SVC on the load. 

1.3 Original Contributions of this Thesis 

The original contributions of this thesis are  

• Developing an algorithm to find  mode shape of power system [4-5] 

As a result of these studies, for the first time, the power system engineer can 

compare an off-line computer model continuously with the actual power 

system response using normal operating data. Previously, a special test 

would need to be performed to understand the power system situation at one 

instant. In this contribution, the eigenvalues of the IAO are identified using 

a correlation based method. Then, the mode shape at each identified 

resonant frequency is determined to show how the synchronous generators 

swing against each other (Chapter 3).  

• Load model identification [6-7]  

The customer load is the power system component that has the most 

uncertainty in its model parameters. This original contribution demonstrates 

how the load model parameters can be updated continuously from normal 
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operating data. Both local and remote load perturbations are employed in 

identifying the load contribution to damping. The load model is represented 

by a transfer function that relates the rate of bus voltage angle changes to 

the measured active power of the load. This transfer function is identified 

using the autocorrelation and cross-correlation functions (Chapter 4). 

• Developing  an algorithm to find load contribution to damping [8] 

The load dynamics effect is one of the most challenging issues in the IAO. 

Updating the load model in real time helps us to identify continuously the 

load contribution to damping. In this contribution of the thesis, the load 

contribution to damping is quantified using autocorrelation and cross-

correlation functions. Then, the sensitivity of eigenvalues of the IAO of 

power system with respect to the load is determined using the right and left 

eigenvector (Chapter 4). 

•  Developing an algorithm to redesign  the SVC controller Based on 

complete testing [9-11]  

Power electronic devices such ac SVC are the main tools for suppressing 

disturbances in transmission networks. The SVC works indirectly by 

controlling its reactive power which then influences the load and thus can 

suppress the power system oscillations. This original thesis contribution 

involves redesigning SVC controller on the basis of complete testing (no 

restrictions to the changes of the SVC control). The results of applying the 

suggested method provide the information that is needed to redesign the 

SVC controller to achieve the maximum load contribution to damping 

(Chapter 5). 
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• Investigating  the effect of  SVC  reactive power on the measured 

load active power  using  normal operating data  

In this contribution, the redesign of the SVC controller with the purpose of 

increasing load contribution to damping can be performed using the normal 

operating data. A transfer function showing the relationship between the 

reactive power of the SVC controller and the active power load determined 

is identified (Chapter 5). 

1.4 Organization of this Thesis  

On the basis of the aims presented in Section 1.2, the organization of this 

thesis is as follows: 

Chapter 2 is devoted to the review of the main concepts of the IAO and the 

representation of the power system in the IAO studies.  The literature review 

about the load and SVC modelling is reviewed. Also, the effects of load and 

SVC on the IAO are discussed in this chapter.  

In chapter 3, a method which is called correlation based mode shape 

identification (CBMSI), is developed to find the resonant frequencies and 

mode shape plots of the power systems on the basis of the autocorrelation 

and cross-correlation functions. A mode shape plot of a multi-machine 

power system shows how the generators of the power system swing against 

each other. In this chapter firstly, it is proven that by using the response of 

the generator voltage angles to the combination of large disturbance and 

costumer load variations, the phase difference and relative magnitude of the 

generator rotor angle can be determined and as a result the mode shape is 
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specified at that resonant frequency. In the CBMSI method, the resonant 

frequencies are identified by means of autocorrelation function, and the 

mode shape plot is formed using autocorrelation and cross-correlation 

functions. Then, the CBMSI method is simulated and validated on a multi-

machine test system. Finally, the resonant frequencies and mode shape plot 

for the real data of the Australian electricity network are determined.  

The contribution of load to damping of the IAO is studied in Chapter 4. In 

this chapter, the eigenvalue sensitivity to load (ESL) method is developed to 

investigate the effect of load in a closed loop system. In the ESL method, 

after identifying the load model, the contribution of load in damping is 

determined by finding the component of the load which lies in the direction 

of damping power. Then, the changes of the power system eigenvalues due 

the presence of the load are determined using the ESL method. 

The effect of SVC on damping is analysed in Chapter 5. In this chapter, two 

methods are developed to redesign the SVC controller to increase the 

damping of the IAO. The first method is based on complete testing and a 

criterion of SVC control design is introduced to achieve maximum damping 

of power system using appropriate feedback signals. Then, the suggested 

method is simulated on a test power system and the results show how the 

gain of the feedback controllers should be changed to get the maximum 

contribution to damping. In the second method which is based on normal 

operation, firstly, the influence of reactive power of the SVC on the active 

power of the load is studied. Then, after developing the theory, an algorithm 

is presented to find the effect of SVC reactive power on the load active 
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power. Then, a simulation is performed on a mainly load modulated test 

system to identify the transfer function representing the effect of reactive 

power of the SVC on active power of the load  using two approaches: partial 

fraction expansion approach [12] and decorrelation approach. The 

information regarding the effect of the SVC reactive power on the active 

power can be used to design the SVC controller to increase the damping of 

the IAO. Results of the simulation show the validity of the method. At the 

end of this chapter, the effect of SVC on the real active power for the real 

data is investigated.  

Finally the conclusion and some suggestions for the future studies in this 

area are given in Chapter 6. 

1.5 Publication Arising from this Thesis 

Conference Papers  

1. M. Banejad, G. Ledwich, P.O’Shea and E. Palmer, “On Line 

Determination of Mode Shape of a Power System”, The 6
th 

International 

Transmission and Distribution Conference: Distribution 2001, Brisbane, 

Australia, Nov. 2001. 

2. M. Banejad, G. Ledwich, “Correlation-Based Mode Shape 

Determination of a Power System”, 2002 IEEE International Conference on 

Acoustics, Speech and Signal Processing: ICASSP2002, Orlando, Florida, 

USA, 12-17 May, 2002. 

3. M. Banejad, G. Ledwich, “Correlation-Based Identification of the 

Effects of the Loads on Oscillatory Modes”, Australian Universities Power 
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System Engineering Conference: AUPEC 2002, Melbourne, Australia. Oct. 

2002. 

4. M. Banejad, G. Ledwich, “Quantification of Load Contribution to 

Damping of a Power System”, 17
th

  International Power System Conference, 

Tehran, Iran, 2002. 

5. M. Banejad, G. Ledwich, “Analysis of SVC Contribution to 

Damping of a Power System Including Induction Motor Effects”, The 6
th

 

International Power Engineering Conference, Singapore, May 2003.  

6. M. Banejad, G. Ledwich, “On the Effect of SVC Control Design of 

Damping of Low frequency Oscillations”, The 38
th

 Universities Power 

Engineering conference: UPEC2003, Sep. 2003, Greece. 

7.  M. Banejad, G. Ledwich, “Investigation of Load Contribution to  

Damping in a Multi-machine Power System Based on Sensitivity Analysis”, 

Australian Universities Power System Engineering Conference: AUPEC 

2003, New Zealand, Oct. 2003.  

8. M. Banejad, G. Ledwich, “Improving the SVC Contribution to  

Damping of Low Frequency Oscillations of a Power Systems”, The 7
th

 

International Transmission and Distribution Conference: Distribution 2003, 

Adelaide, Australia, Nov.  2003. 

 

Technical Report  

1 G. Ledwich, M. Banejad, “Analysis of Blackwall SVC Action 

Associated with Braking Resistor Tests for QNI Connection”, Report for 

Powerlink, QUT, Australia, 2001. 
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Journal Paper 

1 M. Banejad G. Ledwich, “Quantification of Damping Contribution 

from Loads”, IEE Part D: Generation, transmission and Distribution. 

(Submitted).  

Journal Papers Under Preparation  

1 M. Banejad, G. Ledwich, “Correlation-Based Identification of the 

Resonant Frequencies of Inter-area Oscillations”, To be submitted to the 

journal “IEEE Transactions on Power Systems”. 

2 M. Banejad, G. Ledwich, “Improving the SVC Contribution to 

Damping by Redesigning the SVC Controller”, To be submitted to the 

journal “IEEE Transactions on Power Systems”. 

1.6 Summary 

In this chapter, an overview of this thesis including aims, main 

contributions, and organization the thesis, as well as the publication by the 

author of this thesis, are explained.   

In Chapter 2 the main materials that are needed for the following chapters 

are given. Chapter 2 covers the power system representation in the IAO, 

load and SVC modeling. A literature review of the works that have been 

carried out in the field of load and SVC effects on damping of the IAO is 

also presented in Chapter 2.  
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Chapter 2: Literature Review of Damping 

of Inter-area Oscillations  

 

2.1 Introduction 

In this chapter the main concepts that are used in the following chapters are 

discussed. The concepts are explained in brief, and further discussion can be 

found in the given references. The literature related to eigenvalues of the 

inter-area oscillations (IAO), load modeling and static var compensators 

(SVC) modeling is reviewed and existing methods associated with load and 

SVC contribution to damping are discussed. 

2.2 Power System Representation in IAO  

Different power system components have different time responses. The time 

constants of the power system components range from milliseconds for sub-

transient phenomena in synchronous generator to several minutes for boilers 

in thermal power plants. Different studies are carried out in [2,13-14] to 

classify the modeling of the power system components in terms of time 
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response of the components. Figure 2.1 shows the time frames for the 

different phenomena of the power systems.  

 

Figure 2.1: Time frames for dynamic phenomena of the power systems [2] 

 

It is discussed in [14] that a new model for simulation should be built up 

from a set of components with time constants that are important for the 

phenomenon under investigation. Thee model should “responds rapidly 

enough for the impact to be observed before the simulation ends” [14]. In 

regard to the time scale for the purpose of the IAO studies, shown in Figure 

2.1, the simplest model of the synchronous generator that adequately 

describes the IAO is the classic model [15]. In other words, to validate the 

methods, the classic model of the synchronous generators is adequate for the 
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task, and avoids the complexity associated with higher order of the 

synchronous generator models. If a more detailed synchronous generator is 

chosen, the nature of the IAO does not change [16]. 

For a power system including n  generators, the electromechanical equation 

for generator i  in per unit ( .u.p ) can be written as [15] 

                                          .u.pPPPJ Dieimi

..

ii
−−=δ                                 (2.1) 

where  

iδ = rotor angle of generator i 

iJ = inertia of generator i 

miP = mechanical  power of  generator i 

eiP = electrical  power of  generator i 

DiP = damping power of generator i 

The electric power of generator i and damping power can be found from the 

following equations [15] 

                                                )sin(P ji

n

ij
1j

x

VV

ei
ij

ji
δδ −

✟
=

≠

=

                       (2.2) 

                                                       
.

iiDi DP δ=                                        (2.3) 

where iV  and jV are the voltage magnitude of bus i and j respectively, and 

iD  is the damping coefficient of generator i. Also ijx  is the reactance 

between bus i  and j . 
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Using Equation (2-3) and substituting the appropriate values for all of the 

terms in Equation (2.1) from [15], then linearizing  the result around  

operating points, yields  

                      

.
.

ii
i

1n

1j
ijsij

i

..

i n,,1i.u.p0D
J

1
P

J

1 ✠
==+

✡
+

−

=

δδδ             (2.4) 

where sijP  is the electric power changes of generator i caused by an angle 

change between machine i and j given in [15] 

For convenience, ∆  is omitted in Equation (2.4). Also, ijδ  is determined 

from 

                                             jiij δδδ −=                                                  (2.5) 

The rotor angle iδ  in (2.4) shows the absolute changes of the rotor angle i . 

Since the relative rotor angle is of interest, rotor angles should be compared 

with a reference. The angle of centre of inertia (COI) is chosen as the 

reference angle. The advantages of using the COI angle as the reference 

angle are a) forming symmetrical swing equations and b) simplicity of use 

[2]. The angle reference of COI for an n-machine power system is computed 

from  

                                              ☛
☛

=

=

=

n

1k
k

n

1k
kk

COI

J

J δ

δ                                         (2.6) 

The rotor angles in the COI referenced system are determined from  

                                        n,,1iCOIiic ☞=−= δδδ                     (2.7) 
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The COI referenced system is used in Chapters 3 and 4 to analyze the 

simulation results as well as the real data.            

Equation (2.4) can be represented by a set of n  linear second-order 

differential equations or a set of 2n linear first-order differential equations. 

By examining the free response of the system, it can be found that the 

system has (n-1) pairs of natural frequencies or oscillatory modes and two 

common modes. Equation (2.4) can be represented in the state space form as 

                                                            XAX
.

=                                                            (2.8) 

where        

                               

T

n

.

1

.

n1X ✌✍
✎✏✑✒

= δδδδ ✓✓                           (2.9)  
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The eigenvalues of the matrix ✣✣ ✣✣  give the oscillatory modes of the power 

system IAO. 
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2.3 Mode Shape and Participation Factor 

The linearized model of the power system can be represented in the state 

space form. With regard to Equation (2.8), the right and left  eigenvector 

can be found from Equations (2.11) and (2.12), respectively [1,17-18]   

                                                iii φλφ =
✤✤ ✤✤

                                               (2.11) 

                                                iii ψλψ =
✥✥ ✥✥

                                             (2.12) 

where  

iλ  = the i
th 

eigenvalue  

iφ =  the i
th 

right eigenvector ( 1n× ) 

iψ = the i
th 

left eigenvector ( n1× ) 

The right eigenvector, iφ , shows the extent to which the state variables have 

a relative activity at a specific excited mode. In the complex right 

eigenvector, the magnitude of the vector elements gives the magnitude of 

the relative activity of the state variables, and the phase of the vector 

elements gives the phase shift of the state variables at a specific excited 

mode. On the other hand, the left eigenvector , iψ , indicates which 

combination of the state variables forms the i
th 

mode and what is the weight 

of each state variable in forming a mode [1]. 

The right eigenvectors are used to plot mode shape. The mode shape shows 

how the synchronous generators swing against each other at a specific 

power system resonant frequency. 
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The right modal matrix ✦✦ ✦✦  is formed from the right eigenvectors as 

                                        [ ]ni1 φφφ ✧✧=
★★ ★★

                           (2.13) 

Similarly, the left modal matrix can be found from   

                                    [ ]TTnT
i

T
1 ψψψ ✩✩=

✪✪ ✪✪                     (2.14) 

It is proven in [1] that the following relations hold for the right and left 

eigenvector corresponding to eigenvalue iλ  

                                      ✫✬
✫✭ ✮

≠

=

=

ji0

jidi

ji φψ                                (2.15) 

where id  is non-zero constant. 

For convenience, it is customary to normalize these vectors, therefore 

Equation (2.15) is changed to  

                                        ✯✰
✯✱ ✲

≠

=

=

ji0

ji1

ji φψ                                (2.16) 

Thus if the right and left eigenvectors are normalized, then according to 

Equation (2.16), then the relationship between the right and left modal 

matrices can be expressed as  

                                                           ✳✳ ✳✳✴✶✵✴✷✵✴✶✵✴✷✵
=                                        (2.17) 

where I is the unity  matrix .  

There is a relationship between state variables and eigenvalues which is 

expressed by the  participation matrix. The participation matrix, P, can be 

found from [19-20] 

                                            { } { }kikikipP φψ==                                   (2.18) 
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where kiφ  ( kiψ ) is the th
k  element of th

i  right (left) eigenvector iφ ( iψ ) of 

the system matrix ✸✸ ✸✸ . The element kip  shows the degree of participation of 

the th
k state variable to th

i  eigenvalue. The sum of kip  for the particular 

mode i is one [17]. The sensitivity of the th
i  eigenvalue with respect to 

general element, kja , of the system matrix ✹✹ ✹✹  can be found from the 

following equation [20]  

                                                       kjik
kj

i

a
ϕψ

λ
=

∂
                                    (2.19) 

The basic concepts presented in Equation (2.19), have proven useful in 

[1,17, 21-23] for variations of a single parameter for the system matrix ✹✹ ✹✹ . 

The major limitation is where a single change of dynamic loads modifying 

several components of the system matrix ✸✸ ✸✸ . 

2.4 Correlation Based System Transfer Function 

Identification  

One way for identifying a system transfer function is based on correlation 

functions. Some important aspects of the signal processing used in this 

thesis are presented in Appendix A [24-27]. 

It is explained in [28] that averaging the system responses leads to noise 

rejection. For a single frequency test, if the system responses are multiplied 

by sine or cosine functions and then the average of the results are computed, 

the noise level is reduced remarkably.  This idea can be extended to the use 

of the cross-correlation and autocorrelations functions in identifying the 

system transfer function.  
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A system with a random variable input )t(u as an input and output )t(y is  

shown in Figure 2.2 

 

Figure 2.2: A linear system with a random variable input 

 

In Figure 2.2, )t(u is an ensemble member of process )t(U  (see Appendix 

A). The impulse response of this system is denoted by )t(h , then the 

transfer function of this system between input and output, )(ω
✺✺ ✺✺

 can be 

found from the following equation [24] 

 

                                            

[ ]

[ ])(R

)(C

)(

uu

yu

τ

τ

ω

ℑ

ℑ

=
✻✻ ✻✻                                    (2.20) 

where  

)(C yu τ = the cross-correlation of u and y  

)(R uu τ = the autocorrelation of u  

τ = time lag 

ℑ = the Fourier transform  operator [29]  

)t(y  
Linear Time Invariant 

System   
)t(u  
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2.5 Inter-area Oscillation studies 

In this section the inter-area oscillations (IAO) are discussed briefly. Then 

some methods that have been suggested by researchers to identify the 

resonant frequencies and damping of the IAO are discussed.  

2.5.1 Review of the Inter-area Oscillations  

Damping of power system oscillations plays a significant role not only in 

increasing the line power capacity but also for stabilization of the power 

system, particularly in weakly coupled systems. As the power systems are 

operating near their stability limits, there is a more frequent occurrence of 

problems of low frequency oscillations. Some changes in power systems 

like line outage and customer load variation can initiate low frequency 

oscillations. As explained in Chapter 1, there are two types of low frequency 

oscillations: local and inter-area oscillations. Local oscillations are 

oscillations associated with a single generator. The oscillations are well 

recognized and have frequencies in the range of 1  to Hz3 . Inter-area 

oscillations are associated with groups of generators and have frequencies 

usually  less than Hz1 [30-31].  

 The phenomena of the inter-area modes were investigated in [32] by 

determining the dominant modes following a large disturbance. The authors 

of [32] determined the eigenvalues and eigenvectors of the system from the 

free motion of the system following a large disturbance. Then, they used the 

“dominance measure“ concept to determine the dominant modes. The 

dominance measure is determined from the left eigenvector and the value of 
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the state variable values at the end of the disturbance. A group of the 

generators is considered coherent if the phase angle of the dominance 

measures in this group differ by no more 20
0
 to 30

0
. In order to determine 

the dominant mode  in each group, the modes are sorted descendingly 

according to the magnitude of dominance measure. Finally, the participation 

of the state variables in the dominant modes are determined. 

The effects of line impedance and flow on damping frequencies and mode 

shapes were investigated in [33]. The authors of [33] analyzed a 

hypothetical power system with a tie line and concluded that when the tie 

impedance or power flow is increased, the frequency and damping ratio are 

decreased. They also concluded with the non-zero tie line power flow, the 

mode shape changes considerably and the generators of one area no longer 

oscillate exactly in anti-phase to the generators of the other area. 

References [30-33] create a background to analyze the IAO. The method 

presented in [32] identifies dominant  modes of the IAO following a 

disturbance and it does not use the normal operating data. Reference [33] 

also gives some examples of mode shape analysis of a real network and the 

relationship between mode shapes and power flow, which provides a better 

understanding of the effect of tie line power flow on mode shapes.  

2.5.2 Spectral Methods in IAO Studies 

Power system mode extraction using spectral analysis was investigated in 

[34-36]. The method in [34] is based on the Corinthios method [37] and 

uses Z-transformation identification that allows the modes to be identified 

directly. In this method, sampling of a recorded continuous time signal 
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yields a discrete time signal. After that, the Z-transform of the signal is 

taken. The residue and angle of the poles of the signal in the Z-plane gives 

the modes of the power system. On the basis of the short-time Fourier 

transform, a non-parametric method is suggested in [35] to investigate the 

power system dynamics during disturbances. In this method, the results 

from the estimation of the time-frequency distributions of the energy of the 

IAO provide information for modal analysis of the power system dynamics, 

and for determining the pattern and the dynamics of the power systems. In 

[36] random load perturbations and the frequency fluctuations are used to 

generate random power oscillations and excite the modes of a power 

system. Then, the frequency spectrum method (FSM) identifies the modes. 

The FSM of power system oscillations of machines and transmission lines 

can be obtained by expressing the frequency responses of the systems in 

terms of all operational and control parameters of the systems. 

The methods used in [34-36] provide good tools for analyzing the low 

frequency oscillations of power systems but the problem of quantification of 

the damping contribution from power system components is still unsolved. 

Also these methods are off-line and do not use data from the normal 

operating system. 

2.5.3 The Effect Power System Stabilizer on IAO 

In order to increase the damping during IAO, power system stabilizers 

(PSS) are often added to the power system. In fact, PSS uses supplementary 

signals  that could be one of rotor speed deviation, frequency deviation or 

accelerating  power [1-2,16,38-39].The purpose of PSS is to produce an 
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electrical torque in phase  with rotor speed. A common input of PSS is rotor 

speed deviation and the output is fed to the exciter of the generator. The PSS 

consists of three blocks; gain, wash out filter and phase compensation block. 

In the early 1960’s, the preliminary application of  PSS was done  on four 

hydraulic power plants and the input signals for PSS were taken from the 

shaft speed [40]. The effect of various location of power system stabilizer 

(PSS) on inter-area modes and mode shapes is examined in [41], and it is 

shown in their example that with changes in location of PSS, the mode 

shapes do not change considerably. 

The references in this section explain how to increase damping of the IAO 

by means of a supplementary signal. It is reported in these papers that PSS 

increases damping of the IAO. They also emphasize the control of model 

updating, which is useful for optimizing the dynamic response of PSS by 

adjusting the PSS parameters. However, they did not discuss the  effect of 

power system controllers such as  load  and SVC to damping, and the 

contribution load to damping has not been quantified.  

2.5.4 Prony’s Method  

Prony's method is an off-line technique for identifying  the frequencies ( if ), 

damping factors ( iα ) , amplitudes ( iA ) and phases i( φ )  of a real 

exponential signal which can be represented as the following [42-43] 

                 ( )[ ] 0kkf2(jexpA]k[y iii

p

1i
i ≥++

✼
=

=

φπα             (2.21) 



 Chapter 2. Literature Review of Damping of Inter-area Oscillations  

_____________________________________________________________ 

 

 26

Prony’s method has been used by many researchers to identify frequencies 

and damping of modes of electromechanical oscillation in power systems 

[43-50]. 

Prony’s method is used to find a model for the measured power system 

response [43]. In [43], the algorithm consists of three steps. In the first step 

a discrete linear prediction model is fitted to the recorded data. In the next 

step, the roots of the polynomial associated with the linear prediction model 

obtained from the previous step, are determined. In the final step, the 

amplitude and phase at each mode is computed using the roots of Step 2 and 

complex frequencies. The method in [43] was used to find the resonant 

frequencies of a generator response in British Columbia to the modulation 

of an SVC connected to a 500 KV bus. In a study presented in [44], the 

modal components of the measured power response were determined by 

applying Prony’s method to  the power system response to a 1400 MW, 0.5 

second braking resistor pulse.  

The transfer function of PSS is determined in [45], based on Prony’s 

method. The authors of [45] showed that  this design of PSS leads to an 

increase in damping for both local and inter-area modes in the two test 

systems that they used in their work.  

A comparison between Prony’s method and eigenanalysis was made in [46]. 

In the eigenanalysis presented in [46] the state matrices are computed based 

on the small perturbation. It was indicated in this work that the two methods 

have similar results and they are complementary, but caution should be 

taken in choosing the processing parameters in Prony’s method.  
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Transfer function identification using autoregressive moving average 

(ARMA) was compared with transfer function identification using Prony’s 

method in [47] and it was concluded that the numerical robustness of 

ARMA method is better than Prony’s method and the ARMA method has 

the advantage of simplicity. The identification of the oscillatory mode, 

(which is one contribution of this thesis), is related to transfer function 

identification. Since the noise content of a signal, limits the accuracy of 

Prony’s method, the performance of Prony’s method was improved in [48] 

using a set of signals. In this analysis a set of signals that have common 

eigenvalues are considered and Prony’s method is applied to all of the 

signals of the set simultaneously.  

Three methods of identifying the oscillatory modes were compared in [49]. 

The methods were Prony’s method, the Eigensystem Realization algorithm, 

and the Steigh-McBride algorithm. It was concluded in this paper that the 

first two methods identify  linear systems with similar results, which 

approximate the real system, but for  the third method, the Steigh-McBride 

algorithm,  the result is different. 

The interleaved Prony’s method was proposed in [50] to overcome the 

difficulties of Prony’s method in identifying low and high frequency modes 

at  the same time. It is also shown in this paper that the accuracy of 

identification of the modal parameters reduces as the level of noise 

increases.  
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Prony’s method discussed in this section, from[43-50] has the drawback of 

being noise sensitive. The method is also not applicable to some of the tasks 

of this thesis such as load and SVC contribution to damping.   

2.5.5 Energy Concept Approach in IAO Studies 

During the IAO, the relative acceleration of the rotors of the power system 

generators produce a periodic interchange of mechanical kinetic energy 

[51]. This interchange of energy following a disturbance was used in [52-

53] to determine  the damping and resonant frequencies of the IAO. In [52] 

two concepts of motion modes and energy modes are introduced to study 

the IAO. The frequencies of the speed oscillations are called motion 

oscillations. Also energy modes characterize the energy oscillations. The 

kinetic energy of each generator is described in terms of all power system 

modes. The mode with the most significant coefficient in the kinetic energy 

is called the dominant energy mode. The coefficients of the phase of the 

dominant energy modes for the generator are compared to identify mode 

shapes.  

The concept of modal energy is introduced in the energy approach of the 

IAO in [53]. A systematic method is developed in [53] to find the IAO 

eigenvalues by comparing the magnitude and phase of the coefficients of the 

energy interchange for particular modes of interest. The power system 

controllers are designed to decrease the energy exchange of the particular 

modes.  

The energy methods approached by [51-53] can be used following a 

disturbance to characterize the IAO and the methods do not make use of the 
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normal operating data. These methods also do not discuss quantifying the 

effects of power system controllers on damping of the IAO.  

2.6 Review of Load Modeling 

Power system loads have impact on power system stability and load 

modeling has an important role in stability studies of power systems. In this 

section various models of the loads are studied. 

2.6.1 IEEE Load Modeling   

According to the IEEE Task Force On Load Representation, load can be 

represented with a static or dynamic model [54]. The static load model is 

described as an algebraic relationship between the active (or reactive) and 

the voltage and frequency of the bus at the same time. The static load 

models mainly represent the resistive load or they can be used as an 

approximation of the dynamic loads when there are small changes in the 

load with time. However, in the dynamic load this relationship can be 

represented by difference or differential equations. It was explained in [55] 

that different models are considered for different simulations. For example, 

to use a static model for dynamic simulation, IEEE recommends the 

following equations 
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where 

V = operating voltage 

0V = rated voltage 

P = active power at the operating voltage 

0P = active power at the rated voltage 

fracP = the portion of the bus active load that represented by the static 

model 

Q= reactive power at the operating voltage 

0Q = reactive power at the rated voltage 

 fracQ  = the portion of the bus load that represented by the static model.  

The other parameters of  Equations (2.22) and (2.23) are given in [55]. 

2.6.2 Modeling of Induction Motors 

In many cases such as the IAO studies, it is necessary to consider the 

dynamics of the load components. Induction motors consume nearly %60 to 

%70 of the total energy produced in power systems. From damping of the 

IAO point of view, the induction motors are the most influential load in 

damping. Therefore, the modeling of the induction motors is very important 
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for the IAO studies. Modeling of induction motors has been discussed in 

many papers such as  [56-61].  

The dominant behavior of large induction motors is described in [57] by a 

first-order voltage model using an integral Manifold [58]. Hung and 

Dommel in [59] suggested using a synchronous machine model of 

Electromagnetic Transient Program (EMPTP) to analyze the induction 

motor transients. Using EMTP to simulate the induction motor is 

advantageous because it consists of model of many power system 

components which may consider all transient characteristics of an induction 

motor. 

A probabilistic method for characterization of dynamical modes of 

induction machine clusters under parametric uncertainties, was introduced 

in [60]. The method uses a stochastic norm to characterize variations of the 

model when parametric variations are present. The stochastic norm relates 

the size of the random matrix of the system to the expected value of the 

Frobenius norm [61] of the random  matrix of the system. The stochastic 

approach in [60] removes the fast state variables and keeps the interaction 

between the fast and slow state variables of the motor. This method provides 

the information that is useful for establishing an aggregate model of the 

induction motors. The method also determines the suitable order of dynamic 

model using identification of separate clusters of eigenvalue associated with 

load dynamics.  

A comparison study of the response of a realistic load including two 

induction motors and the aggregate model of the induction motor was 
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performed in [62].  In this study, a step decrease in voltage was applied to a 

realistic load and the aggregate model and the response of two cases were 

compared. The results show that the aggregate induction motor model of 

fifth order can better predict the transient responses. 

Aspects of voltage dynamics of induction motors were investigated in [63] 

using a linearized model and the following models were recommended for 

aggregated loads  

• A first order model can be used for active and reactive loads which 

consist of no dominant large induction motors. 

• If the load consists of some dominant large induction motors, a 

second- or third-order can be used for active power, and first-order 

model for reactive power. 

The validity of different order models was examined in [64] to anticipate the 

low frequency dynamic response of an induction machine. In reference [64] 

a perturbation in shaft torque, supply frequency and voltage magnitude are 

considered. They found that choosing a fifth-order model leads to achieving 

the high accuracy. In the simulation with the fifth order, validation of the 

response to all of the perturbation was confirmed in rotor speed, 

electrodynamic torque, active power, reactive power and stator current 

responses. The third order model anticipated well all responses to 

perturbation in torque and frequency up to 10 Hz .  They also found that the 

first-order speed model could be used to anticipate the rotor speed, 

electrodynamic torque and active power responses to torque and frequency 
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perturbation up to 3 Hz . They concluded a third-order model is a good 

compromise between accuracy and simplicity in power system analysis.  

The singular perturbations method is used in [65-68] to model the effects of 

variations of frequency in induction motors. The singular perturbations 

method deals with the slow and fast states rather than the original model 

[66]. In particular, this method is useful for studying phenomena which have 

a large difference in their frequency components. For example, the 

transients of the network have the natural frequency of more than Hz60 . On 

the other hand, the natural frequencies of in the rotor angle transient lies in 

the range of Hz32.0 − . Therefore, this method is called “ two time scale 

analysis“ [65]. The authors of [66] used a singularly perturbed model to 

remove the state variables with small time constants. In the model, the fast 

and slow state variables described a first order mode separately. In the 

method presented in  [67], in spite of eliminating the fast states, the model 

keeps the interaction between the low and fast transients. The idea of the 

singular perturbation model is extended in [68] to eliminate the fast state 

variables in an induction motor model. The advantages of the method are 

reduction in the simulation time and retaining the nature of the state 

variables. This method can also determine the interaction between the fast 

and slow motor dynamics. In the simulation  performed in [68], it was 

observed that when there remarkable changes in the  system frequency 

occur, ignoring the rate of changes of stator and rotor in different models 

produce a great error. However, the singularly perturbed model of the 
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induction motor can describe the dynamic of these state variables 

efficiently.  

2.6.3 Dynamic Load Modeling  

Since the dynamic aspects of electric load influence the  performance of the 

power system in angle stability, dynamic load modeling has been 

investigated by many researchers including [3,68-73]. 

The general load model was proposed in [3,69]. The load is described as a 

non-linear dynamic model in [3,69]. This model agreed with the 

experiments in the laboratory and was presented as 

                                  
.
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where dP  is demand power and the static part of the load and represented 

by )V(Ps . In this equation sP  and PK  are two non-linear algebraic 

equations, and dK  is a linear time constant.  It is shown in [3] that the 

solution of Equation (2.25) for the step change in the load voltage can be 
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where 0V  and 1V  are the load voltage before and  after the step change, 

respectively. The load equation for different loads such as induction motor 

and  tap changer action  can be derived from Equation (2.25). Based on 

Equation (2.25), an  aggregate dynamic load model for field measurements, 

obtained following a reduction in the voltage [69]. In another work 
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described in [74] the effect of phase voltage changes on nonlinear dynamic 

load were investigated and the following points are observed: 

• The change of  the voltage  angle  has no influence on the static load 

such as resistive load and pure reactive load. 

• The sharp change of the voltage angle causes active power changes 

of the rotating electric machines such as induction motors. 

2.6.4 Component Based and Measurement Based Load 

Modeling  

There is another classification of dynamic load modeling in the time domain 

which contains two approaches: the component based approach and the 

measurement approach. In the component-based approach, the dynamic 

characteristics of all of the components are used to create the load model. 

However, in the measurement based approach, the load model is built up 

from the gathered information of the field measurements. 

The measurement based load modeling was discussed in [1,70,75-79]. In 

[79] the parameters of the equivalent dynamic load  model are obtained 

from field data using the Kalman filter [80]. The method presented in [79] 

does not  need the value of the individual load parameters. The least square 

method was used in [70] to find the load model parameters using the 

recorded field data. In the load model, the active and reactive power is 

expressed in terms frequency and voltage deviations. The authors of [70] 

showed that the second-order model better describes response of the 

Taipower system than the first-order. 
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The component based approach load modeling was studied in [75-78]. In 

[77] the dynamic of a single motor model and two-motor model are 

extracted. Then, the derived dynamic load models are used to simulate two 

events. After that, the dynamic load models are replaced by a composite 

load (static and static) and the events are simulated using the composite 

load. The comparison of the results reveals that by using a single-motor or 

two-motor model, the reactive power responses are improved considerably 

compared to the composite load. In [78] the effect of load model on low 

frequency oscillations was investigated. In this paper the total dynamic 

loads were represented by an equivalent-single motor. It was concluded that 

during unstable inter-area oscillations, the single-motor equivalent motor 

has the largest oscillation compared to composite load (static and dynamic) 

or exponential load model.  

The references that have been discussed in this section can be used to 

establish a load model to indicate firstly how the oscillations influence load 

dynamics and secondly what the load contribution is to damping. In this 

thesis, the load model is formed by the recorded data. This is clearly a 

measurement based category.  

2.7 The Effect of Load on IAO  

The literature review regarding the effect influence of load on the IAO is 

discussed in this section. Firstly, the mutual interaction of load and power 

system is studied. Then some methods of using load modulation are 

described. 
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2.7.1 The Mutual Interaction between Load and Power 

System  

In [21, 81, 82], the mutual interaction between load and power system was 

investigated by considering the effect of load dynamics on damping through 

a feedback path as shown in Figure 2.3. In this figure, P∆ and V∆  a real 

power disturbance and bus voltage respectively. The effect of V∆ on the 

load is shown by dP∆ . It was also studied in [81] that the power system 

transfer function power consists of static and dynamic parts. The static part 

is associated with power flow Jocobian and the dynamic indicates the 

dynamics of the synchronous generators, power system controllers and load.  

 

 
Figure 2.3 Feedback representation of load dynamic effect in the power 

systems [81] 

Laboratory tests and field measurements on buses indicated that response of 

a typical load model to a voltage step change can be presented graphically in 

Figure 2.4 [3]. The response of the reactive power response to the step 

voltage change has a similar trend. This figure can be interpreted as follows. 
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When there is a step change in voltage, since the slip of the induction motor 

cannot be changed suddenly, the load acts a like static load and therefore 

there is a step change in the demand power dP . As the time proceeds the 

load recovers to a new steady state value, because of the slip changes. 

The references discussed in subsections, provide a generic load model that 

relates the load active power to the load voltage model. However, they do 

not describe a load model that relates the rate of bus voltage angle to the 

active load power, which is needed in determining the load contribution to 

damping. 

 

Figure 2.4: The response of the real power of a dynamic load to step change 

in voltage [3] 

2.7.2 The effect of Load Modulation on IAO Damping  

The effect of load modulation on the IAO was studied in [83-88]. The effect 

of load modulation on the  IAO was investigated  in  [83]. In this paper, two 

areas of a power system are connected together and in the pathway HVDC 
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equipment is placed. As far as the AC system is concerned, this DC link 

appears as a fully controllable load. Results of [83] show that the active load 

modulation  can improve the damping if the demand active load is 

modulated in phase with the speed of the generator that has the shortest 

mass-scaled electrical distance from the converter. The direct control of the 

active load was discussed in [87] to damp the IAO. The author of [87] 

suggested using the local frequency to control the active load in order to 

change the IAO damping. It was shown in [86] that by using active load 

modulators that control less than  one  percent of the base load, damping of 

both local and inter and inter-area modes are improved significantly. Results 

of a field test in [88] show that the on-off control of the active load  is more 

effective than the sinusoidal modulation of the active load.   

The references that are described in this Subsection provide a good 

background for analyzing the effect of load dynamic on damping. However, 

they do not present a load model that can be used to quantify load 

contribution to damping. Also they do not consider the sensitivity of 

eigenvalues of the IAO with respect to load.  

2.8 Review of SVC Modeling  

This section deals with modeling of static var compensators (SVC) and the 

effect SVC on the IAO. 

Some reasons for utilization of SVCs in power systems are control of 

temporary over voltages, prevention of voltage collapse, enhancement of 

transient stability and increasing damping of the system oscillations. By 

controlling the switching of SVC, it behaves like a capacitor or inductor 
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generates or consumes reactive power [20,89]. Figure 2.5 shows the V-I 

characteristics of SVC. 

In the active region of Figure 2.5, according to the slope of the 

characteristic, the voltage is regulated by changing the current and reactive 

power. As shown in this figure, the SVC characteristic has two limits: 

capacitive limits and inductive limits. At its capacitive limit, the SVC acts 

as a shunt capacitor and at the inductive limit it changed to a shunt reactor 

[90]. Figure 2.6 shows the simplified model of an SVC consisting of a 

thyristor controlled reactor (TCR) and a fixed capacitor (FC).  

 
Figure 2.5: The V-I characteristic of SVC [90] 

 
Figure 2.6: A simplified model of an SVC [1] 
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Static var compensator systems are usually designed to meet individual 

system load requirements. Therefore, in stability studies a detailed model of 

SVC is needed. More information for modeling of SVC are given is [90]. 

2.9 The Effect SVC on IAO 

The primary aim of SVC application in power systems is to keep bus 

voltage at or close to a constant level. However, it was found that SVC 

could improve damping of low frequency oscillations [91-96]. 

In a study carried out by Choudhry, et al. [92], a method on the basis of 

reactive modulation was suggested to improve the dynamic performance of 

power systems. They designed a reactive power system modulation 

controller with a gain corresponding to rotor speed deviation to reduce the 

damping. In their study, 50% of load was considered as static load and 

described as a nonlinear function of load bus voltage, and 50% of the load 

was  dynamic load  which is described by a fifth-order model of the 

induction motor.  

The impact of load on of the damping of controllable series capacitor (CSC) 

and SVC was investigated in [93]. It was shown in this paper that with 

increasing transmission line loading, the damping effects of a CSC is higher 

than of a SVC.  

In [94] an adaptive static var compensator was used to damp synchronous 

generator oscillations. In this method, the performance of a self-tuning PID 

controller is compared to a fixed-gain PID controller. The results show that 

the controllers had a good capability in damping. However, the self-tuning 

controller is more effective than the fixed-gain controller, because the self 
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tuning PID controller could modify its parameters in real time on the basis 

of the on-line measurement.  

An indicator called index location for effective damping (LIED) was 

introduced by Okamoto et al. [95]. In their method, effective location of 

SVC was determined using modal controllability to improve the damping of 

the IAO. They concluded that if SVC is located at the point where LIED is 

large for weak damping mode, then by suitable control of SVC, the mode 

can be stabilized.  

To find the damping effect of SVC, an extended Philips-Hoeffron model 

was used in [96-98]. The extended Philips-Hoeffron model of a synchronous 

generator with SVC is illustrated in Figure 2.7. 

 

Figure 2.7: The extended Philips-Hoeffron model with SVC [97] 

The authors in [96] showed that the SVC improves damping of the IAO 
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damping applies through the blocks VK  and qK in Figure 2.7. Usually the 

direct effect of SVC on damping is much greater than its direct effect.  It 

was also reported in [96] that SVC improves both transient stability (first 

swing stability) and oscillation stability and more damping can be achieved 

by choosing a higher gain of qK  in the SVC controller. They also came to 

the conclusion that when the power system operates at higher load 

condition, the SVC operates more efficiently. Figure 2.8 illustrates the 

thyristor-control reactor, fixed capacitor and damping control system in the 

SVC. As can be seen in the figure, the damping signal is one of the inputs of 

the thyristor firing circuit 

 

Figure 2.8: The schematic diagrams for SVC including voltage and damping 

control blocks [97] 

The effect of SVC on a given mode was investigated by controllability and 

observability characteristics in [99] using a singular value decomposition 
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the controllability of critical modes decreases. Chen et al. in [100] showed 

that SVC is more effective in damping of oscillations of single machine 

power system than PSS. A robust control strategy based on energy function 

was examined in [101] to improve power system stabilizer properties using 

thyristor controlled series (TCSCs) and SVCs. The controller is robust with 

respect to system loading, system configuration and fault type and location.  

In the references relating to SVC application in damping, there are good 

points that give some insights about how an SVC can improve the damping 

torque in the power systems, the best place for SVC. Also some methods to 

improve the performance of SVC in damping are introduced. However, the 

effects of SVC on load contribution to damping are not fully investigated in 

these papers, also they do not present a method to redesign the SVC 

controller to increase the load contribution to damping. These papers do not 

develop a model to consider the effect of SVC reactive power on the 

measured power, which can be used in redesigning of the SVC on the basis 

of the operating data to increase damping of the IAO.  

2.10 Summary 

The basic materials that are needed for the following chapters are reviewed 

in this chapter. Also the related works to load and SVC modeling and their 

effect on the IAO are discussed. 

In Chapter 3, a method based on cross-correlation and autocorrelation 

functions is developed to identify the power system eigenvalues of the IAO, 

and mode shapes of the power systems. 
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Chapter 3: Correlation Based Mode Shape 

Identification 

 

3.1 Introduction 

In this chapter, the concept of identification of modal frequencies and mode 

shape of the inter-area oscillations (IAO) on the basis of cross-correlation 

and autocorrelation is introduced. The correlation based mode shape 

identification (CBMSI) method is developed in this chapter to identify the 

eigenvalues and mode shapes of the IAO. The CBMSI uses cross-

correlation and autocorrelation of the appropriate time domain signals, and 

curve fitting in the frequency domain.  

It is found that disturbances in the power system as well as customer load 

variations can be used to identify the mode shape and the contribution of 

power system controllers to the IAO. Large disturbances of a power system 

can cause the system to respond as though an impulse had been applied. 

Continuous disturbances arise because of the customer load changes. This 

chapter examines both styles of disturbances.  
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In this chapter after developing the CBMSI method, an algorithm is 

presented to identify the eigenvalues and mode shapes of the IAO. Then, the 

CBMSI applied to a test power system, and resonant frequencies, damping 

and mode of shapes the test power systems are identified. The results of the 

simulation validate the algorithm. 

The resonant frequencies and mode shapes for two different sets of real data 

are determined using the CBMSI method. The first set is the recorded data 

following the test events performed on the Australian electricity network. 

The system response after the test events is treated as an impulse response. 

The second set of the real data is the measured data from the normal 

operating system and the measurements are treated as the integral of white 

noise. 

3.2 Theory of the Correlation Based Mode Shape 

Identification Method  

3.2.1 Characterizing the Power System Disturbances 

The power system disturbances are categorized for this thesis into the 

following classes: 

a.) Large Disturbances 

Large disturbances in this thesis are defined as disturbances that are large 

enough to excite the system, but their duration is short compared to the time 

constants of the IAO of the power system. Examples of such a large 

disturbance could be a braking resistor or a short circuit which is cleared 
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and the system restored to its original state. For a braking resistor test, a 

high power resistor is connected to a network bus for a short time and then 

disconnected. The behaviour of the system after the disconnection is used 

study the system and is similar to an impulse response test of the system.  

b.) Continuous Small Random Disturbances 

The continuous small random disturbances occurring in a power system 

results in small changes in many power system measurements. The 

important property of the small random disturbances is that they are usually 

largely unpredictable, at least over the short time scales of 1.0  to 20  

seconds relevant to the IAO. Consider a power system running in normal 

conditions, in this case, the customer load changes continuously and 

unpredictably. Therefore, the changes of the customer load variations 

behave like a white noise process and as a white noise process, its frequency 

spectrum is a real positive number, and the energy is distributed,  at least 

over the frequencies relevant to IAO. With large numbers of independent 

sources, according to the central limit theorem, the probability distribution 

function of the sum of small random disturbances approaches the Gaussian 

distribution function. In the most power systems, there are many 

independent sources of changes in the loading. Thus, the central limit 

theorem applies and the characteristic of load changes is modeled as a 

Gaussian random process. Since the changes in the customer load are 

approximately white noise, the measured power is considered as the integral 

of white noise [50] over the frequency band of interest. 
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3.2.2 Plant Description 

First, we consider a power system with one input and two outputs as the 

plant shown in Figure 3.1 

 

Figure 3.1: A power system with one inputs and two outputs 

In this system, the input could be the occurrence of a significant event or 

customer load variations. The outputs could be rotor angles of the 

generators or values from the outputs of power systems controllers, such as 

SVC.  

The transfer function from the single input to each output in Figure 3.1 can 

be written as  
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Equations (3.1) and (3.2) can be written as the ratio of polynomials  

                                                  
)j(a

)j(b
)( 1

1
ω

ω
ω =

❏❏ ❏❏
                                  (3.3)  

                                                 
)j(a

)j(b
)( 2

2
ω

ω
ω =

❑❑ ❑❑
                                   (3.4) 

Then the relationship between the two outputs, 1y  and 2y  can be 

determined from    

                                          
)j(b

)j(b
)(

)(

)(

1

2
1

1

2

ω

ω
ω

ω

ω
== ▲▲ ▲▲▼▼ ▼▼▼▼ ▼▼

                           (3.5) 

 

Power System  

1y  

2y  

u  



Chapter 3: Correlation Based Mode Shape Identification 

_____________________________________________________________ 

                 49

3.2.3 Power System Impulse Response  

Consider a power system as in Figure 3.1 with an impulse input. The aim of 

this section is to determine what the relationship is between the two outputs 

of the plants.  Given the transfer functions values of 1

◆◆ ◆◆
and 2

❖❖ ❖❖
at the 

resonant frequency as shown in Figure 3.1, the outputs due to the impulse 

are in the form of  

                                   )t(u)t(coseA)t(y s10
t

11 ϕωα += −                  (3.6) 

                                     )t(u)t(coseA)t(y s20
t

22 ϕωα += −                (3.7) 

where α is damping coefficient, 0ω is angular frequency of the oscillations, 

1φ  and 2φ  are phase shift of 1y and 2y , respectively. In Equations (3.6) and 

(3.7), )t(us  is the unit step response and this shows that only the response 

for ot ≥ is of interest. 

In the IAO studies, it is assumed that all of the signals being studied are 

erogdic (refer to Appendix A). The assumption of ergodicity is reasonable 

for short term power system analysis, because based on statistical 

observation, the statistical properties of the studied signals do not change 

significantly during periods of the signals that are studied in this thesis. 

The autocorrelation of )t(y1  could be computed from the following 

equation [102]  

dt)t(u))t((coseA)t(u)t(coseA)(R
t

10
)t(

110
t

1yy 11 P ++++=
∞

−∞=

+−− τϕτωϕωτ ταα

   

                                                                                                                   (3.8) 

Then 
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                                                                                                                   (3.9) 

Also cross-correlation of )t(y1 and )t(y2  can be determined as shown in 

the following equation [102] 
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                                                                                                                 (3.10) 

Since the aim is to find the relationship between 1y  and 2y  by means of 

their cross-correlation and autocorrelation, therefore according to Equation 

(2.20), we divide the Fourier transform of cross-correlation of 1y  and 2y , 

by the Fourier transform of autocorrelation of 1y  and compute this ratio at 

0ωω = as 

                                        
)R(

)C(
)(

11

21

yy

yy
0

ℑ

ℑ
=ω

❡❡ ❡❡
                                     (3.11) 

where 0ω  is the power system resonant frequency and ℑ the Fourier 

transform operator. In analysis of sinusoidal signals, it is often found 

beneficial to consider the analytic associate of the cross-correlation and 

autocorrelation functions. Therefore, in taking the Fourier transform, we 

consider the analytic associate of the cross-correlation and autocorrelation 
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functionss. In doing this, firstly, the Hilbert transform [25] of all terms in 

Equations (3.9) and (3.10) should be computed. Therefore, the analytic 

associate of the cross-correlation and autocorrelation functions, are 

considered in this section. 

The Fourier transform of analytic associate of 
21 yy

C  at 0ωω =  for 0≥τ  

could be calculated as 

                                      
0

2121
))(C()( yy0yy ωω

τω
=

ℑ=
❢❢ ❢❢

                 (3.12) 

The simplified form of Equation (3.12) is                                  
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                                                                                                                 (3.13) 

Similarly 
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                    (3.14) 

or 

                 0
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By substituting from (3.13) and (3.15) into (3.11), we have 

                                        0
eA

eA
)j(

1

2

j
1

j
2

0 ≥= τω
ϕ

ϕ✈✈ ✈✈
                            (3.16) 

Similarly for 0<τ  we have 
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                                          0
eA

eA
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1
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j
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0 <= τω
ϕ

ϕ✇✇ ✇✇
                           (3.17) 

Thus for all values of τ  we can write 

                                    
1

2

j
1

j
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0
eA

eA
)

ϕ

ϕ

ω =
①③②①④②①③②①④②

                                      (3.18) 

As a result, if we have two signals in the form of Equations (3.6) and (3.7), 

then the phase difference and the ratio of the amplitude of the two signals 

can be computed according to Equation (3.18).  

3.2.4 Response of the White Noise Driven Power System 

In this section a white noise driven power system is examined and we aim to 

determine the relationship between the two outputs of the power system in 

Figure 3.1, labeled 1y  and 2y . If we relate 1y  to the white noise input using 

Equation (3.3), and 2y  to the input white noise using Equation (3.4), then 

2y  and 1y  are related by  

                                                
)j(b

)j(b
)(

1

2

ω

ω
ω =

⑤⑤ ⑤⑤
                                    (3.19) 

with a common driving noise. In general, the numerator and denominator in 

(3.19) have a common coefficient that cancels each other out. According to 

Equation (2.20), )(ω
⑥⑥ ⑥⑥

 can be found from 
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ℑ
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=                    (3.20) 

where )(
21 yy

ω
⑩⑩ ⑩⑩

 is the Fourier transform of cross-correlation between 1y  

and 2y , and )(
11 yy

ω
❶❶ ❶❶

 is the Fourier transform of autocorrelation of 1y . 
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To determine )j( ω
❷❷ ❷❷

, we consider the analytic associate of its numerator 

and denominator. Thus, for 0≥ω  we could write  
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                                                                                                                 (3.21) 

Therefore  
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                                   (3.22) 

Similarly for 0<ω  we have 
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Thus  
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                      (3.24)  

With respect to Equation (3.24), we can determine )(ω
➄➄ ➄➄

 at the power 

system resonant frequency. Thus we can write: 

                                           
)(
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)j(

0yy

0yy
0

11

21

ω

ω
ω ➅➅ ➅➅➆➆ ➆➆➇➇ ➇➇

=                                (3.25) 

So, to find the relative magnitude and phase difference between 1y  and 2y  

in the white noise driven system, the Fourier transform of the cross-

correlation 1y  and 2y  should be divided by the Fourier transform of the 

autocorrelation 1y . This derivation is obtained from the analytic associate of 

the cross-correlation and autocorrelation functions. 
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3.2.5 Response of a Power System to White Noise Plus an Impulse 

 Consider a white noise driven system with an additional impulse input. If 

it is assumed that the system is linear, each of the outputs could be divided 

into response due to impulse input and response due to white noise as  

                         w1i11 yyy +=      and    w2i22 yyy +=                        (3.26) 

The autocorrelation of 1y  and cross-correlation of 1y  and 2y  can be shown 

to be 

      
w1w1i1i111 yyyyyy RRR += and 

w2w1i2i121 yyyyyy CCC +=     (3.27) 

where 
i1i1 yy

R  and 
w1w1 yyR  are autocorrelations of i1y  and w1y , 

respectively. Also 
i2i1 yy

C is the cross-correlation of i1y  and i2y  and  

w2w1 yyC is the cross-correlation of  w1y  and w2y . In Equation (3.27), 

since there is no correlation between the impulse signal and the white noise 

signal, there is no correlation between the two parts of either output signal. 

This implies that the cross terms are zero in Equation (3.27). The 

relationship between 1y  and 2y  can be determined from 
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➈➈ ➈➈
            (3.28)  

This gives the same result as processing white noise or impulse response 

separately. Equation (3.28) shows the relative magnitude and phase 

difference of the two outputs 2y  and 1y  at 0ω . 
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3.2.6 Using Non-analytic Process 

So far the analytic associate of cross-correlation and autocorrelation is 

considered. In this section, we examine what error will be made if the non-

analytic signal of cross-correlation and autocorrelation functions are used. 

Firstly, the impulse response is considered. If in Equations (3.9) and (3.10), 

the non-analytic signal is considered, then Equations (3.13) and (3.15) are 

changed to the following equations: 
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                                                                                                                 (3.29) 
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                                                                                                                 (3.30) 

By substituting (3.29) and (3.30) in (3.10) and simplifying 
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If we assume 0ωα << , (which is often found in low damping case power 

systems), Equation (3.31) becomes 

                         

[ ] 01e
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                                                                                                                 (3.32) 

With comparing (3.32) with (3.18), the bound of relative error due to use of 

the non-analytic signal is  

                               0
0

r for,0
2

ωατ
ω

α
ε <<≥≤                     (3.33)  

With regards to the nature of the IAO in power systems, the assumption of 

0ωα <<  is frequently true. Consequently, under this assumption the bound 

of the error due to a non-analytic signal can be determined according to 

Equation (3.33). It should be noted that a similar result can be obtained 

for 0<τ . 

For the case of a white noise driven system, according to Section 3.2.3., the 

results will not be changed if the not-analytic signal of the cross-correlation 

of 1y  and 2y is used. 

3.3 Algorithm of the Correlation Based Mode Shape 

Identification (CBMSI) Method 

The procedure for determining the mode shape using the CBMSI method is 

explained in this section. Let us consider a power system including n  

synchronous generators as shown in Figure 3.2. In this system, the 
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inputs, m1 u,,u ➙ , could be significant disturbance or customer load 

variation.  The outputs are the generators rotor angle changes, n1 ,, δδ ➙ , 

and they show the response of the generators rotor angle changes to 

significant power system disturbance or customer load variations.  

 

 

Figure 3.2: Schematic diagram of the power system with inputs and outputs 

 

In general, the transfer function between input j  and an output i , can be 

found from  

                                               
)j(a

)j(b
)(

ji
ji

ω

ω
ω =

➛➛ ➛➛
                                 (3.34) 

The least square method is used to find the transfer functions in Equation 

(3.34) with different numerators and a common denominator. In this method 

the best set for numerators ( s'b j ) and common denominator (a ), are 

identified. This method is called multi-site curve fitting, since it estimates 

the coefficients of several transfer function with a common denominator. 

nδ  
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The system shown in Figure 3.2, has n2  state variables. The first n state 

variables are the changes of generator bus voltage angle ( n1 ,, δδ ➝ ) and the 

remaining state are the rate of change of generator bus voltage angle 

( n

..

1 ,, δδ ➞ ). The procedure for using the CBMSI is as follows: 

a Step 1: Refining the data 

The response of the rotor angles to customer load variations, as explained in  

[50], is the integral of white noise. To represent the system as being driven 

by white noise all output measurements should be differentiated. For a real 

system with large disturbances, since the duration of the response is short, 

therefore the customer load variations are often neglected. 

Step 2: Mapping  all of the rotor angles to the COI referenced system 

The rotor angles are mapped to the COI referenced system by subtracting 

the angle of COI from each of the rotor angles according to Equation (2.7). 

Step 3: Autocorrelation Computation  

In order to determine the IAO resonant frequencies, which lie in the range 

of 0.05 to 3 Hz , the time duration of the autocorrelation is often  selected to 

be 20 seconds. To increase the frequency resolution in the frequency 

domain, the time duration of the autocorrelation could be increased or the 

signal is zero paded.  

Step 4: Resonant frequency identification of the IAO of the power 

system 

The resonant frequencies of the power system can be found by taking the 

Fast Fourier Transform ( FFT ) [103-104] of the autocorrelation of all of the 

bus voltage angle differences and using multi-site curve fitting in the 
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frequency domain. The resonant frequencies are the imaginary parts of the 

roots of the identified common denominator of Equation (3.34). 

Step 5: Mode shape plot using eigenvector  

Since the eigenvector of a linear system shows how the state variables are 

related, therefore in this section the relative magnitude and the phase 

difference of the rotor angles with respect to a reference are computed. 

Consider the outputs in Figure 3.1, take one generator rotor angle as a 

reference, e.g. rotor angle j , in that case we can form the following set of 

transfer functions 

                              n,,1j,1j,,1i
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Equation (3.35) can be evaluated with lower noise levels using 
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where )(C
ij

τδδ is the cross-correlation of jδ  and iδ . Also )(R
jj

τδδ  is 

the autocorrelation of iδ .  

The system has n2  states, so the system also has n2  eigenvectors. The first 

n elements of the thk  eigenvector correspond to the changes of generators 

bus voltage angle. They have the general element ik

_

ϕ that can be obtained 

from  
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where kω  is the th
k  power resonant frequency.  

Therefore, if the rotor  angle j is considered as the reference rotor angle, 

then the mode shape at the power system resonant frequency kω  can be 

plotted using the elements of the following vector 
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                                   (3.38) 

Since k

_

ϕ  is a part of the right eigenvector and the eigenvector is not unique 

and any multiple of any eigenvalue is also an eigenvalue, Equation (3.38) 

can be written as 
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3.4 Simulation Results of the CBMSI Method 

3.4.1 Eigenvalue Analysis of a Test Power System 

In this part, the algorithm of the CBMSI method is validated by simulating a 

linearized test power system. The test power system consists of three 

generators and nine lines. The specifications of the test power system are 

given in [15]. The basic model does not include any machine damping. In 

this case a damping factor, D  , is considered to damp the oscillation of the 

IAO in the test power system. The damping power for each generator is 

expressed by   

                                          3,,1i6.0P
.

iDi ➘=−= δ                          (3.40) 

 Since this test system has three generators, the vector of state variables is 

formed as 

                                   

T
.

3

.

2

.

1321X ➴➷
➬➮➱✃

= δδδδδδ                     (3.41) 

Also, the state space presentation of the test system can be written as  

                                                 UXX
. ❐❐ ❐❐❒❒ ❒❒

+=                                      (3.42) 

where  

❮❮ ❮❮
 = the system matrix that can be computed according to Equation (2.10) 

using Equation (3.40) and data of the test system given in [15] 

X = the vector of the state variables 
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U = the vector of the input sources 

The input matrix ❰❰ ❰❰  and the input vector U and are considered as  
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                            (3.43) 

                                          [ ]T321 uuuU =                                      (3.44) 

where 1u  to 3u  are three white noise sources. 

Since this system consists of three generators, there are two complex modes.  

The test system has the following complex eigenvalues 

                               8015.8j3.0 ±−   and  4130.13j3.0 ±−             (3.45) 

The resonant frequencies are  

                                   Hz4.1f1 =   and     Hz1.2f2 =                     (3.46) 

 

3.4.2. Simulation Results 

In applying the algorithm to the test power system, the inputs are white 

noise sources. The simulation is performed for 30  minutes. In the 

simulation of the test power system, at first the obtained generator rotor 

angles mapped to the COI referenced system. Then, the autocorrelation of 
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the angles are computed. Figure 3.3 shows the autocorrelation of rotor angle 

1δ . and Figure 3.4 represents the cross-correlation of 1δ  and 3δ .  

Then, the FFT  of the autocorrelations are taken. Multi-site curve fitting in 

the frequency domain on the of the autocorrelations yields the power system 

eigenvalues. Figure 3.5 illustrates the FFT  of autocorrelation of the 

generator angle 2δ and the fitted curves of the test power system. As shown 

in Figure 3.5, there are two distinct resonant frequencies for the test power 

system.  

 

 

Figure 3.3: The autocorrelation of rotor angle 1δ  of the test power system 
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 Figure 3.4: The cross-correlation of 1δ  and 3δ  of the test power system 

 

Figure 3.5: The FFT  of autocorrelation of the generator angle 2δ and 

the fitted curves of the test system 
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The identified eigenvalues are given in Table 3.1. Also the estimated 

resonant frequencies are given in Table 3.2. In these two tables, the actual 

values refer to the values obtained from eigenvalue analysis of the state 

space model and estimated values indicate the values identified by the 

CBMSI method. 

 

Table 3.1: The actual and estimated eigenvalues of the test power system 

Actual value Estimated value 

8015.8j3.0 +−  8662.8j3005.0 +−  

4130.13j3.0 +−  3926.13j3272.0 +−  

 

 

Table 3.2: The actual and estimated resonant frequencies of the test 

power system 

Actual Resonant 

Frequency  (Hz ) 

Estimated Resonant  

Frequency (Hz ) 

4008.1  4111.1  

1347.2  1315.2  

 

 

In the next step, the first half elements eigenvectors of the test power system 

, k

_

ϕ , corresponding to rotor angle state variables, are determined using 
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Equation (3.39). For this system, at each resonant frequency the elements of 

the eigenvectors associated with 1δ , 2δ  , 3δ  are denoted by 
1

Vδ , 
2

Vδ and 

3
Vδ , respectively. These vectors are shown by [ ]T

321k

_

VVV δδδϕ = . 

For forming the mode shape plot of this  system,  the rotor angle 3δ  is 

considered as the reference rotor angle. According to Equation (3.39), the 

FFT  of the autocorrelation of 3δ  and the FFT  of the cross-correlation of 

3δ  and other rotor angles are computed, and then evaluated at the specific 

resonant frequencies to form k

_

ϕ . The vector k

_

ϕ  are determined from two 

methods; one method is the eigenvalue analysis and the other method is the 

CBMSI method  proposed in this chapter. The value of k

_

ϕ obtained from 

these two methods are compared in Tables 3.3 and 3.4 at power system 

resonant frequencies of 1.4 Hz  and 2.1 Hz , respectively. Also, the mode 

shapes that are obtained from these two methods are plotted in Figures 3.6 

and 3.7 for the identified resonant frequencies. Tables 3.1 to 3.4 and also 

Figures 3.5 and 3.7 indicate that the estimated values obtained from the 

CBMSI method are close to the actual values computed from eigenvalue 

analysis. This indicates that the CBMSI method can reliably estimate mode 

shapes as well as eigenvalues of the power system. These results represent 

the validity of the CBMSI method. 

As can be seen in Tables 3.3 and 3.4 there are some phase shifts in angles 

and changes in magnitude for the eigenvector. This is to be expected, since 
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the autocorrelations are based on a finite data length; ideally an infinite 

length simulation would yield perfect estimates. 

 

Table 3.3: The value of the elements of k

_

ϕ  associated with  Hz4.1f =  

obtained from the two methods: eigenvalue analysis  and the CBMSI 

 based method for the test power system 

 Eigenvalue 

Analysis   

Correlation Based 

Method  

Generator 1: 
1

Vδ   o
1800322.0 −∠  o

2.1830320.0 −∠  

Generator 2: 
2

Vδ   o
00933.0 ∠  o

1.40927.0 −∠  

Generator 3: 
3

Vδ  o
00546.0 ∠  

o
00540.0 ∠  

 

Table 3.4: The value of the elements of k

_

ϕ  associated with  f=2.1Hz  

obtained from the two methods: eigenvalue analysis  and the CBMSI 

method for the test power system 

 Eigenvalue 

Analysis   

Correlation Based 

Method  

Generator 1: 
1

Vδ   o
1800028.0 −∠  o

5.1640035.0 −∠  

Generator 2: 
2

Vδ   o
180023.0 ∠  o

6.1700211.0 ∠  

Generator 3: 
3

Vδ  o
00706.0 ∠  

o
00707.0 ∠  
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Figure 3.6: Mode shape plot at f=1.4 Hz  obtained from the two methods, a) 

eigenvalue analysis, b.) CBMSI method  
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 Figure 3.7: Mode shape plot at  f=2.1 Hz  obtained from the two methods, 

a) eigenvalue analysis, b.) CBMSI method 
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3.5 Results of CBMSI Method on Real Data
1
  

3.5.1. Results Due to Power System Disturbance 

In this part the recorded data following a braking resistor event are used to 

find the IAO eigenvalues of the Australian electricity network The data are  

power flows along 6 lines in Queensland and Victoria associated with a 

braking resistor test carried out on the 22
nd

 of January 2001. The duration of 

data captured following the braking resistor event was around 1.5 minutes.  

Figure 3.8 shows the power flow of a power line in South Australia 

following a braking resistor event at 00:44:51 on the 22
nd

 of January 2001. 

The autocorrelation of the power flow changes of South Australia line is 

depicted in Figure 3.9. 

After taking the FFT  of the autocorrelations the resonant frequencies are 

identified using multi-site curve fitting in the frequency domain. Figure 3.9 

shows the FFT  of the autocorrelation of the load centers. As can be seen in 

Figure 3.10, there are two dominant resonant frequencies. Tables 3.5 and 

3.6 show the power system identified eigenvalues and resonant frequencies, 

respectively. 

                                                
1-The read data was provided by Powerlink Queensland. 
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Figure 3.8: The real data of power flow across the South Australia power 

line following the braking resistor event 00:44:51 on the 22
nd

 of January 

2001 

Figure 3.9: The autocorrelation of the power flow of a power line for the 

real  data 
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Figure 3.10: The magnitude of the FFT  of the autocorrelation of the power 

flow of the load centers in Australian electricity network following the 

braking resistor test 

 

 

Table 3.5: The power system eigenvalues estimated from the power flow of 

the load centers in the Australian electricity network following the braking 

resistor test 

 Estimated Power System Eigenvalues 

First Mode  0250.2j2733.0 +−  

Second Mode 5277.2j2406.0 +−  
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Table 3.6: The estimated system frequencies corresponding to Table 3.5 

 Estimated Power System Resonant 

 Frequency ( Hz )  

First Mode  3223.0  

Second Mode 4023.0  

 

 3.5.2. Results from Normal Operating Conditions
1
 

In this section the power system eigenvalues of the Australian electricity 

network are identified by applying CBMSI method on real data from normal 

operating condition. The data consists of the voltage bus angle of the four 

major load centers: Brisbane, Sydney, Adelaide and Melbourne and some 

measurements of current flow to loads. All angles are measured with respect 

to a GPS (Global Positioning System) strobe. The sampling frequency of the 

real data is5 Hz and the duration is one hour starting from the time 00.00 of 

the 22
nd

 of May 2002. The voltage and current of the Brisbane load centre is 

given in Figure 3.11. The data of this figure was recorded by the angle 

measurement unit and because of the interfacing system, the values of the 

vertical axes are not scaled to represent the actual value of the voltage and 

current magnitude.  

                                                
1-The real data was provided by Powerlink Queensland. 
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Figure 3.11: The magnitude of the voltage and current of one hour data 

started the time 00.00 of the 22
nd

of May 2002 
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Figure 3.12: The autocorrelation of the Brisbane voltage angle  

Figure 3.13: The cross-correlation of voltage angle of Brisbane and Sydney 

voltage angle 
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The power system resonant frequencies are found using multi-site curve 

fitting FFT  of autocorrelations of the COI referenced voltage angles of the 

four major load centers in frequency domain. The time lag of 

autocorrelation in the real data analysis is chosen 40  seconds, to increase 

the frequency resolution. Then, the curve fitting is performed over the 

frequency range of interest as explained in Step 3 of the CBMSI algorithm 

presented  Section 3.3. 

The FFT of the autocorrelation of load centers are illustrated in Figure 3.14, 

and the identified eigenvalues and resonant frequencies are given in Tables 

3.7 and 3.8 respectively. 

 

 

Figure 3.14: The magnitude of the FFT  of autocorrelation of bus voltage 

angle of the load centers 
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Table 3.7: The power system eigenvalues identified from one  

hour of the normal operating data 

Mode Estimated Power System Eigenvalues 

Mode 1 8793.1j2255.0 +−  

Mode 2 7552.2j3512.0 +−  

Mode3 4677.4j1219.6 +−  

 

 

As shown in Figure 3.14, the first two modes are dominant in all of the 

FFT  of the autocorrelations.  

According to Equation (3.39), the mode shape plot at each identified 

resonant frequency can be determined using autocorrelation and cross-

correlations. The mode shape plots for the three estimated resonant 

frequencies are illustrated in Figures 3.15 to 3.17. 

 

Table 3.8: The power system resonant frequencies identified form   

one hour of the normal operating data 

 Estimated Power System Resonant 

 Frequency ( Hz ) 

Mode 1 2991.0  

Mode 2 4385.0  

Mode 3 7397.0  
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Figure 3.15: Mode shape for the real data at the first resonant frequency 

 

Figure 3.16: Mode shape for the real data at the second resonant frequency 
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Figure 3.17: Mode shape for the real data at the third resonant frequency 
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3.6 Summary 

In this chapter, the CBMSI method based on the autocorrelation and cross-

correlation functions is proposed to identify the power system eigenvalues 

and mode shape. After developing the theory and presenting the algorithm, 

the CBMSI method is validated by simulating a test power system. The 

findings of the simulation show that the estimated power system 

eigenvalues and mode shapes agree with the results obtained by the 

eigenvalue analysis. 

The CBMSI method is applied on two different sets of real data of the 

Australian electricity network. The first set of real data consisted of the 

power across 6 major lines of the Australian electricity network following a 

large disturbance created by a braking resistor event. The response of the 

system to the braking resistor is considered similar to an impulse response 

of the power system. From this data the power system resonant frequencies 

are identified using the correlation based method. The second data set 

includes magnitude and angle of voltage and current of four major load 

centers, Brisbane, Sydney, Melbourne and Adelaide, collected from the 

normal operating conditions for one hour. The power system resonant 

frequencies are identified using the CBMSI method. Then the mode shape at 

the each identified resonant frequency of the Australian electricity network, 

are determined. 
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Chapter 4: Load Contribution to Damping  

 

4.1 Introduction 

This chapter develops a method to identify the effect of the load dynamics 

on oscillatory modes of the inter-area oscillations (IAO). In particular, the 

proposed method aims to find the sensitivity of the oscillatory modes with 

respect to the loads in a multi-machine power system and the extent to 

which loads can change the eigenvalues of a multi-machine system. In this 

method, the sensitivity is found by a.) using the identified oscillatory modes 

of low frequency oscillations, b.) the identified load model, and c.), the right 

and left modal matrices.  

The eigenvalue sensitivity to load (ESL) method presented in this chapter 

can be applied to the actual power system to continuously learn actual 

parameters rather than derive them from an off-line model.  

A test power system including three generators and nine buses is simulated 

to validate the algorithm.  

This approach is also applied to the IAO of the Australian electricity 

network and the sensitivity to one particular feeder load is identified. 



Chapter 4: Load Contribution to Damping 

_____________________________________________________________ 

 

 82 

4.2 The Concept of Load Contribution to Damping 

In order to explain the effect of load to damping, consider Figure 1.2, which 

is repeated  in Figure 4.1 for convenience. 

 

 
Figure 4.1: A single machine connected to infinite bus 

At first consider that the load is static, therefore with a step change in 

voltage, the load power  LP  changes suddenly. Hence the LP  changes are in 

phase with voltage and consequently in phase with δ  and it has no 

component in the direction of 
.

δ . Therefore, it does not contribute to 

damping, because according to Equation (2.3) LP  should have a component 

in the direction of 
.

δ in order to contribute to damping. This is shown in 

Figure 4.2.a.  

Now consider the case that the load is a dynamic load like an induction 

motor. As explained previously due to the motor inertia, there is a phase 
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shift between the LP  changes and the voltage changes or between LP  

changes and δ  changes as shown in Figure 4.2.b. The phase shift in Figure 

4.2.b indicates that the load has a component in the direction of 
.

δ . Thus, 

the induction motor contributes to damping.  

 

 

Figure 4.2: Load contribution to damping, a) static load, b) dynamic load 
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each generator, a dynamic load is connected to the bus terminal of the 

generator.  

 

Figure 4.3: The connection of the generator i and load i and to the rest of the 

network  

 

Since the aim is to describe the influence of the loads on the system modes, 

a load model is developed. This load model relates the rate of machine angle 

changes to the active power of the load. In particular, since the load is 
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the load i. This model shows the load at the generator terminals. This is not 

strictly true for all power systems but can be approximated in many cases. 

Where a group of generators are all in proximity of a load, then the 

aggregate generator representing the group may approximate this condition 

of loads at the generator terminals. In this simulation, the dynamic load 

model is chosen as a first order transfer function   

                                                     
.

i

i
Li

sa

b
P δ

+
=                                       (4.1)  

As explained in Chapter 2, the response of the aggregated induction motor 

model to the step change of the bus voltage angle is exponential. Therefore, 
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the dependency on frequency,
.

δ , in the dynamic load model of Equation 

(4.1) is similar to the response of an induction motor [63,82]. 

Using the same method in Section 2.2 including dynamic load, Equation 

(2.4) can be modified as 

        n,,1iu.p0P
J

1
D

J

1
P

J

1
Lik

i

.

ii
i

1n

1j
ijsij

i
i

.. Ö
==+

×
++

−

=

δδδ     (4.2) 

Evaluating Equation (4.1) at the thk  power system resonant frequency, kω , 

and simplifying, an equation  relating 
.

iδ  to LiP  at the specific resonant 

frequency kω , can be found as 

                             ØØÙ
ÚÛÛÜÝ

+−=

.

iiiikikLik cossinP δθδθωα                         (4.3) 

where               

                     
22

i

ik
a

b

ω

α

+

=    and    ÞÞß
àááâã

−=
−

i

k1
i

a
tan

ω
θ                        (4.4) 

in Equation (4.4), ikα  is the load factor of the i
th

 dynamic load at kω , and 

represents the value of the magnitude of the i
th

 dynamic load, and in the per 

unit ( .u.p ) system, it can take any value between zero and one. 

It should be noted that to reach Equation (4.3), the following relation has 

been used   

                                                     ik

.

i j δωδ =                                          (4.5) 

where j  is the complex operator.  

Substituting Equation (4.3) into Equation (4.2) gives  
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n,,1i
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                                                                                                                   (4.6) 

The normal approach to represent the state space model in Equation (4.6) is 

to form the full state space model including the dynamics of the load as 

given in Equation (4.1). However, it should be noted that as explained in 

Subsection 3.2.1, the load power has the characteristic of an integral of 

white noise and this signal excites the system. Then, the power system 

resonant frequencies are identified using the CBMSI method presented in 

Chapter 3. According to Equation (4.1), the rate of voltage angle 

changes,
.

δ , is used to find the load model. However, energy of the spectrum 

of the 
.

δ  is concentrated at the resonant frequencies of the IAO and is not 

uniformly distributed in the range of frequencies of interest for which we 

wish to find the load model. In spite of this, what is important is to find the 

load model at the resonant frequency and perform the sensitivity analysis 

which is described in Section 4.4. Thus, the state space representation of 

Equation (4.6) in the compact form is  

           XVEXVEXVEXX knnknkiikik11k1

.

ααα +++++= ììíí íí
        (4.7) 

where îî îî
= the power system state matrix given in Equation (2.10) and  

                          

T

n

.

2

.

1

.

n21X ïð
ñòóô

= δδδδδδ õõ               (4.8) 
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T

i
i 0

J

1
00000E ö÷

øùúû
−= üüü                (4.9) 

[ ]0)(cos000)(sin00V iikik ýýýý θθω−=
   (4.10) 

 

4.4 Sensitivity of Power System Mode with Respect to 

Load Parameters 

This section makes use of eigenvalue sensitivity presented in Section 2.3. 

The limitation of the existing approaches is single parameter variation. As 

we see in this section there is a need of modification of eigenvalue 

sensitivity, when there are multiple parameter changes of the system matrix þþ þþ
.  

In this section we want to know how the eigenvalues of a power system 

change as the load changes. Now consider the right eigenvector of the 

power system, kφ , which is characterized by  the following equation   

[ ] kkknknknikiiik1ki )VE()VE()VE( φλφααα =+++++ ÿÿ����      

                                                                                                                 (4.11) 

The derivative of Equation (4.11) with respect to ikα  can be computed as   

              [ ]

ki

k
kk

ki

k

ki

k
nknknikii1k1k1

kikiki
ik

)VE()VE()VE(

)]VE([

α

φ
λφ

α

λ

α

φ
ααα

φα
α

∂

∂
+

∂

∂
=

∂

∂
+++++

++
∂

∂

��✁✁ ✁✁
✁✁ ✁✁

     (4.12) 
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                                                                                                                 (4.13) 

Let iψ denotes the i
th

 left eigenvector, then premultiplying Equation (4.13) 

by iψ ,  the following equation is obtained 

[ ]
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 According to Equation (2.16), we have  

                                               
ik

k
k

ik

k
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α

λ
φ

α

λ
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∂

∂
=

∂

∂
                               (4.14) 

Also, from the definition of the right eigenvector the following equation can 

be written as. 

( )[ ] 0I)VE()VE()VE( kknknknkiikik1k1k1k =−+++++ φλαααψ ✆✆✝✝ ✝✝
                                                                                                                 (4.15) 

Therefore, the sensitivity of the k
th 

 eigenvalue with respect to the i
th

 load 

(per dynamic load unit) is  

                                                     kiikk
ik

k VE φψ
α

λ
=

∂

∂
                             (4.16) 

Therefore the changes in the k
th

 eigenvalue, kλ∆ , due to presence of the i
th

 

load can found from 

                                                ikkiikkk VE α∆φψλ∆ =                       (4.17) 
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4.5 Load Model Identification in IAO  

4.5.1 Describing the Load Effect on Power System Using 

Block Diagram Representation  

In order to investigate the effects of the load characteristics on the IAO, 

consider the block diagram in Figure 4.4. In this block diagram, the 

measured power, P , includes some of the system “noise disturbance” which 

are customer load changes within the feeder. There are two inputs w  and 

z for the block diagram shown in Figure 4.4. Input w  represents the local 

customer load perturbation and input z  shows the remote customer load 

perturbation. In the other word, at any resonant frequency, the mode is 

partly excited by local load variations or feedback power system controller 

influences, and partly from other loads or other power system controllers 

[8]. The local and remote excitation of the system oscillations are labeled 

w(t) and z(t) respectively. Since the load can be modeled as the integral of 

white noise [50], the power system with local and remote disturbances can 

be represented as in Figure 4.4.a. In this model w and z are uncorrelated 

white noises. The model in Figure 4.4.a, can be simplified to the 

representation shown in Figure 4.4.b. In Figure 4.4 the transfer function 

)s(n

)s(m  is included to represent the different effect of load perturbation from 

remote locations on the system response. 
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Figure 4.4: Block diagram of power system to show load dynamics a.) 

complete model, b.) simplified model 
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4.5.2 Correlation Based Analysis of the Load Effect on the 

Power system  

The influence of the load on the power system is investigated analytically in 

this section.  

With regard to Figure 4.4 we can write 

 

                  ))s()s(
)s(n

)s(m
(
)s(e)s(b)s(f)s(a

)s(a)s(e
)s(s ✞✞ ✞✞✟✟ ✟✟✠✠ ✠✠ ✡✡ ✡✡

+
−

=            (4.18) 

                   
))s(e)s(b)s(f)s(a()s(n

)s()s(m)s(b)s(e)s()s(n)s(a)s(f
)s(s

−

+
=

☛☛ ☛☛☞☞ ☞☞✌✌ ✌✌ ✍✍ ✍✍
       (4.19) 

Equations (4.18) and (4.19) can be written as 

                               )s()s()s()s()s( 1211 ✎✎ ✎✎✏✏ ✏✏✑✑ ✑✑✏✏ ✏✏✒✒ ✒✒ ✓✓ ✓✓
+=                        (4.20) 

                              )s()s()s(w)s()s( 2221 ✔✔ ✔✔✕✕ ✕✕✕✕ ✕✕✖✖ ✖✖
+=                         (4.21) 

where  

                           
)s(n

)s(m

)s(e)s(b)s(f)s(a

)s(a)s(e
)s(11

−
=

✗✗ ✗✗
                         (4.22) 

                          
))s(e)s(b)s(f)s(a(s

)s(a)s(e
)s(12

−
=

✘✘ ✘✘
                              (4.23) 

                           
))s(e)s(b)s(f)s(a()s(n

)s(n)s(a)s(f
)s(21

−
=

✙✙ ✙✙
                       (4.24)  

                           
))s(e)s(b)s(f)s(a()s(n

)s(m)s(b)s(e
)s(22

−
=

✚✚ ✚✚
                      (4.25) 

Equations (4.18) and (4.19) in time domain can be expressed as 

      ✛ −+✛ −=
∞

∞−

∞

∞−
121212121111111

.

d)t(z)(hd)t(w)(h)t( ξξξξξξδ    (4.26) 
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    ✜ −+✜ −=
∞

∞−

∞

∞−
2222222221212121 d)t(z)(hd)t(w)(h)t(P ξξξξξξ  (4.27) 

where 11h , 12h , 21h  and 22h , are the impulse responses of )s(11
✢✢ ✢✢

, 

)s(12
✣✣ ✣✣

, )s(21
✤✤ ✤✤

 and )s(22
✥✥ ✥✥

, respectively. 

The desired load model, which is the transfer function between 
.

δ  and P in 

the frequency domain, )(L ω
✦✦ ✦✦

, can be computed according to (2.20)  

                                              

✧✧★
✩

✪✪✫✬ℑ

✧✧★
✩

✪✪✫✬ℑ

=

)(R

)(C

)(

..

.

P
L

τ

τ

ω

δδ

δ✭✭ ✭✭
                              (4.28) 

where )(C
P
. τ

δ
 is the cross-correlation of 

.

δ  , and )(R .. τ
δδ

 is the Fourier 

transform of the auto-correlation of 
.

δ [8]. The cross-correlation function 

)(C
P
. τ

δ
 and autocorrelation function )(R .. τ

δδ
 can be found from the 

following equations (see Appendix A) 

                                    ])t(P)t([E)(C
.

P
. τδτ

δ
+=                           (4.29) 

                                    ])t()t([E)(R
..

.. τδδτ
δδ

+=                         (4.30) 

where E is the expected value.  

Substituting (4.26) and (4.27) into (4.29) and (4.30) respectively, yields  
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✮✯
✮✰✱✲✳
✴✵✶✷ ✸

−++
✸

−+

✮✹✮✺ ✻ ✲✳
✴✵✶✷ ✸

−+
✸

−=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

2222222221212121

1212121211111111
P

d)t(z)(hd)t(w)(h

d)t(z)(hd)t(w)(hE)(C .

ξξτξξξτξ

ξξξξξξτ
δ

                                                                                                                 (4.31) 

or 

✼ ✽
✾

✿❀ ❁❃❂ ❂
−+−+

✼ ✽
✾

✿❀ ❁ ❂
−+

❂
−+

✼ ✽
✾

✿❀ ❁❃❂ ❂
−+−+

✼ ✽
✾

✿❀ ❁ ❂
−+

❂
−=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

2222222212121212

2121212112121212

2222222211111111

2121212111111111
P

d)t(z)(hd)t(z)(hE

d)t(w)(hd)t(z)(hE

d)t(z)(hd)t(w)(hE

d)t(w)(hd)t(w)(hE)(C .

ξξτξξξξ

ξξτξξξξ

ξξτξξξξ

ξξτξξξξτ
δ

                                                                                                                 (4.32) 

The expected value from the internal terms of the integrals in (4.32) is taken 

as 

{ }

{ }

{ }

{ }
❄❅❄

−+−+

❄ ❄
−+−+

❄❆❄
−+−+

❄
−+−

❄
=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

2212221222221212

2112211221211212

2211221122221111

2111211121211111
P

dd)t(z)t(zE)(h)(h

dd)t(w)t(zE)(h)(h

dd)t(z)t(wE)(h)(h

dd)t(w)t(wE)(h)(h)(C .

ξξξτξξξ

ξξξτξξξ

ξξξτξξξ

ξξξτξξξτ
δ

                                                                                                                 (4.33) 

Since w  and z are uncorrelated white noise, therefore we have  

                                               [ ] 0)t(z)t(wE =+τ                                 (4.34) 

Equation (4.34) holds for all values of time lag, τ , [24]. Equation (4.33) is 

simplified using Equation (4.34) as 
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❇❈❇
−++

❇
−+

❇
=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

21122212zz22221212

21112111ww21211111
P

dd)(R)(h)(h

dd)(R)(h)(h)(C .

ξξξξτξξ

ξξξξτξξτ
δ

(4.35) 

where wwR  and zzR  are the autocorrelation of )t(w and )t(z  respectively. 

By using the definition of convolution, Equation (4.35) becomes  

 )(h*)(h*)(R)(h*)(h*)(R)(C 2212zz2111ww
P
. τττττττ

δ
−+−=  

                                                                                                                 (4.36) 

where * represents the convolution integral operator. 

Applying the same method for the autocorrelation of 
.

δ , )(R .. τ
δδ

, gives  

 

)(h*)(h*)(R)(h*)(h*)(R)(R 1212zz1111ww.. τττττττ
δδ

−+−=  

                                                                                                                 (4.37) 

Then, the Fourier transform of (4.36) and (4.37) is taken as  

)(*)()()()()()( 2221zz1111ww
P
. ωωωωωωω

δ

❉❉ ❉❉❉❉ ❉❉❊❊ ❊❊❉❉ ❉❉❉❉ ❉❉❊❊ ❊❊❋❋ ❋❋
−+−=  

                                                                                                                 (4.38) 

)(*)()()()()()( 2212zz2111ww.. ωωωωωωω
δδ

●● ●●●● ●●❍❍ ❍❍●● ●●●● ●●❍❍ ❍❍❍❍ ❍❍
−+−=  

)(*)()()()()()( 1212zz1111ww.. ωωωωωωω
δδ

■■ ■■■■ ■■❏❏ ❏❏■■ ■■■■ ■■❏❏ ❏❏❏❏ ❏❏
−+−=

 

                                                                                                                 (4.39) 



Chapter 4: Load Contribution to Damping 

_____________________________________________________________ 

 

 95 

Since )t(w  and )t(d  are white noise, their power spectrum densities are 

flat, Therefore, )(Rww ω  and )(Rzz ω can be found from the following 

equations  

                                                   W)(ww =ω
❑❑ ❑❑

                                      (4.40) 

                                                   Z)(zz =ω
▲▲ ▲▲

                                        (4.41) 

where W and Z  are real positive constants. 

By using )(ww ω
▼▼ ▼▼

 and )(zz ω
◆◆ ◆◆

 from (4.40) and (4.41) respectively, 

Equations (4.38) and (4.39) are changed to  

       Z)(*)(W)()()( 22122111
p
. ωωωωω

δ

❖❖ ❖❖❖❖ ❖❖❖❖ ❖❖❖❖ ❖❖PP PP
−+−=         (4.42) 

       Z)(*)(W)()()( 12121111.. ωωωωω

δδ

❖❖ ❖❖❖❖ ❖❖❖❖ ❖❖❖❖ ❖❖◗◗ ◗◗
−+−=         (4.43) 

Equations (4.42) and (4.43) can be written in the short from of  

                                 Z)(W)()( ba
P
. ωωω

δ

❘❘ ❘❘❘❘ ❘❘❙❙ ❙❙
+=                       (4.44) 

                                 Z)(W)()( dc.. ωωω

δδ

❚❚ ❚❚❚❚ ❚❚❯❯ ❯❯
+=                       (4.45) 

where 

                              )()()( 2111a ωωω ❱❱ ❱❱❱❱ ❱❱❱❱ ❱❱ −=                                  (4.46) 

                              )()()( 2221b ωωω ❱❱ ❱❱❱❱ ❱❱❱❱ ❱❱ −=                                  (4.47) 

                              )()()( 1111c ωωω ❲❲ ❲❲❲❲ ❲❲❲❲ ❲❲ −=                                  (4.48) 

                              )()()( 2112d ωωω ❳❳ ❳❳❳❳ ❳❳❳❳ ❳❳ −=                                  (4.49) 

The load transfer function is determined by substituting the numerator and 

denominator of (4.28) by (4.44) and (4.45), respectively. Therefore, the load 

model can be found from 
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Z)(W)(

Z)(W)(
)(

dc

ba
L

ωω

ωω
ω ❨❨ ❨❨❨❨ ❨❨ ❨❨ ❨❨❨❨ ❨❨❨❨ ❨❨

+

+
=                              (4.50) 

or 

       
Z)(W)(

Z)(

Z)(W)(

W)(
)(

dc

b

dc

a
L

ωω

ω

ωω

ω
ω ❩❩ ❩❩❩❩ ❩❩ ❩❩ ❩❩❩❩ ❩❩❩❩ ❩❩ ❩❩ ❩❩❩❩ ❩❩

+
+

+
=        (4.51) 

When the overwhelming majority of the modal disturbance does not 

originate in the feeder load being examined, or in the other words, if 

ZW << , then the transfer function ❬❭❭ ❭❭
can be approximated by  

                                         
)(

)(
)(L

ω

ω
ω ❪ ❫❴❴ ❴❴ ❴❴ ❴❴❴❴ ❴❴

=                                        (4.52) 

After substituting )(H b ω from (4.47) and )(H d ω  from (4.49) and 

simplifying, the load transfer function can be expressed as 

                                                
)(a

)(b
)(L

ω

ω
ω =

❵❵ ❵❵
                                    (4.53) 

So, with the condition that W is much smaller than Z, the transfer function 

between 
.

δ  and P can be identified. Consider the case of monitoring one 

feeder in a large interconnected system. In this case, the load variations in 

that feeder will have a much lower effect on the network than the 

cumulative effect of variations from every other feeder in the entire power 

system network.  Therefore, if the local customer changes are much greater 

than the remote load changes, the load transfer function )(L ω
❛❛ ❛❛

 can be 

found from Equation (4.53). 
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4.6 Algorithm for the Eigenvalue Sensitivity to Load 

(ESL) Method 

On the basis of the theory presented in the previous sections of this chapter, 

the algorithm of eigenvalue sensitivity to load (ESL) method is developed to 

determine the load contribution to damping in a multi-machine power 

system. The algorithm has the following steps: 

Step 1: Identifying the resonant frequencies of the IAO 

The CBMSI method was developed in Chapter 3, is used to find the 

oscillatory modes of the IAO. When using CBMSI method, the COI angle is 

first computed using Equation (2.6) and then the voltage angles are mapped 

to the COI reference angle according to (2.7). The voltage angles in the COI 

referenced system are used by the CBMSI method to find the power system 

eigenvalues.  

Step 2: Identifying the load model  

The load model in the algorithm is found on the basis of cross-correlation 

and autocorrelation functions from Equation (4.28), with the assumption 

that the local load disturbance is much smaller than that of remote 

disturbances. 

Step 3: Determination of the right and left eigenvectors  

In Section 3.3, the process of determining the mode shape plot, on the basis 

of cross-correlation and autocorrelation was developed and explained.  The 

mode shape is plotted using k

_

φ   as shown in Equation (3.39). It was also 
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mentioned that k

_

ϕ  in (3.39) is a part of k
th

 right eigenvector, kφ . The right 

eigenvector kφ  can be found with the same method used previously in 

(3.38) and considering the  relationship between the δ  and 
.

δ  described by 

(4.5) as 

                              

❜❜
❜❜
❜❜
❜❜
❜❜
❜

❝

❞

❡❡
❡❡
❡❡
❡❡
❡❡
❡

❢

❣

=

=

=

=

=

k

k

k

k

)(j

)(j

j

)(

)(

1

nk

2k

k

n

2

k

ωω

ωω

ωω

ωω

ωω

ωω

ω

ω

ω

φ

❤❤ ❤❤
❤❤ ❤❤

❤❤ ❤❤
❤❤ ❤❤

✐

✐
                                      (4.54) 

The right eigenvector kϕ  in Equation (4.54) is normalized to the first 

element of the vector. 

The right modal matrix is formed as given in Equation (2.13) using 

Equation (4.54). It should be noted that in an n-machine system, there are 

)1n( −  inter-machine frequencies or )1n(2 − complex frequencies but the 

size of the right modal matrix is n2  by n2 . The remaining eigenvectors 

correspond to the common modes. One of the common mode frequencies 

for the model in (4.7) is zero and the other is equal to the system load 

response time constant. If the load response common mode is called cλ , 

then the 2n by 1 unnormalized eigenvectors corresponding to common 

modes can be formed as  

                                    T
1n2 ]0011[ ❥❥=−φ                       (4.55) 
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                                    T
ccn2 ]11[ λλφ ❦❦=                      (4.56) 

The common mode, cλ , can be found by fitting a first order model on the 

FFT of the autocorrelation of the COI angle. 

According to Equation (2.17), the left modal matrix is the inverse of the 

right modal matrix. The rows of the left modal matrix are the left 

eigenvectors.  

Step 4: Identification of the load contribution to damping  

By evaluating the identified load transfer function from Equation (4.28) at 

the power system resonant frequency, the contribution of load to damping is 

quantified. In fact, this quantification is used to form V  vectors in Equation 

(4.10). 

Step 5: Sensitivity analysis  

In this step, the sensitivity of the eigenvalues with respect to the load factor 

is determined using Equation (4.16). Indeed, the computed sensitivity shows 

the extent to which the eigenvalues of the system would be changed in the 

presence of the load. 

4.7 Simulation Results of the ESL Method 

This section examines the simulation of the proposed ESL method on a test 

power system consisting of three generators and nine lines. The same test 

power system used in Chapter 3, is simulated in this section with some 

modifications. The test system and its parameters are derived from [15]. 

Following the steps given in [15], the system can be reduced to a 3-machine  

system with three lines. In our analysis only the reactive part of the line 
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impedance is considered. The diagram of the resulting system is illustrated 

in Figure 4.3 The modifications of the test system of [15] include the three 

dynamic loads which are placed close to the generator terminals as 

discussed in Section 4.3. 

To validate the sensitivity algorithm, the eigenvalues of the system with the 

loads and without the loads are determined via a simulation. Then the 

difference between the two separate sets is considered as the actual 

sensitivity. These values are then compared to the values that are to be 

obtained by means of the sensitivity analysis which is described in Section 

4.4 in Equation (4.17). The test system is excited with three white noise 

sources in such a way that each of the sources is located near a generator 

bus.  

In this simulation, the load connected at each generator bus, is considered in 

the form of   

                                        3,,1i
sa

bP

i

i

i

.

Li ❧
=

+
=

δ

                        (4.57) 

 

In Figure 4.5, 1L  to 3L  represent the dynamic loads and the their equations 

are given in Equation (4.57). 

As explained in Subsection 3.4.1, the damping for the synchronous 

generators is considered as 

                                        3,,1i6.0P
.

iDi ♠=−= δ                            (4.58) 
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Figure 4.5: A simplified diagram of the test power system including a 

dynamic load at each generator terminal 

 

The state variable vector for this system is presented by 

                 

T

3L2L1L

.

3

.

2

.

1321 PPPX ♥♦
♣qrs

= δδδδδδ         (4.59) 

The state space representation for the test system can be written as 

                                                 UXX

. tt tt✉✉ ✉✉✇✈✈ ✈✈
+=                                    (4.60) 

where  

①① ①①②② ②② = the system matrix including loads  

U = the vector of the input sources 

The system matrix ③③ ③③④④ ④④  can be formed by using (2.10) as 

1G  2G  

3G  

Bus 1 

Bus 3 

Bus 2 

3L  

2L  

1L  
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                                                                                                                (4.61) 

The input matrix B  and the input vector U and are considered as  

                      

❹❹
❹❹
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❺
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                                          [ ]T321 uuuU =                                       (4.63) 

where 1u  to 3u   are the three white noise sources. 

The test system is simulated for 30  minutes with a sampling frequency of 

10  Hz . The first step according to the algorithm in Section 4.6, is the 

identification of the power system eigenvalues. The power system resonant 

frequencies and loads are identified using the CBMSI presented in Chapter 

3. Since the generators of the test system are the same as the generators of 
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the test system in Section 3.4.2, the identified resonant frequencies are the 

same as those previously given in Table 3.1.  

In the next step, the dynamic load transfer functions are identified according 

to Equation (4.28). The frequency response of the identified model for load 

2 , is shown in Figure 4.4. The identified dynamic load parameters as well 

as the chosen values are given in Table 4.1. The chosen values in this table 

represent the known values for the dynamic load parameters. 

 

 

Figure 4.6: The frequency response of the identified model of load 2  for the 

test power system  

As Table 4.1 illustrates, the estimated values of the load parameters agree 

with the actual values. This shows the validity of the load model 

identification. 
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Table 4.1: The chosen and estimated the loads parameters for the test power 

system 

 Load Parameter Chosen Estimated 

1b  035.0  0348.0   

Load 1L  
1a  15  919.14  

2b  011.0  0110.0   

Load 2L  
2a  10  0216.10  

3b  21.0  0209.0   

Load 2L  
3a  7  0134.7  

 

The sensitivity of the eigenvalues of the test power system to the presence 

of all loads is also calculated using Equation (4.17). These values as well as 

actual sensitivity are shown in Table 4.2. The actual sensitivity in this table 

illustrates the difference in the power system eigenvalue when there is no 

load with the case in which the loads are present.  

Table 4.2: The actual and estimated sensitivity of the power system 

eigenvalues when all loads are varied 

Resonant 

Frequency 

Sensitivity with the 

Chosen Load Parameters 

Estimated 

Sensitivity 

Hz4.1f =  0107.0j0116.0 +−  0098.0j0102.0 +−  

Hz1.2f =  0329.0j0177.0 +−  0313.0j01722.0 +−  
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As shown in Table 4.2, the actual and estimated values of the sensitivity are 

close. This indicates that the ESL method is capable of accurate estimation. 

The results given in Table 4.2 also indicate: 

• The load has increased the damping for both modes, real part of the 

sensitivity values are negative. 

• However, the increase in the imaginary component of the modes shows 

that the load has caused a small increase in modal frequencies. 

• At Hz1.2 , the influence of the load on frequency is stronger than the 

influence on damping. 

It is worthwhile to quantify load contribution to damping. By evaluating the 

identified load transfer function at the resonant frequency, the contribution 

to damping is quantified. The contributions of the loads  1L  to 3L  to 

damping at Hz4.1f =  and Hz1.2f =  are shown in Tables 4.3  

 

Table 4.3: The value of load contribution to damping for the test power 

system 

 Load Contribution to 

Damping at Hz4.1f =  

(Neper per second)  

Load Contribution to 

Damping at Hz1.2f =  

(Neper per second) 

Load 1L  0152.0  0174.0  

Load 2L  0054.0  0053.0  

Load 3L  0102.0  0085.0  
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Figure 4.7: The plot of the contribution of the load 1L  to damping at   

Hz4.1f =  for the test power system 

Figure 4.8: The plot of the contribution of the load 1L  to damping at 

Hz1.2f =  for the test power  system 
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Since the identified dynamic load parameters shown in Table 4.2 are very 

close to the actual value, the estimated value of the load contribution in 

Table 4.3 are also very close to the actual values. For this reason, the actual 

value contributions are not shown in Table 4.3. Figures 4.7 and 4.8 

represent graphically the contribution of load 1L  to damping at Hz4.1f =  

and Hz1.2f =  

The results of the simulation show: 

• The three loads in both resonant frequencies have a positive contribution 

to damping and their presence in the test power system improve the 

damping. 

• At any of the two frequencies, the load 1L  makes the greatest 

contribution and the load 2L  has the smallest contribution to damping. 

• For the load 3L , the contribution at Hz4.1f = is greater than the 

contribution at Hz1.2f = . 

4.8 Results of ESL Method on Real Data 
1
 

This part is devoted to analysis of the data measured on the interconnected 

Australian network. The data was used in Section 3.5.2 to find the 

eigenvalues and the mode shape of the Australian electricity network. As 

explained in Section 3.5.2, the real data consists of voltage magnitude and 

angle of the four major load centers: Brisbane, Sydney, Adelaide and 

Melbourne. In addition to this, the magnitude and angle of the current of one 

feeder from a substation located in Brisbane were measured. The 

                                                
1- The real data was provided by Powerlink Queensland. 



Chapter 4: Load Contribution to Damping 

_____________________________________________________________ 

 

 108 

measurement in Brisbane was made on a feeder supplying a small portion of 

the Brisbane load which is largely residential and it is referred to in this 

section as the Brisbane feeder load. The aim is to determine to what extent 

this load contributes to damping or from a sensitivity analysis context, what 

is the sensitivity of the eigenvalues of the power system with respect to the 

Brisbane feeder load. The duration of the data was one hour with a sampling 

frequency of 5 Hz . The power system resonant frequencies are found using 

.multi-site curve fitting to the FFT of autocorrelations of the COI referenced 

voltage angles of the four major load centers which are shown in Table 3.8.  

In the next step, the load model of the feeder from Brisbane is identified. 

The load model is represented by a transfer function from the rate change of 

the Brisbane bus voltage angle (
.

δ ) to the LP  of the substation. Therefore, 

according to Equation (4.28) the identified load model, LH , is obtained 

from  

                                        

➀➀➁
➂

➃➃➄➅ℑ

➀➀➁
➂

➃➃➄➅ℑ

=

)(R

)(C

)(

B

Lp

L

.

B

.

.

B

τ

τ

ω

δδ

δ➆➆ ➆➆
                             (4.64) 

where )(C

BB

.

p

τ
δ

 is the  cross-correlation of the rate of Brisbane bus 

voltage angle changes and P  of the feeder, and )(R

B

.

B

. τ
δδ

 is the 

autocorrelation of the rate of Brisbane bus voltage angle changes. Using 

Equation (4.64) and fitting a model gives the Brisbane feeder load transfer 

function in the Laplace domain as 
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                                                                                                                 (4.65) 

By evaluating Equation (4.65) at the identified resonant frequencies, the V  

vector in Equation (4.10) can be formed. 

According to (4.17) the sensitivity is determined using the right and left 

modal matrices. The value of the identified transfer function between the 

voltage angle of Brisbane and the other load centers bus voltage angle, at 

the identified resonant frequencies are utilized to form the right modal 

matrix. Using real data, it is difficult to find the single common mode, cλ , 

because the presence of governors and dynamic load response creates a 

higher order model. However, a simple first order model can be fitted and 

fortunately the accuracy of the oscillatory mode response is not dependent 

on accuracy of the common mode fit.  

By taking the inverse of the right modal matrix, the left modal matrix is 

specified. Finally, the sensitivity of the power system resonant frequencies 

with respect to the load of the Brisbane feeder are determined according to 

Equation (4.17) by using the results of the previous steps. The values of the 

sensitivity of the eigenvalues are depicted in Table 4.4. As is shown in the 

table, the sensitivity of the load decreases the damping of mode 2 , but 

causes an increase in the damping of mode 1  and 3 . For mode 2  in 

particular, the entire contribution of the load is to change the damping 

rather than the frequency of this mode. 
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Table 4.4: The sensitivity of the eigenvalues of the real data with respect to 

the Brisbane feeder load 

Resonant Frequency The value of the sensitivity 

Hz299.0f =  0039.0j0011.0 +−  

Hz439.0f =  0005.0j0021.0 +  

Hz740.0f =  0007.0j0012.0 +−  

 

The value of the Brisbane feeder load contribution to damping is shown in 

Table 4.5. Also, the Brisbane feeder load contribution to damping at the 

three resonant frequencies graphically is shown is Figures 4.9 to 4.11. As 

can be seen from Table 4.5 and Figures 4.9 to 4.11, since this load is very 

small compared to the total load in the network, the contribution of this 

load to damping for all of the modes is very small. Also the Brisbane feeder 

load has a positive contribution at the first and third modes, but has a 

negative contribution at the second mode. Also the contribution of the 

Brisbane feeder load to damping at the first mode is smaller than that to the 

other modes. 

Table 4.5: The value of load contribution to damping at the three identified 

resonant frequencies 

 Brisbane Feeder Load Contribution to 

Damping (Neper per second) 

Hz299.0f =  6e11.4 −  

Hz439.0f =  6e46.5 −−  

Hz740.0f =  6e73.5 −  
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Figure 4.9: The Brisbane feeder load contribution to damping at 

Hz299.0f =  

Figure 4.10: The Brisbane feeder load contribution to damping 

at Hz439.0f =
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Figure 4.11: The Brisbane feeder load contribution to damping 

at Hz740.0f =  

4.9 Summary  

In this chapter, the eigenvalue sensitivity to load (ESL) method is 

developed to identify the load contribution to damping of a multi-machine 

power system. In the method, the resonant frequencies of a test power 

system are first identified. Then the transfer function representing the 

relationship between the rate of bus voltage angle changes and the load 

power is then determined using cross-correlation and autocorrelation 

functions. Evaluating the identified transfer function at resonant frequencies 

of the IAO yields the right eigenvectors. Finally, by using the right and left 
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eigenvectors and using load models, the sensitivity of the eigenvalues with 

respect to the load are obtained. 

The ESL method is simulated on a test power system consisting of three 

buses and nine lines. In the test system, three dynamic loads are considered 

and each load is connected to the generator terminals. In the simulation 

after identifying the loads model, the sensitivity of the power system 

eigenvalues with respect to the loads are determined. Also, the contribution 

of the load to damping of the test system is quantified. The results of the 

sensitivity analysis and quantification of the load contribution to damping 

show a good agreement with the actual values. 

To illustrate the applicability of the method, the contribution of a Brisbane 

feeder load in Australia to damping of the major modes of the Australian 

electricity network is determined. In this method, the model of one feeder 

of a substation in Brisbane namely the Brisbane feeder load, is identified 

and then sensitivity of the eigenvalues of IAO of the Australian power 

system with the Brisbane feeder load is computed. Finally, the contribution 

of the Brisbane load to damping at the three identified resonant frequencies 

is quantified and it is shown that the Brisbane load has a positive 

contribution for the first and third mode and has a negative contribution for 

the second mode. 

In Chapter 5, the effect of SVC on active power is investigated and it is 

demonstrated analytically that the SVC is capable of improving load 

contribution to damping. 
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Chapter 5: SVC Contribution to Damping  

 

5.1 Introduction  

As explained in Section 2.9, the static var compensators (SVC) were first 

used in power systems to maintain the voltage, but it was found that they 

can also be used to improve the damping of the inter-area oscillations (IAO) 

of the power systems. The model of the SVC was described in section 2.8. 

There are many kinds of SVC implementations. However, for analysis of 

this chapter, they are treated as variable capacitors that could have positive 

or negative values. 

In Chapter 4, after identifying the load model, the contribution to damping 

was investigated and the sensitivity of power system eigenvalues with 

respect to load was determined. Also, the contribution of load to the 

damping of the IAO was quantified. The aim of this chapter is to determine 

the effect of SVC on load contribution to damping, i.e. the effect SVC 

reactive power of on the load’s active power. This effect is investigated in 

the context of closed loop feedback. A procedure for redesigning an SVC 

controller is presented to achieve maximum contribution of load to damping  
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i.e. the load contribution should be in phase with speed changes of the 

synchronous generator at each resonant frequency. 

In this chapter, firstly the main aspects of SVC contribution to damping are 

explained. Next, a method is developed to redesign the SVC controller on 

the basis of complete testing. An algorithm then is presented to redesign the 

SVC controller to achieve maximum load contribution to damping based on 

complete testing. A test system is also employed to simulate the algorithm 

and demonstrate the change of contribution of an induction motor to 

damping, due to the presence of the SVC.  

In the next section, the redesigning of SVC controller based on normal 

operation is given by analysing the effect of reactive power of SVC on the 

measured active power of the load. A method is developed to find the 

transfer function between the reactive power of the SVC and the measured 

power on the basis of the cross-correlation and autocorrelation functions. 

Finally the algorithm is applied to the real data of the Australian electricity 

network to determine the effect of SVC at the Blackwall substation on 

measured power flow past this substation.  

5.2 The Basic Concepts of SVC Contribution to 

Damping  

The basic concepts regarding the influence of SVC on damping are 

explained by considering a simple case including an induction motor in 

parallel to an SVC. At first, consider the output of the SVC is zero. If the 

active power used by the induction motor and the rate of voltage angle 
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changes are denoted by LP and
.

δ , respectively, then as explained in Section 

4.2, due to the inertia of the induction motor, there is a phase shift 

between LP  and 
.

δ  as shown in Figure 5.1.a. Notice from this figure, that, 

the load partly contributes to damping. Knowing this phase shift between LP  

and 
.

δ along with the given values of the controller parameters, help the 

designer of the SVC controller to redesign n the parameters of the SVC 

controller to have maximum load contribution to damping, i.e. to achieve 

maximum alignment of LP  with 
.

δ  as shown in Figure 5.1.b [11]. 

 
Figure 5.1: The effect of load to damping, a.) SVC with given controller 

parameters, b.) SVC with the updated controller parameters  

 

 

Figure 5.2 shows the block diagram model of the power system including 

both load dynamic and SVC feedback. The feedforward transfer 

function )s(
➈➈ ➈➈

, represents the power system dynamic response. The inner 

feedback in this figure shows the effect of load dynamics on the measured 
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power P , and the outer feedback demonstrates the effect of SVC feedback 

on P . The label )s(SVC

➉➉ ➉➉
 represents the transfer function of the SVC with 

output Q . The effect of reactive power, Q , on the measured load power is 

denoted by )s(
➊➊ ➊➊

. As mentioned in Chapter 4, the transfer function )s(L

➋➋ ➋➋
 

expresses the effect of the rate of voltage angle changes on the measured 

load power. 

In this figure w  and 1z  are local and remote load perturbation and 2d is 

direct white noise perturbation. The SVC is fed by two inputs: δ  and 2z . In 

small signal analysis, refV , which is one input of SVC block diagram, is 

omitted. In this system w , 1z  and 2z  are uncorrelated white noise sourses. 

 
Figure 5.2: Power system block diagram including the effect of reactive 

power of SVC on the measured power 
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Two different methods are considered for redesigning the SVC controllers 

in this chapter. The first method explained in Section 5.3, is based on 

mainly “On” and “Off” situations of an SVC. In this method the load 

contribution to damping when there is no SVC, is compared to the case 

when there is SVC. These two cases are computed to find the new design 

for an SVC controller. Knowing the SVC contribution to damping with the 

existing setting leads to a method for redesigning the SVC controller to 

achieve maximum SVC contribution to damping. This method has some 

drawbacks, for example it is a costly test to arrange safely, and sometimes it 

is impractical to put the SVC out of service for testing purposes. 

On the other hand, for the redesigning method based on normal operation, 

which is discussed in Sections 5.6 and 5.7, firstly the effect of reactive 

power of the SVC on the measured active power is identified using the 

normal operation data, then the desired phase shift of the SVC to have 

maximum damping is determined. 

5.3 SVC Controller Redesign Based on Complete 

Testing  

5.3.1 The Essence of Redesign of SVC controller 

As described in Section 5.2, redesigning the parameters of the SVC 

controller can change the contribution of the induction motor load to 

damping. In fact, the variations in active power of the induction motor, 

change the power flow of the generators, and this influences damping of the 

synchronous generator [9]. To illustrate the method of redesigning of the 
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SVC controller based on complete testing, consider Figure 5.3. This shows a 

single machine connected to an infinite bus via a transmission line, and an 

SVC and an induction motor are connected to the same bus. In this figure 

SG and IM  represent synchronous generator and induction machine, 

respectively. Also aZ  and bZ characterize the line impedances. The 

equivalent impedance of the induction motor and SVC is denoted by cZ . 

The change in power flow of the generator caused by induction motor 

changes is labelled by 1P , and LP is the electric power to the induction 

motor transferred to the rotor. Consider the case where there is no SVC, in 

that case if there is a step change of the voltage at the induction motor 

terminals, there will be some changes of power in the motor and as a result 

the motor slip changes. During this step, there is a mismatch between 

electrical and mechanical power of the induction motor which restores the 

slip and consequently the load recovers to the new steady state speed 

determined by the inertia of motor plus shaft load. This indicates the system 

response to step voltage change and it creates a phase shift response 

between electric power of the induction motor LP  and the rate of changes of 

voltage bus angle at bus3 . This also implies a phase shift between shift 

between the rate of generator bus voltage angle,
.

δ  (or δωj ), and the power 

flow of the generator, 1P , caused by the induction motor changes . This 

phase shift at the resonant frequency is shown in Figure 5.4.a. As can be 

seen from Figure 5.4.a, when there is no SVC, 1P  has a component in 

direction of ωδj , therefore it participates in damping. However, when there 
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is an SVC with a particular feedback controller, the contribution of 1P  to 

the system damping can be increased as shown in Figure 5.4.b. 

 

Figure 5.3: The diagram of a single machine connected to the infinite bus 

with SVC and induction motor 

 

 

 

Figure 5.4: The phase shift diagram of contribution of 1P  to damping,  

a.) without SVC, b.) with SVC 
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5.3.2 Theory of Redesign of SVC controller 

In the following,  the equations for SVC redesign based on  complete testing 

are derived. 

Regarding Figure 5.3, The mechanical equation for the synchronous 

generator and the induction motor in small signal analysis can be written as   

                                          .u.pDPPJ g

.

g1mg

..

gg δδ −−=                    (5.1) 

                                         .u.pDPPJ rmindmmm

..

m ωδ −−=              (5.2) 

where:  

rω =  mechanical speed of the induction motor 

mJ  and gJ  = inertia of the synchronous generator and the induction motor, 

respectively 

δ =  the generator bus voltage angle 

mgP  and mmP = the synchronous generator mechanical power and the  

induction motor mechanical power, respectively 

gD and mD = damping coefficient of the synchronous generator and 

induction motor respectively 

indP = input electrical power of the induction motor in the air gap 

transferred to the rotor 

Equation (5.2) represents the induction motor by steady state equivalent 

circuit. This assumes that the electrical transients are much faster than the 

mechanical transients in the induction motor [1, 64]. Assuming that the SVC 

is controlled as [97,105-106] 
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                                )VV(kkkY ref3333

.

231

_

SVC −++= δδ                      (5.3) 

At a particular resonant frequency kω  we have  

                                                         3k3

.

j δωδ =                                     (5.4) 

where 3
.

δ  is the rate of voltage angle changes of Bus 3 in Figure 5.3. Since 

we are dealing with small signals and steady state, any feedback of voltage 

in the third term of Equation (5.3) can be represented as a component in the 

first term in Equation (5.3). In fact, the voltage changes in Bus 3  are in 

phase with the voltage angle at bus 3 rather than rate of change of voltage 

angle at this bus. In this regard, and by using Equation (5.4), Equation (5.3) 

becomes  

                                               3231SVC jkkY δωδ +=                               (5.5) 

which can be represented as   

                                                3kSVCSVC KY δωθ∠=                             (5.6) 

It should be noted that SVCK  in Equation (5.6) is limited and it is related to 

the maximum size of SVC. The electric power of the induction motor 

indP in Equation (5.1) is calculated from  

                                              
S

S1

Z

V
RP

2

in

3
rind

−
=                                 (5.7) 

where inZ , rR and S  are input impedance, rotor resistance, and slip of the 

induction motor, respectively. The slip of the induction motor is computed 

from 
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3

.

3

.

rS

δ

δ ω−
=                                     (5.8) 

The expression for 1P  in Equation (5.1) can be found by using star-delta 

transformation to give the circuit in Figure 5.5. 

 

Figure 5.5: The delta equivalent of Figure 5.3 

Therefore according to Figure 5.5, the expression for 1P  can be written as 

     )sin(BVV)cos(GVVGVGVP ab21ab21ab
2
1ca

2
11 δδ −−+=    (5.9) 

where abG  and abB are conductance and susceptance of abY , respectively. 

Also caG is the conductance of caY .  

Thus the differential Equations (5.1) and (5.2), with regard to the relation 

given for SVC in Equation (5.3), characterize the system. 

In the next section, the algorithm of redesign of the SVC controller based on 

complete testing is discussed. Following simulation of the system response 

to transients, the transfer function between each of three elements 

i.e. 1P , indP and SVCY , and δ  are determined using the cross-correlation and 

autocorrelation functions. The phase shifts between each of the elements 
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and δ  will be determined by evaluating the corresponding transfer function 

at the resonant frequency of the IAO. With this information, the phase shift 

diagram is plotted to assess the current performance of the SVC in damping 

and what decision should be made in control design of the SVC, to have 

maximum contribution to damping.  

5.4 Algorithm of the SVC Controller Redesign Based 

on Complete Testing  

The suggested method consists of the following steps: 

Step 1: Power system resonant frequency identification  

The resonant frequencies of the IAO of the power system are identified 

using the correlation based method explained in Chapter 3. 

Step 2: Transfer function determination 

Using the method explained in Chapter 4, the transfer function between 

each of the three elements, i.e. SVC, indP , 1P , andδ  are identified from the 

following equations  

                                        

[ ]

[ ])(R

R

)(H

)(SVC

SVC

τ
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δδ

τδ
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ℑ

=                           (5.10) 
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P

τ

τ

ω

δδ

δ

δ

ℑ

ℑ

=                          (5.11) 
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[ ]

[ ])(R

)(R

)(H

1

1

P

P

τ

τ

ω

δδ

δ

δ

ℑ

ℑ

=                                (5.12) 

where 

)(H SVC ωδ = the transfer function betweenδ and SVC  

)(H
indP

ωδ = the transfer function betweenδ and indP  

)(H
1P

ωδ = the transfers function betweenδ and 1P  

 

Step 3: Determining the Phase Shift Diagram: 

Each of the three identified transfer functions is evaluated at the resonant 

frequency resω   

                                         
res

)(HV SVCSVC ωωδ ω ==                         (5.13) 

                                        
res11

)(HV PP ωωδ ω ==                               (5.14) 

                                        
resind1ind

)(HV PP ωωδ ω ==                        (5.15) 

The results can be used to plot the phase shift diagram. 

Step 4: Extracting the information for redesigning the SVC controller 

The magnitudes and phases obtained in the previous step are used to plot the 

phase shift diagram. Therefore, the damping contribution of the induction 

motor in the presence of the SVC is determined [10]. The information 

obtained from this phase shift diagram is used to redesign the SVC 
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controller to get maximum load contribution to damping. If the analysis 

results in following vectors for SVC and 1P   

                                         δθδ SVC
'
SVC,SVC KV ∠=                              (5.16) 

                                         δδ θ
111 PPP KV ∠=                                         (5.17) 

then, the compensated angle cθ for δ1P
V  to have maximum contribution of 

1P  to damping can be found from 

                                                
1Pc 90 θθ −=                                           (5.18) 

Therefore, the vector δ,SVCV  should rotate by cθ  degrees as 

                                   δθθδ )(KV cSVC
'
SVC,SVC +∠=                         (5.19) 

With regard to the relationship between δ and 3δ , the new setting for SVC 

can be found using Equations (5.5) and (5.19), and it can be implemented 

using lag-lead compensators. 

5.5 Simulation Results for Redesign SVC Controller 

Based on Complete Testing  

In this section, a test power system is considered to assess the performance 

of an SVC on the load contribution to damping. As explained before, due to 

induction motor changes, there are some changes in real power flow of the 

generator, 1P . In this regard, the algorithm of the SVC controller redesign on 

the basis on complete testing is simulated on the test power system depicted 

in Figure 5.3. As shown in Equation (5.5) the variable parameters of the 

SVC are 1k  and 2k . In this simulation, the effect of coefficients 1k  and 
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2k of the SVC controller on contribution of 1P  to damping is examined. The 

specifications of the elements of the test system are given in Appendix B. 

In the simulation, the power system is given the specified run from initial 

conditions corresponding to steady state. The state variables are the 

generator rotor angle changes (δ ), the rate of generator rotor angle changes 

(
.

δ ), and the speed of the rotor of the induction motor, rω , the model 

incorporates the dynamic relation for the SVC as in Equation (5.5).  

In the first step of the simulation, the resonant frequencies of IAO of the test 

system are identified, using the CBMSI method explained in Chapter 3. The 

identified resonant frequency of the test system is Hz518.0 . The magnitude 

plot of the FFT of autocorrelation of the changes of generator bus voltage 

angle, δ , is shown in Figure (5.6). 

 
Figure 5.6: The magnitude of the FFT  of autocorrelation of the generator 

bus voltage angle changes for the test power system 
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In the next step, the transfer function from δ  to each of the three 

elements, indP , SVC and 1P  are identified on the basis of autocorrelation 

and cross-correlation functions. For instance, the magnitude and angle of the 

identified transfer function from δ  and SVC is depicted in Figure 5.7 at the 

identified resonant frequency. 

According to the findings of the previous step, the phase shift angles 

between δδ and each of the three elements, indP , Q  of the SVC and 1P , are 

computed by evaluating the corresponding transfer function at the resonant 

frequency 518.0f = . Figure 5.8 shows the phase shift diagram for the 

power system. 

 
Figure 5.7: The magnitude and phase of identified transfer function between 

Q  of the SVC and δ for the test power system 
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To demonstrate the performance of the algorithm, the system is first 

evaluated at 0k1 =  and 3.0k2 = and this case is compared with the case 

that both gains 1k  and 2k  are zero. The program is run for the two different 

cases. Then, the corresponding vectors are defined as 

                         
0k,0kind0k,3.0kindind

1212
VPVPVP

====
−=∆            (5.20) 

                         
0k,0k0k,3.0k 1212

VSVCVSVCVSVC
====

−=∆               (5.21) 

                        
0k,0k

10k,3.0k11
1212

VPVPVP
====

−=∆                     (5.22) 

 

Figure  5.8: The phase shift fit diagram of the test power system (for SVC: 

0k1 =  and 3.0k2 = ) 

The values of the vector changes are shown in Table 5.1. With respect to 

Table 5.1 the vector diagram is depicted in Figure 5.9. As can be seen from 

Table 5.1 and Figure 5.9, when 0k1 = , increasing the value of 2k  in the 
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SVC, increases 1P ’s contribution. In fact, 1VP∆  indicates the change in 

generator power flow due to the variation of indP when the SVC is present. 

As shown in Figure 5.9, 1VP∆  is not fully aligned with 
.

δ  and has an angle 

of θ  with respect to 
.

δ . In order to reach the best contribution to damping, 

the design of SVC controller should be changed. 

 

Table 5.1: The change in the vectors when 2k  increases for the test power  

system 

   indVP∆∆∆∆  VSVC∆∆∆∆  1VP∆∆∆∆  

Magnitude  2075.0  8375.0  1212.0  

Phase(Deg.) 4561.83−  8635.97  4445.98  

 

Figure 5.9: The phase shift of the change in the vectors when 2k  increases 

from 0  to 3.0 , meanwhile 0k1 = , for the test power system 
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To achieve maximum contribution to damping, the vector 1VP∆ in Figure 

5.9 should be rotated clockwise so that the vector 1VP∆  is fully aligned with 

the δωj  axis by θ  degrees. In the other words, we move 90KSVC∠  to 

)90(KSVC θ−∠ , which can be implemented as 

                       )sin(*Kk SVC1 θ=    and    )cos(*Kk SVC2 θ=          (5.23) 

With the new values of 1k  and 2k , SVC maximises the 1P ’s contribution to 

damping. In fact, it compensates the phase shift created by the induction 

motor. 

5.6 SVC controller Redesign Based on Normal Operation 

(Simplified Case)  

In the previous section, the redesign of the SVC controller was described  

based on complete testing. In this section, the effect of the reactive power of 

the SVC on active power is investigated in normal operation. To study this 

effect, consider the simplified version of Figure 5.2 which is shown in 

Figure 5.10. In this figure, the inner feedback is included in  )s(
*
P

➏➏ ➏➏
. 

The ultimate aim is to have all the changes of P  in phase with
.

δ  to get 

maximum contribution of P  to damping. In order to achieve this, the 

transfer function )(ω
➐➐ ➐➐

should be known, then, the SVC controller can be 

redesigned to achieve this aim. 
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Figure 5.10: Power system block diagram representing the effect of reactive 

power of SVC on the load measured power 

 

For the system shown in Figure 5.10, the transfer function between Q and P 

can be found from 

                                           

[ ]

[ ])(R

)(C

)(

QQ

QP

QP

τ

τ

ω

ℑ

ℑ

=
➑➑ ➑➑

                               (5.24) 

where  

)(CQP τ = the cross-correlation of Q and P 

)(RQQ τ = the autocorrelation of P 

τ =time lag  

The response of Q and P to the system inputs in Figure 5.10 can be found 

by using the superposition law. In this regard, the response of Q  can be 

w  
)s(

*
P

➒➒ ➒➒
 

)s(SVC

➓➓ ➓➓
 

 

+ 

δ  P
P 

Q
SVC 

Power System Plant 

)s(
➔➔ ➔➔

 

+ 
+ 

+ 

2z  

1z  

s

1
 

s

1
 

+ 

+ 
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found by adding the Q   responses, when each input is applied separately. 

The same procedure is performed to find the response of P . 

 

         →
−+

→
−+

→
−=

∞

∞−

∞

∞−

∞

∞−

131321313

12121121211111111

d)t(z)(h

d)t(z)(hd)t(w)(hQ

ξξξ

ξξξξξξ

       (5.25) 

          →
−+

→
−+

→
−=

∞

∞−

∞

∞−

∞

∞−

232322323

22221222221212121

d)t(z)(h

d)t(z)(hd)t(w)(hP

ξξξ

ξξξξξξ

     (5.26) 

where 

11h  = the impulse response of the system when onlyw is present and Q is 

output 

21h  = the impulse response of the system when onlyw is present and P is 

output 

12h  = the impulse response of the system when only 1z  is present and Q is 

output 

22h  = the impulse response of the system when only 1z  is present and P is 

output 

13h  = the impulse response of the system when only 2z  is present and Q is 

output 

23h  = the impulse response of the system when only 2z  is present and P is 

output   

Assuming both P and Q are wide-sense stationary, then (see Appendix A) 
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                                      ])t(P)t(Q[E)(CQP ττ +=                         (5.27) 

                                     ])t(Q)t(Q[E)(RQQ ττ +=                           (5.28) 

where E is the expected value. 

Substituting (5.25) and (5.26) into (5.27) and (5.28), respectively, gives  

 

➣↔
➣↕➙➛➜

➝➞
−++

➞
−+

➣➣➟
➣➣➠
➡

➢➤➥ ➞
−+

➛➜
➝➞

−+

➢➤➥ ➞
−+

➞
−

=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

232322323222212222

21212121131321313

12121121211111111

QP

d)t(z)(hd)t(z)(h

d)t(w)(hd)t(z)1(h

d)t(z)1(hd)t(w)(h

E)(C

ξξτξξξτξ

ξξτξξξξ

ξξξξξξ

τ

                                                                                                                 (5.29) 

➦➧
➦➨➩➫➭

➯➲
−++

➲
−+

➦➦➳
➦➦➵
➸

➺➻➼ ➲
−+

➫➭
➯➲

−+

➺➻➼ ➲
−+

➲
−

=

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

∞

∞−

131321313121211212

11111111131321313

12121121211111111

QQ

d)t(z)1(hd)t(z)(h

d)t(w)(hd)t(z)1(h

d)t(z)1(hd)t(w)(h

E)(R

ξξτξξξτξ

ξξτξξξξ

ξξξξξξ

τ

                                                                                                                 (5.30) 

 

With the assumption that the expectation and integration operation are 

interchangeable [107], we take expected value from the internal terms of the 

integrals in (5.29) to yield   
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dd)t(z)t(zE)(h)(h

dd)t(z)t(zE)(h)(h

dd)t(w)t(zE)(h)(h

dd)t(z)t(zE)(h)(h
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                                                                                                                 (5.31) 

Note that the impulse responses have been taken out of the expectation 

operators in (5.31). This is because the impulse responses are not random 

variables, and are treated as constants.  

Sincew , 1z  and 2z are uncorrelated white noise, the following equations hold 

for all values of time lag ,τ , [24] 

 

                                             [ ] 0)t(z)t(wE 1 =+τ                                 (5.32) 

                                              [ ] 0)t(z)t(zE 21 =+τ                                (5.33) 

                                             [ ] 0)t(z)t(wE 2 =+τ                                  (5.34) 

By using Equations (5.32)-(5.34), Equation (5.31) can be simplified as 
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QP
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 (5.35) 

where wwR , 
11zz

R and 
22zz

R are the autocorrelation of )t(w , )t(z1  and 

)t(z2 , respectively. 

Applying the definition of convolution to Equation (5.35), then we have 

)(h*)(h*)(R)(R

)(h*)(h*)(R)(h*)(h*)(R)(C

23131zz2zz

22121zz2111wwQP

12

1

ττττ

τττττττ

−+

−+−=
 

                                                                                                                 (5.36)

 
where * represents the convolution integral operator. 

 

Similarly, we can derive  

)(h*)(h*)(R*)(R

)(h*)(h*)(R)(h*)(h*)(R)(R

12121zz2zz

12121zz1111wwQQ

12

1

ττττ

τττττττ

−+

−+−=
 

                                                                                                                (5.37) 

Taking the Fourier transform of (5.36) and (5.37) gives   

)()()(

)()()()()()()(

23132zz

22121zz2111wwQP

2

1

ωωω

ωωωωωωω ➪➪ ➪➪➪➪ ➪➪➶➶ ➶➶
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                                                                                                                 (5.38) 

)()()(

)()()()()()()(

13132zz

12121zz1111wwQQ

2

1

ωωω

ωωωωωωω ➴➴ ➴➴➴➴ ➴➴➷➷ ➷➷
➴➴ ➴➴➴➴ ➴➴➷➷ ➷➷➴➴ ➴➴➴➴ ➴➴➷➷ ➷➷➷➷ ➷➷

−+

−+−=
 

                                                                                                                 (5.39) 
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Since )t(w , )t(z1  and )t(z2  are white noise, their power spectral densities 

are constant, so, )(ww ω
➬➬ ➬➬

, )(
11zz

ω
➮➮ ➮➮

and )(
22 zz

ω
➱➱ ➱➱

can be found from  

                                                   W)(ww =ω
✃✃ ✃✃

                                      (5.40) 

                                                    11zz
Z)(

1
=ω

❐❐ ❐❐
                                   (5.41) 

                                                    22zz
Z)(

2
=ω

❒❒ ❒❒
                                  (5.42) 

where W , 1Z  and 2Z  are real positive constants. 

Using (5.40)-(5.42), Equations (5.38) and (5.39) become 

            
)()(Z

)()(Z)()(W)(

23132

221212111QP

ωω

ωωωωω ❮❮ ❮❮❮❮ ❮❮
❮❮ ❮❮❮❮ ❮❮❮❮ ❮❮❮❮ ❮❮

−+

−+−=

❰❰ ❰❰
     (5.43) 

            
)()(Z

)()(Z)()(W)(

13132

121211111QQ

ωω

ωωωωω ÏÏ ÏÏÏÏ ÏÏ
ÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÏÏ ÏÏÐÐ ÐÐ

−+

−+−=

    (5.44) 

Equations (5.43) and (5.44) can be simplified to   

                  2c1baQP Z)(Z)(W)()( ωωωω ÑÑ ÑÑÑÑ ÑÑÑÑ ÑÑ ++=

ÒÒ ÒÒ
               (5.45) 

                  2f1edQQ Z)(Z)(W)()( ωωωω ÓÓ ÓÓÓÓ ÓÓÓÓ ÓÓ ++=

ÔÔ ÔÔ
              (5.46) 

where 

                                
)()()( 2111a ωωω ÕÕ ÕÕÕÕ ÕÕÕÕ ÕÕ −=                                  (5.47) 

                                 )()()( 2212b ωωω ÕÕ ÕÕÕÕ ÕÕÕÕ ÕÕ −=                                 (5.48) 

                                 )()()( 2313c ωωω ÖÖ ÖÖÖÖ ÖÖÖÖ ÖÖ −=                                (5.49) 

                                 )()()( 1111d ωωω ×× ×××× ×××× ×× −=                                 (5.50) 

                                 )()()( 1212e ωωω ØØ ØØØØ ØØØØ ØØ −=                                (5.51) 

                                 )()()( 1313f ωωω ÙÙ ÙÙÙÙ ÙÙÙÙ ÙÙ −=                                (5.52) 
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The transfer function )(QP ω
ÚÚ ÚÚ

is determined by replacing the numerator 

and denominator in Equation (5.24) by Equations (5.45) and (5.46), 

respectively. Therefore, we have  

                  
2f1ed

2c1ba
QP

Z)(Z)(W)(
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ωωω

ωωω
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++

++
=            (5.53) 

or            
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=

      

                                                                                                                 (5.54) 

When the load disturbances in the feeder being examined are much smaller 

than the remote load disturbance, i.e. 1ZW << , and when the input 

disturbance of the SVC is much smaller than the remote load disturbance, 

i.e. 21 ZZ << , the transfer function QP

ÝÝ ÝÝ
 can be approximated by  

                                                
)(

)(

e

b
QP

ω

ωÞÞ ÞÞ ÞÞ ÞÞÞÞ ÞÞ
=                                       (5.55)  

After substituting )(b ω

ßß ßß
from (5.48) and )(e ω

ßß ßß
 from (5.51) and then 

simplifying, then  

                                                   )()(QP ωω àà ààáá áá
=                                 (5.56) 

Thus, under the condition that W and 2Z are much smaller than 1Z , the 

transfer function QP

ÝÝ ÝÝ
 can be identified. The assumptions are justified in 

many cases in power systems. It is obvious that in a large network, the total 
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disturbances are often much greater than the local load of a bus being 

examined. Also, the total load disturbance in the system is very large 

compared to the white noise disturbance fed to the SVC. 

5.7 SVC controller Redesign Based on Normal Operation 

(General Case)  

In the previous section the transfer function )(ω

ââ ââ
 was identified under the 

assumptions that the effect of W and 2Z are much smaller than 1Z . With 

this assumption according to Figure 5.2 the effect of w  and 2z  were 

considered negligible compared to 1z . This situation can be true for many 

cases. In this section, we consider the more general case where all three 

signals w , 1z  and 2z  are potentially of equivalent size. For instance, when 

the total load in Brisbane is being examined, its perturbations are of the 

same order of magnitude as other loads in the network. Regarding Figure 

5.2, the SVC block has two inputs, one input comes from the plant including 

feedback paths and the other is the white noise 2d . These two inputs affect 

the identification of )(ω

ãã ãã
.  

It is worthwhile to note that, since w  and 2z  are uncorrelated white noise, 

the white noise 1w  has no effect on identification of the transfer function 

between wQ  and rP . 

By considering the white noise part of Q , which is ; labelled wQ , the 

system is treated as open loop in terms of wQ  and )(ω

ää ää
.  
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5.7.1 System Description  

In this section, we are aiming to examine the relationship between SVC and 

measured load power in normal operation considering the three signals w , 

1z  and 2z are present. In the other words, we examine how the SVC 

reactive power affects the measured load power in the normal operation 

when local and remote load perturbations as well as the white noise for SVC 

are present. This relationship is shown by )(ω
åå åå

in Figure 5.10. This effect 

is examined in more detail through the test power system shown in Figure 

5.11. This figure shows a test power system including a synchronous 

machine connected to the infinite bus. In this figure, an induction motor in 

parallel to an SVC, are connected near the generator terminals via 

impedance bZ . For this system, SG and IM  are synchronous generator and 

induction machine, respectively. Also aZ  and bZ are the line impedances.  

The measured power P  shows the changes of the power flow of the 

synchronous generator caused by the changes of electric power of the 

induction motor. The induction motor changes are created by the changes of 

the SVC reactive power. For this test system, the characteristic of the SVC 

changes is represented  by a white noise. The specifications of the elements 

of the test power system are given in Appendix C. This figure represents 

case where the SVC modulates the load which consists only of induction 

motor. 
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Figure 5.11: A load modulated test system to investigate the effect of  the 

reactive power of SVC on active power 

5.7.2 Examination of Approaches to Analyse 

The aim of this section is to find the transfer function between the white 

noise part of the reactive power of the SVC and the measured power.  

At first the white noise part of the SVC reactive power ( wQ ) is determined. 

To find wQ , a model is built with the bus voltage angle (δ ) as the input and 

the measured SVC reactive power (Q ) as the output. Then, the model 

output due to the input of δ  is calculated. The difference between the model 

output and the measured reactive power of the SVC (Q  ) gives us wQ  (see 

Figure 5.2). This model is the best representation of the effect of δ on the 

SVC reactive power. In the simulation, wQ  is modelled with a white noise. 

As shown in Figure 5.2, two components are incorporated in the measured 

power P . The first component that affect the measured power comes from 
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2z  and is called rP . This component is of interest. The second component 

in the measured power comes δ through two feedbacks as shown in Figure 

5.2 and is called PP .  

As explained before 1w  has no effect on identification of the transfer 

function between wQ  and rP , since w  and 2z  are uncorrelated white noise 

sources.  

In order to find the effect of white noise part of the SVC reactive power on 

the measured active power, the effect of the second component in the 

measured powerP , should be eliminated. To extract the model for )(ω
ææ ææ

 

without the errors that can be induced by the presence of the feedback loops  

two approaches are suggested which are explained as follows:  

Partial Fraction Expansion Approach:  

In this approach, the transfer function between the white noise part of the 

SVC reactive power wQ , and measured power P , is identified. This 

transfer function includes the feed back effects of δ on the measured power, 

P and obtained from 

                                         

[ ]

[ ])(R

)(C

)(

ww

w

QQ

PQ

t

τ

τ

ω

ℑ

ℑ

=
çç çç

                                 (5.57) 

Using the partial fraction expansion method, )(t ω
èè èè

 can be decomposed 

into terms corresponding to the poles of the plant with the feedback loops, 

and poles of )(ω
ææ ææ

as 
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                                           )()()( pt ωωω éé ééêê êêéé éé +=                               (5.58) 

where )(ω
ëë ëë

 is the transfer function formed by the eigenvalues 

corresponding to poles of )(ω
ìì ìì

 and it has the same poles of )(ω
íí íí

. Also, 

)(p ωéé éé  shows the effect of second component in the measured power P , 

which was previously called PP . Knowing the poles of the plant with the 

feedback loops present, we can identify the other eigenvalues as the poles of 

)(ω
ìì ìì

.  

Decorrelation Approach:  

In this approach, at first the feedback effects of system angle on the 

measured power P  are identified and then removed from the measured 

power P to give rP . Then, the transfer function )(ω
íí íí

 can be found from  

                                            

[ ]

[ ])(R

)(C

)(

ww

rw

QQ

PQ

τ

τ

ω

ℑ

ℑ

=
îî îî

                             (5.59) 

where rP is the measured power after the decorrelating the effect PP  from 

the measured power P . 

To decorrelate PP  from the measured power P , we build a model with PP  

as the input and P as the output. Then, the model output due to the input of 

PP  is computed. The difference between the output model and measure 

power gives us rP . The model is the best representation of  PP  formed by 

the two feedback paths.  
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The decorrelation method has the advantage that it identifies the transfer 

function )(ω
ïï ïï

 completely. However, the decorrelation approach requires a 

significant length of data to achieve accuracy.  

5.8 Identification of System in Normal Operation with SVC 

In this section the algorithm and result of the simulation for determining the 

information between wQ  and rP are given using the two approaches 

presented in the previous section.  

5.8.1 Algorithm and Simulation of the Partial Fraction 

Expansion Approach  

The algorithm of finding the effect of the white noise part of the SVC 

reactive power on the measured power using the partial fraction expansion 

method has the following steps: 

Step1: Finding the power system resonant frequencies 

Step 2: Determination of the white noise part of the SVC reactive power 

Step3: Identifying the transfer function )(t ω

ðð ðð
 according to Equation 

(5.57) 

Step 4: Identifying the transfer function )(ω
ññ ññ

using partial fraction 

expansion method 

In order to validate the algorithm based on the partial fraction expansion 

approach, the algorithm is applied to the system of Figure 5.11. In this 

simulation the SVC is the white noise and time duration for the simulation is 

20  seconds.  Applying the algorithm yields t
òò òò

 in the Laplace domain as 
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10954s1.798s02.19s

171.953s4912.31s8996.1
)s(

23

2

t
+++

−−−
=

óó óó
                         (5.60) 

The frequency response of )(t ω

ôô ôô
 is shown in Figure 5.12. Using partial 

fraction expansion, Equation (5.60) is changed to  

                      
4858.736s1429.4s

0752.14s8896.0

8733.14s

01.1
)s(

2t
++

−−
+

+

−
=

õõ õõ
            (5.61) 

The second term in Equation (5.61) corresponds to the IAO of the test 

power system caused by the load changes. Thus, the transfer function öö öö  

which has the poles of ÷÷ ÷÷ , is the first term in Equation (5.61). Therefore 

                                                
8733.14s

01.1
)s(

+

−
=

øø øø
                                (5.62) 

The frequency response of )(ω
ùù ùù

is shown in Figure 5.13. 

To validate the results, the synchronous generator is frozen in Figure 5.11 

by choosing a very large value for the inertia of the generator. In this case, 

the dynamics in measured P  come only from the induction motor dynamics 

excited by the SVC changes. In this situation, changes in the measured 

power P  created by the SVC changes only, and P  is equal to rP , because, 

the inertia of the synchronous generator does not incorporate in the 

measured power P . Using Equation (5.57) gives the transfer function for  úú úú
 in th1e Laplace domain as 

                                               
8671.13s

7724.0
)s(

+

−
=

ûû ûû
                                 (5.63) 

The pole of  )s(
üü üü

 in Equation (5.62) is close to the pole of  )s(
ýý ýý

 in 

Equation (5.63) and thus, the algorithm is validated. Figure 5.14 also shows 

the transfer function of )(ω
þþ þþ

 when the synchronous generator is frozen. 
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Figure  5.12: The frequency response of the identified transfer function 

)(t ω

ÿÿ ÿÿ
 

Figure 5.13: The frequency response of the identified transfer function 

)(ω
�� ��

 obtained using partial fraction expansion approach 

0 2 4 6 8 10 12 14 16 18 
0 

0.1 

0.2 

0.3 

0.4 

Frequency (Hz ) 

0 2 4 6 8 10 12 14 16 18 
50 

100 

150 

200 

Frequency (Hz ) 

Phase 
(Deg.) 

Magnitude 

0 2 4 6 8 10 12 14 16 18 
0 

0.02 

0.04 

0.06 

0.08 

Frequency (Hz) 

0 2 4 6 8 10 12 14 16 18 
80 

100 

120 

140 

160 

180 

Frequency (Hz ) 

Phase 
 
(Deg.) 

Magnitude 



Chapter 5: SVC Contribution to Damping 

_____________________________________________________________ 

 

 

148 

Figure 5.14: The frequency response of the identified transfer function 

)(ω
✁✁ ✁✁

 obtained when the synchronous generator is frozen 

5.8.2 Algorithm and Simulation of the Decorration Approach  

When the a large number of the recorded data is available, it is 

recommended to use the decorrelation approach. The algorithm of this 

method has the following steps.  

Step 1: Determination of the white noise part of the SVC reactive power 

Step2: Determining rP by decorrelating the load effect from the 

measured power P  

Step 3: Identifying )(ω
✂✂ ✂✂

 using Equation (5.59) 

Applying this algorithm to the test power system shown in Figure 5.11 gives 

the transfer  function for ✄✄ ✄✄  which can be represented in the Laplace domain 

as 
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6565.14s

6522.0
)s(

+

−
=

☎☎ ☎☎
                                   (5.64) 

In order to validated the algorithm of the decorrelation approach, Equation 

(5.64) is compared with Equation (5.63) obtained for the case when the 

synchronous generator is frozen. Comparing the parameters of Equations 

(5.64) and (5.63) reveals that the parameters of (5.64) are close to the 

parameters of Equation (5.63), this shows the validity of the algorithm. The 

frequency response )(ω
✆✆ ✆✆

 obtained from normal operation is shown in 

Figure 5.15.  

 

Figure 5.15: The identified transfer function )(ω
✆✆ ✆✆

 obtained when the 

generator is running using the decorrelation approach 
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5.9 Real Data Analysis
1
 

In this part, the application of the suggested algorithm to the real data is 

investigated. The data was gathered from the Blackwall SVC near Brisbane. 

The data duration was 180  seconds. The reactive power Q  of SVC at 

Blackwall substation for one snapshot is depicted in Figure 5.16, and Figure 

5.17 indicates the power flow past the SVC to Brisbane. 

 

Figure  5.16: The reactive power of  SVC from Blackwall substation  

In the first step, the reactive power of the SVC was decorrelated from the 

dependency on Brisbane voltage angle. In fact, according to Figure 5.2, 

there is a dependency of the Brisbane bus voltage angle on the SVC reactive 

power Q . This dependency can be removed by extracting the white noise 

part of Q . 

                                                
1-The real data was provided by Powerlink Queensland. 
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Figure 5.17: The active power flow past Blackwall substation to Brisbane 

 

In the measured power P , however, there is still a dependency on the 

voltage bus angle. As explained in Subsection 5.8.1, this issue can also be 

resolved using the partial fraction expansion method. This means that if 

some power system resonant frequencies are present in the identified 

transfer function, the partial fraction expansion method can be used to 

extract the desired transfer function.  

The transfer function between the white noise part of Q  and measured 

power P , is found according to Equation (5.57) using the cross-correlation 

and autocorrelation functions. This identified transfer function t

✝✝ ✝✝
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t
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=
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    (5.65) 

The frequency response of the identified transfer function shown in 

Equation (5.65), is illustrated shown in Figure 5.18. 

By comparing the roots of the denominator of Equation (5.65) and the 

identified power resonant frequencies in Table 3.8, it is found that there is 

one power system resonant frequency in the transfer function t
✟✟ ✟✟

 given in 

Equation (5.65). According to Equation (5.58), the transfer function t
✠✠ ✠✠

 can 

be decomposed to two terms: p
✡✡ ✡✡

 and ☛☛ ☛☛ , using partial fraction expansion. 

Transfer functions ☞✌✌ ✌✌
 and ☛☛ ☛☛  can be computed as 

                                   
1039.4s1367.1s

0325.0s5615.0
)s(

2p
++

−−
=

✍✍ ✍✍
                          (5.66) 

                                  
8116.11s2844.8s

7191.1s3091.0
)s(

2
++

+
=

✎✎ ✎✎
                          (5.67) 

The frequency response of )(P ω

✏✏ ✏✏
 and )(ω

✑✑ ✑✑
 are illustrated in Figures 5.19 

and 5.20, respectively. The poles of the transfer function ✒✒ ✒✒ in Equation 

(5.67) represents the poles of transfer function between white reactive 

power of the SVC and measured power P . 

If the length of the recorded data is sufficient, then the decorrelation 

approach can be applied to the real data to the find transfer function )(ω
✓✓ ✓✓

.  

The obtained information regarding the effect of white noise power of the 

SVC reactive power on the measured power, can be used to design the SVC 

controller based on the normal operation to achieve the maximum damping 

of the IAO. 
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Figure 5.18: The frequency response of the identified transfer function 

)(t ω

✔✔ ✔✔
 for the real data 

Figure 5.19: The frequency response of the identified transfer function 

)(p ω

✕✕ ✕✕
for the real data 
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Figure 5.20: The frequency response of the identified transfer function  

)(ω
✖✖ ✖✖

 for the real data 

5.10 Summary  

In this chapter, to examine the effect of SVC on damping of the IAO, two 

methods are proposed.  

The first method is  redesign of the SVC controller on the basis of complete 

testing. In this method, the CBMSI method is used to identify the resonant 

frequency of the oscillatory modes. Then, the involvement of real power 

flow of the generator in damping is determined in the presence of SVC. The 

effect of feedback signals from bus voltage angle and bus voltage angle 

changes is investigated by simulating the suggested algorithm. The results 
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the SVC, the load partly contributes to damping and SVC can modify this to 

achieve maximum contribution of load to damping.  

The second method is redesign of the SVC controller based on normal 

operation. In this method, the transfer function representing the relationship 

between the white noise part of the reactive power of SVC and the measured 

power of the load is identified. To achieve maximum damping, measured 

power should be in phase with the speed changes of the synchronous 

generator, therefore, the desired phase shift of the SVC can be obtained 

using the phase angle of the identified transfer function at the resonant 

frequency. The results of simulating this method on a test system show the 

validity of the suggested algorithm. Finally, the effect of the reactive power 

of the SVC Blackwall of the Australian electricity network on the measured 

power supplied to Brisbane is examined. 
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Chapter 6: Summary, Conclusion and 

Recommendation for Future 

Research 

 

In this chapter a summary of the thesis is given, the main results of this 

research are explained and the major conclusions of the thesis are provided. 

Finally further research that may be carried out in the area of contribution of 

power system to damping of the inter-area oscillations (IAO) is described.  

6.1 Summary  

In Chapter 3, in the first contribution of this thesis, the correlation based 

mode shape identification (CBMSI) is introduced to identify the power 

system eigenvalues of the IAO. It is demonstrated in this method that the 

eigenvalues can be identified from the power system response to impulse 

input or white noise input. Also it is shown when a combination of both 

impulse response and white noise are applied to the power system the 
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eigenvalues of the power system can be identified. The estimated results of 

the simulation agree with the actual values of the eigenvalues of the test 

power system. Then the CBMSI is applied to the real data of the Australian 

electricity network to find the eigenvalues and mode shapes. By using the 

result of this chapter, the resonant frequencies, damping and the mode shape 

plot of the power system can be updated continuously from normal 

operating data. This information provides continuous understanding of 

power system parameters, that can be useful to prevent or postpone 

emergency situations. 

The quantification of load contribution using eigenvalue sensitivity to load 

(ESL) method is developed in Chapter 4. In this chapter in a closed loop 

representation of the power system, with the assumption that the local load 

disturbance is much smaller than the remote load disturbances, the load 

model is identified. The load model transfer function that relates the rate of 

the angle changes to the load power changes is identified on the basis of the 

cross-correlation and autocorrelation functions. Then, the load contribution 

to damping is determined using the ESL method. In the ESL method, the 

right and left eigenvector, the inertia of the generator and the value of the 

identified load model at identified resonant frequency, are employed to 

compute the sensitivity of the eigenvalues load contribution to damping. 

The algorithm presented in Chapter 4 is applied to a test system including 

three generators, nine lines and four loads to find the sensitivity of the 

power system eigenvalues with respect to the loads. The simulation results 

show there is a good agreement between actual values obtained from the 
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eigenvalues analysis and the estimated values determined from the ESL 

method. In the real data analysis the load of one feeder of a substation in 

Brisbane of Australia, which called the Brisbane feeder load, is examined. 

The contribution of this load to damping of each mode is identified 

separately. Also the sensitivity eigenvalues of the of Australian electricity 

network with respect the Brisbane load at each mode are identified. The 

method presented in this chapter, provides an understanding of the 

contribution of the specific load to damping and resonant frequency of the 

IAO. This contribution could be modified continuously. Identifying the load 

effect on damping, could lead to a choice of strategy in load management or 

load modulation in the contingency situation.  

The effect of SVC on load contribution is examined in Chapter 5 and two 

methods for redesigning the SVC controller are developed in this chapter to 

increase the damping of the IAO. These two methods are SVC controller 

redesign based on complete testing and based on normal operation. 

The SVC controller redesign based on complete testing uses “On” and “Off” 

control of the SVC to find the contribution of SVC and relates this to the 

SVC controllers parameters. This information can be used to find the new 

setting for parameters of the SVC controllers to achieve maximum damping 

of the IAO. The developed algorithm for SVC redesign based on complete 

testing is simulated on a test system and it is shown that through this 

method, a modification for the SVC controller parameters can be suggested 

by using particular feedback signals to achieve maximum contribution of 

the dynamic load to damping.  
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Next, the SVC controller redesign based on normal operation is developed. 

The effect of reactive power of the SVC on the measured power of the load 

is analyzed. The relationship between the white noise part of the SVC action 

and the measured power is described by a transfer function.  

In the second test power system used in Chapter 5, a mainly load modulated 

test system is simulated to find the effect of reactive power of SVC on 

measured power. At first when the generator is running, a transfer function 

is extracted from the system response and system inputs. The system 

response consists of the dynamics of the induction motor and dynamic of  

the synchronous generator. Then transfer function which relates of SVC 

reactive power on the measured power excluding the synchronous generator 

dynamics is identified. To validate the results, the synchronous generator   is 

frozen, and the transfer function is identified. The parameters of the 

identified transfer function when the generator is running is close to the   

parameters of the obtained transfer function when the generator is frozen 

and this demonstrates the validity of the algorithm. The SVC real data of the 

Australian electricity network is analyzed later in Chapter 5. In this analysis 

firstly the white noise part of the SVC reactive power is determined. Then, 

the effect of white noise part of the Q  of SVC on the measured active 

power past the Blackwall Substation in Australia is investigated and the 

poles of the transfer functions between white noise part of the SVC and the 

measured active power are identified using the partial fraction expansion 

approach.  

The method of the SVC controller design based on complete testing could 
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improve the SVC effect on the IAO, by redesigning the SVC controller. It 

has disadvantage of being costly process and sometimes it is difficult to put 

the SVC off-line. However the SVC controller redesign based on normal 

operation used the operating data to find the effect of the SVC reactive 

power on the measured load power. The resulting information can be used 

in redesigning of SVC controller to increase the damping of the IAO.  

 6.2 Conclusion   

The conclusions arising from the studies in this thesis are as follows: 

• This thesis makes three major contributions in developing  

o The CBMSI method  to identify the power system resonant 

frequencies and mode shape,  

o The ESL method to identifying the load contribution to damping  

o A method of identification of  SVC contribution to damping 

• In the CBMSI method the power system eigenvalues and mode shape 

are determined using cross-correlation and autocorrelation functions. 

• Load contribution to damping is quantified and the ESL method is used 

to find sensitivity of the power system eigenvalues with respect to the 

load. 

• The redesign of SVC controller based on complete testing is presented. 

This method provides information for redesigning the SVC controller to 

increase the damping of the IAO.  

• The contribution of SVC is investigated and the transfer function 

between the white noise part of reactive power of the SVC and the 
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active power is determined using cross-correlation and autocorrelation 

functions. 

• The three contributions of this thesis are validated by simulating each 

method on a test system. The accuracy of the results of the simulation 

are good in that they are close to the chosen values. The methods 

developed in this thesis were applied to real data of the Australian 

electricity network to determine  

o The power system frequencies and mode shape plot at each 

identified resonant frequency. 

o Quantification of the Brisbane load to damping and sensitivity of 

the power system eigenvalues with respect to the Brisbane load. 

o Identification of the effect of the white noise part of the SVC of 

the Blackwell substation on the active power past this substation 

towards Brisbane. 

6.3 Recommendation for Future Research 

The following areas are recommended for future work: 

6.3.1 The Contribution of Automatic Voltage Regulator to 

Damping 

In this thesis the effect of load and SVC on damping are investigated. The 

influence of the automatic voltage regulator (AVR) to damping is one area 

to continue the current research. 

The aim of an AVR is to continuously control the output voltage of a 

synchronous generator by adjusting the applied field voltage.  
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The effect of AVR on damping can be explained by considering the field of 

the generator. The field of the generator produces the magnetic flux and as 

the generator is running, the voltage is generated at the generator terminals. 

If the input voltage of the field of the generator is chosen proportional to the 

rate of the generator voltage angle changes 
.

δ , then, since the circuit of the 

field of the generator is inductive, therefore there is a time delay between 

the input voltage of the field and the produced magnetic flux ���� of the field. 

Thus, at the IAO resonant frequency there is a phase shift between the 

produced flux and the field and input voltage of the field. When the input 

voltage of the field is chosen proportional to 
.

δ , then there is a phase shift 

between produced flux and 
.

δ  as shown in Figure 6.1. In this case, similar to 

the SVC that discussed in Chapter 5, by  taking appropriate feedback from 

terms related to δ as well as terms related to  
.

δ , the input voltage can be  

adjusted, so that the produced flux in is in phase  with 
.

δ . In this case, the 

greatest contribution of AVR to damping can be provided.  So the AVR 

contribution to damping should be able to be quantified and an algorithm 

should be develop to increase the AVR damping contribution to damping. 
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Figure 6.1: The contribution of produced magnetic flux load to damping 

 

6.3.2 Examining the Effect of Location of Load on the 

Analysis of the Load Contribution to Damping 

In developing the load contribution method to damping, it is assumed that 

the load is connected to the generator terminals. This assumption is often 

acceptable, because in a large electricity network, many generators are 

clustered around a load considering a equivalent load, and the aggregated 

generator is often a reasonable representation of the real power system. 

However it is more beneficial, if a more general case in which load is not 

close to the generator terminals, is considered. Fig 6.2.a shows a simple case 

to illustrate the case when a load is connected between the two generators. 

In that case the diagram can be changed to Figure 6.2.b. In fact, the changes 

in the load connected between generators i and j can be mapped to the 

reduced admittance matrix of the system. A more general case would have a 

δ

����  

.

δ



Chapter 6: Summary, Conclusion and Recommendation for Future Research 

_____________________________________________________________ 

 165

mesh of load buses and generator buses and changes in the load will affect 

several generators. 

 

 

Figure 6.2: a.) Diagram of  the connection of the general dynamic load LijP  

between  generator i and generator j , b.) the simplified diagram 

 

In forming the equation in the state space mode, the Equations (2.10) and 

(4.17) should be modified. In this modification two factors should be 

considered.  

The first factor is the representation of the dynamic loads in terms of the 

state variables. Therefore, one challenging issue is the load identification 

and in doing this, the block diagram in Figure 5.2, should be investigated.  

eiP  ejP  
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iG  

Bus i 

jG  

LjjP  LiiP  

b.) 

eiP  ejP  
Bus j 

Load 
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The second factor indicates how the dynamic load changes are shared 

between the groups of generators with intermediate loads.  For example, in 

Figure 6.2 the changes in the load LijP can be mapped to the changes of the 

reduced Y bus  matrix of the system.  Therefore Equation (4.7) for the case 

that the loads are not connected to the generator terminals can be modified 

as 

                                    [ ] ✗✗✘
✙

✚✚✛✜✗✘
✙✚✛✜

+✗✗✘
✙

✚✚✛✜=✗✗✘
✙

✚✚✛✜ ...
0

δ

δ

δ

δ

δ

δ ✢✢ ✢✢✣✣ ✣✣ ✤✤ ✤✤✤✤ ✤✤✥✥ ✥✥✦✦ ✦✦✧✧ ✧✧★★ ★★
                      (6.1) 

where  

✩✩ ✩✩
=  the system matrix in the state space model with the dimension of 

n2n2 ×   

✪✪ ✪✪
=  the matrix of load factor with dimension of nn×  

✫✫ ✫✫✬✬ ✬✬
 and ✭✭ ✭✭✮✮ ✮✮

 = the matrices with dimension of nn×  that show the dynamic 

representation of the loads in terms of s'δ  and s'
.

δ  

✯✯ ✯✯
= the allocation matrix with dimension of nn×  that show how the loads 

admittances are shared between the generators  

Therefore more study is needed to determine the sensitivity of 
th
k  

eigenvalue with respect to the thk  active load LkP  which is connected in the 

mesh network.  
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6.3.3 Investigation the effect of other AC Transmission 

Devices to Damping 

The SVC contributes to damping both directly and indirectly. The direct 

contribution is called line modulation and the indirect modulation is called 

load modulation. In the line modulation effect by the SVC, the variation of 

the capacitor of SVC changes the line impedance and therefore it 

contributes to damping directly. However in the load modulation effect by 

the SVC, capacitor changes the SVC leads to changes of the voltage of the 

dynamic loads, and therefore the contribution of the load to damping 

changes.  

In this thesis, the effect of SVC and or shunt controlled capacitor 

considering mainly load modulation, is examined. Another area for further 

investigation, is to work on the line modulated performance of the SVC  and 

how the contribution of the line modulated SVC to damping can be 

quantified.  

Other flexible AC transmission Systems (FACTS) devices can be 

investigated to the effect of these devices to damping.  

The contribution of the thyristor series controlled capacitor (TCSC), is 

another area for continuing this research [108-111]. In the case of TCSC, 

firstly the contribution of the TCSC to damping with the existing control 

design can be evaluated in terms of line modulation. Then, a method needs 

to be developed to redesign the TCSC control design to achieve the 

maximum contribution to damping. 
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The unified power flow controller (UPFC) is another FACTS device that 

could be investigated in future to find out how it contributes to damping of 

the IAO [112-115]. UPFC is a FACTS device which is capable of 

controlling power system parameters such as voltage terminal and line 

impedance. UPFC has two applications in power systems. The first 

application is to regulated power flow and the second application is to 

improve the damping of the IAO. A UPFC consists of the combination of 

static synchronous capacitors (STATCOM) and static synchronous series 

compensator, (SSSC) that are connected by a DC voltage link. The insights 

gained from SVC and TCSC contribution to damping, would help to 

develop a method for quantifying the UPFC contribution to damping.  

6.3.4 Characterization of the Time Variation of Load 

With the methods developed in Chapters 3 and 4, the power system utilities 

are now able to continuously monitor the load model from disturbances 

created by the background customer load variations. Consequently, the 

identified load model could be used to update the setting of the FACTS 

control design and thus improve the contribution of the device to damping, 

if it is necessary. 
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Appendix A:  

Some Signal Processing Aspects 

 

In this appendix some aspects of signal processing used in this thesis are 

explained [24-27].  

A.1 Random Variable, Random Process and Ensemble  

A random variable X is defined as a function that maps any outcome ξ of a 

sample space Ω  into a real number x, with the two necessary conditions. 

Firstly, the set }xX{ ≤  will be an outcome of  Ω  for any real number. 

Secondly, 0}X{P =−∞=  and 0}X{P =∞= , where P represents the 

probability of the event (page 74 of [25]). 

Similarly, a random process is a rule that maps any outcome ξ of a sample 

space Ω  into a function ),t(X ξ  (page 373 of [25]). 

When t and ξ  are variables, the random process ),t(X ξ  shows an 

ensemble of time functions. Each time function of the ensemble is called 

realization or ensemble member (page 180 of [24]). 

A.2 Cross-correlation and Autocorrelation 

If )t(X  and )t(Y  are two real wide-sense stationary processes, the cross-

correlation function of )t(X  and )t(Y  are to be found from the following 

equation  

                                      ])t(Y)t(X[E)(C YX ττ +=                       (A.1) 
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where E is the expected value. 

 If X (t) and )t(Y  are real and jointly erogdic processes then the time cross-

correlation process x (t) and )t(y  can be computed from  

                               τττ d)t(y)t(x
T2

1
lim)(C

T
T

T
xy +

✰
=

−
∞→

                 (A.2) 

where x and y the ensemble members of )t(X  and )t(Y , respectively. 

Similarly, If )t(X  is a real wide-sense stationary processes, then the 

autocorrelation function of )t(X  can be obtained found from 

                                       ])t(X)t(X[E)(R XX ττ +=                      (A.3) 

If  )t(X is a real and erogdic process then the time autocorrelation function 

of )t(x can be calculated from  

                                τττ d)t(x)t(x
T2

1
lim)(R

T
T

T
xx +

✰
=

−
∞→

               (A.4) 

where x is an ensemble member of )t(X . 

A.3 Power Spectrum Density and Cross-Power spectrum 

Density  

if  )t(X  a real stationary processes of order of two, then the power density 

spectrum of X  is the Fourier transform [29] of autocorrelation of X  that 

can be found from the following Equation  as  

                              ττω
ωτ
de)(R)(

j
XXXX

−∞

∞−

✱
=

✲✲ ✲✲
                        (A.5) 

Similarly, if )t(X  and )t(Y  are two real wide-sense stationary processes, 

then the cross-power density spectrum of X  and Y  is the Fourier transform  

of cross-correlation of X  and Y that  can be computed from  
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                               ττω ωτ
de)(C)(

j
YXYX

−∞
∞−

✳
=

✴✴ ✴✴
                        (A.6) 

A.4 Evaluation of a linear systems Response to a random Variable 

Input  

A system with a random variable input )t(u as the input and )t(y as the 

output is illustrated in Figure A.1. 

 

Figure A.1: A linear system with a random variable input 

In Figure A.1, )t(u is an ensemble member of process )t(U . If the impulse 

response of this system is denoted by )t(h then we have  

                                                )(h*R)(C uuuy ττ =                                (A.7) 

or 

                                                )(h*R)(C yuyy ττ =                               (A.8) 

where * is the convolution integral operator.  

By taking  the Fourier transform from Equations (A.7) and (A.8), the 

transfer function of )(ω
✵✵ ✵✵

 can be found from one of the following 

equations 

                                                

[ ]

[ ])(R

)(C

)(

uu

yu

τ

τ

ω

ℑ

ℑ

=
✶✶ ✶✶                                 (A.9) 

)t(y  
Linear Time Invariant 

System   
)t(u  
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or  

                                                

[ ]

[ ])(R

)(C

)(

yu

yy

τ

τ

ω

ℑ

ℑ

=
✷✷ ✷✷                               (A.10) 

With regard to Equations (A.5) and (A.6),  Equations (A.9) and (A.10) are 

changed to Equations (A11) and  (A.12) respectively, as  

                                                 

                                                    
)(

)(
)(

uu

yu

ω

ω
ω ✸✸ ✸✸

✸✸ ✸✸✹✹ ✹✹
=                             (A.11) 

or  

                                                    
)(

)(
)(

yu

yy

ω

ω
ω ✸✸ ✸✸

✸✸ ✸✸✹✹ ✹✹
=                              (A.12) 

where  

)(uu ω
✺✺ ✺✺

= power density spectrum of u  

)(uy ω
✻✻ ✻✻

= cross-power density spectrum of u and y  

)(yy ω
✻✻ ✻✻

= power density spectrum of y  

)(yu ω
✼✼ ✼✼

= cross-power density spectrum of y  and u  
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Appendix B 
 

 The specifications of test power system of Section 5.5 are as follows 

1. Synchronous Generator and Transmission Lines 

Inertia= 404.0JG =  

Input mechanical power= 8.0Pmg =  

Damping coefficient= 003.0Dg =  

3.0jZa =  

2.0jZb =  

The transient reactance of the synchronous generator is incorporated in aZ . 

 

2. Induction Motor 

Inertia= 1120.0Jm =  

Stator resistance= 0185.0rs =  

Rotor resistance= 0073.0rrs =  

Stator leakage reactance= 085.0xs =  

Rotor leakage reactance= 085.0xr =   

Mechanical load= 1.0Pmm =  

Damping coefficient= 0027.0Dm =  

All of the parameters in .u.p  and the synchronous frequency is sf = Hz60 .
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Appendix C 
 

 The specifications of test power system of Section 5.8 are as follows 

1. Synchronous Generator and Transmission Lines  

404.0JG =  

8.0Pmg =  

07.0Dg =  

03.0jZa =   

02.0jZb =  

The transient reactance of the synchronous generator is neglected. 

3. Induction Motor 

00224.0Jm =  

0185.0rs =  

0132.0rr =  

085.0xs =  

085.0xr =   

1.0Pmm =  

0027.0Dm =  

All of the parameters in .u.p  and sf = Hz60 . 
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