
Identification of Differential Responses to an Oral
Glucose Tolerance Test in Healthy Adults
Ciara Morris1,2, Colm O’Grada2, Miriam Ryan1,2, Helen M. Roche2, Michael J. Gibney1,2, Eileen R. Gibney1,2,
Lorraine Brennan1,2*

1 UCD Institute of Food and Health, University College Dublin, Belfield, Dublin, Rep. of Ireland, 2 UCD Conway Institute of Biomolecular and Biomedical
Research, University College Dublin, Belfield, Dublin, Rep. of Ireland.

Abstract

Background: In recent years an individual’s ability to respond to an acute dietary challenge has emerged as a
measure of their biological flexibility. Analysis of such responses has been proposed to be an indicator of health
status. However, for this to be fully realised further work on differential responses to nutritional challenge is needed.
This study examined whether metabolic phenotyping could identify differential responders to an oral glucose
tolerance test (OGTT) and examined the phenotypic basis of the response.
Methods and Results: A total of 214 individuals were recruited and underwent challenge tests in the form of an
OGTT and an oral lipid tolerance test (OLTT). Detailed biochemical parameters, body composition and fitness tests
were recorded. Mixed model clustering was employed to define 4 metabotypes consisting of 4 different responses to
an OGTT. Cluster 1 was of particular interest, with this metabotype having the highest BMI, triacylglycerol, hsCRP, c-
peptide, insulin and HOMA- IR score and lowest VO2max. Cluster 1 had a reduced beta cell function and a differential
response to insulin and c-peptide during an OGTT. Additionally, cluster 1 displayed a differential response to the
OLTT.
Conclusions: This work demonstrated that there were four distinct metabolic responses to the OGTT. Classification
of subjects based on their response curves revealed an “at risk” metabolic phenotype.
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Introduction

It is becoming increasingly accepted that the response to
diet, is under the influence of many factors including genetic,
epigenetic and metabolic factors [1]. Therefore, to move from
current population based dietary guidelines into personalised
nutritional advice, responses to dietary challenges need to be
investigated with an emphasis on differential response. Such
research could provide insight into metabolic status based on
nutrient-specific responses [2]. The term metabotype has
emerged in the literature and it defines a metabolic phenotype
that classifies an individual in a particular category. These
metabotypes can be used to define differential responses to
diet, therapeutic intervention or physical challenges [3–6]. In
the field of pharmacology the concept of the metabotype has
gained significant momentum and the area of pharmaco-

metabonomics has emerged [4,7–10]. This approach has been
successfully used to define a
pretreatment metabotype predictive of response to sertraline or
placebo in depressed outpatients, revealing that pretreatment
metabotypes may predict optimal therapy strategies [4]. More
recently, application of this identified two subgroups of subjects
with positive lipid response to fenofibrate therapy and with
different underlying disturbances in lipoprotein metabolism [10].
In the field of human nutrition, distinct metabotypes have
shown differential response to dietary interventions and the
concept of using this approach to identify response to
interventions has emerged [5].

In recent years, the use of meal challenges such as an oral
glucose tolerance test (OGTT) and an oral lipid tolerance test
(OLTT) to identify subtle changes in nutrition studies has
gained momentum [11–13]. Healthy humans have the ability to
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maintain homeostasis through a multitude of nutritionally
regulated processes. Therefore time–dependent changes in
response to food is of great importance and provides
information about the health of an individual. A recent study
[14] revealed that plasma metabolomics and proteomics
profiling after a postprandial challenge provided additional
metabolic changes related to the dietary intervention not
observed in non-perturbed conditions. Similarly by applying a
highly controlled 4 day challenge protocol to 15 young healthy
male volunteers inter-individual variation in phenotypically
similar volunteers was enhanced by the challenges revealing
metabotypes not observable in baseline metabolite profiles
[15]. The findings from these challenge tests has revealed
detailed insights into complex metabolic changes induced by
OGTTs/OLTTs and offer novel perspectives on the regulation
of glucose and lipid metabolism.

Development and expansion of the metabotyping approach
to include responses to the standard OGTT is an important
step in the use of these challenge tests in nutrition. The
objective of the present work was to develop the concept of
metabotyping encompassing the glucose response during an
OGTT and to explore the phenotypes underlying the differential
responses.

Materials and Methods

Ethics Statement
Ethical approval was obtained from the Research Ethics

Committees in University College Dublin (UCD) (LS-08-43-
Gibney-Ryan) and the study was conducted according to the
principles expressed in the Declaration of Helsinki. Subjects
were informed about the experimental procedures and purpose
of the study prior to giving written consent.

Subjects
This study is part of a research project under the Joint Irish

Nutrigenomics Organisation which aims to create an extensive
database combining information derived from three Irish
Cohorts including the Metabolic Challenge Study (MECHE), the
National Adult Nutrition Study (NANS) and the Trinity Ulster
Department of Agriculture Study (TUDA) (www.ucd.ie/jingo/).
The results from the MECHE study are presented here. Two
hundred and fourteen subjects aged 18-60 years were
recruited following a detailed screening session which included
evaluation of the following parameters: fasting glucose,
triacylglycerols, HDL, LDL and hemoglobin concentrations.
Subjects were randomised to one of three groups; 76 subjects
were randomized to receive an OGTT and an OLTT on two
separate clinical visits, 69 subjects were randomised to receive
an OGTT on two separate clinical visits and 69 subjects were
randomized two OLTTs on two separate occasions.

Sample Collection
Following a 12 hour overnight fast, second void urine and

blood samples were collected. The urine was immediately
centrifuged at 1800g for 10 minute at 40C, and 1ml aliquots
were stored at -800C. All individuals underwent a 75-g OGTT

according to the recommendations of the World Health
Organization (WHO)/International Diabetes Federation (IDF).
Venous blood samples were taken directly before (= 0 min) and
during the OGTT (10, 20, 30, 60, 90, and 120 min). As detailed
in the online supplemental data, the OLTT consisted of 100 mL
Calogen (Nutricia, Ireland) combined with 50 mL Liquid Duocal
(SHS Nutrition, Netherlands) for a total of 150 mL with a fat
content of 54 grams (Table S1). Blood samples were taken
directly before (= 0 min) and at 60, 120, 180, 240, and 300 min
during the OLTT.

Serum and plasma samples were collected using serum
tubes containing a clot activator coating, EDTA-coated
evacuated tubes and tubes containing lithium heparin. The
serum samples were allowed to clot for 30 minutes at room
temperature. EDTA and lithium heparin tubes were placed
directly on ice. All blood samples were centrifuged at 1800 x g
for 15 minutes at 40C and 500 ml aliquots were stored at -800C
until subsequent analysis.

Anthropometric, Body Composition and Fitness tests
Height was measured using a wall-mounted stadiometer and

weight was measured on a calibrated beam balance platform
scale. Percentage body fat was measured via an air-
displacement plethysmograph (BOD-POD GS system, Cranlea,
UK), which has been shown to be an accurate method for
assessing body composition in adults [16]. Percentage body fat
measurements were measured in fasting state. Following
consumption of a breakfast containing 558 kcal, 5 g fat, 108 g
carbohydrate and 72 g protein, a measure of maximal oxygen
consumption (VO2max) was carried out on an electronically
braked cycle ergometer (Ergoline 500, Bosch, Germany). To
individualise the increment of exercise intensity during the
VO2max test, the workload of each step was calculated from the
theoretical VO2max. Consequently subjects underwent a test
with the same relative incremental workload. The test consisted
of a three minute warm up at baseline followed by four minute
steady state workloads at 15%, 35%, 55% and 75%. Recovery
to baseline (VO2 and heart rate returned to baseline value and
an R value under 1 was achieved) was recorded after each
increment. The subjects performed the test on an electronically
braked cycle ergometer (Ergoline Bosh 500). Heart rate was
monitored continuously throughout the test and metabolic and
ventilatory responses were assessed using a computer based
breath to breath exercise analysing system (Cosmed Quark
B2, H Evans, Ireland).

Biochemical and Immune Parameters
Clinical chemistry analysis was performed using a

RxDaytona™ chemical analyser autoanalyser (Randox
Laboratories, Crumlin, UK) and Randox reagents. Details of the
analytes and methods are as follows: total cholesterol
(cholesterol oxidase), HDL-cholesterol (direct clearance),
glucose (glucose oxidase), triacylglycerol (lipase/glycerol
kinase colorimetric), C reactive protein (immunoturbidimetric)
and NEFA (lipase/glycerol kinase colorimetric).

The Evidence Investigator™ (Randox Laboratories, Crumlin,
Northern Ireland) metabolic array I kit was used for the
simultaneous measurement of C-peptide, Insulin, Resistin, and
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Tumor Necrosis Factor-α. Standard quality control procedures
were followed on both analysers to ensure the integrity of the
data.

HOMA-IR score was calculated using the formula: (Fasting
insulin µU/mL x fasting glucose mmol/L)/ 22.5 and using:
(Fasting insulin pmol/l x fasting glucose mmol/L)/ 22.5.

Clustering and Statistical Analysis
Clusters were determined using mix tools analysis in R as

described previously by Benaglia and colleagues [17].
Biochemical data, body composition data and fitness data were
compared between clusters using general liner model (GLM)
analysis. Data is presented as mean ± standard error of mean
(SEM). Statistical analysis was performed using the statistical
package PASW for windows V.18.0.0 (SPSS, Chicago, USA).
Analysis of variance (ANOVA) was used to examine mean
differences in continuous data.

Results

Identification of four distinct metabotypes based on
response to an OGTT

For the present study, subjects (n=145) who underwent an
OGTT were selected and from these only subjects with a
complete dataset for glucose curves were used (n=116). The
overall characteristics of the subjects are presented in Table 1.
Metabotypes were identified by analysis of the response to an
OGTT using mix tools analysis in R as described previously
[17]. Analysis revealed four distinct metabotypes (Figure 1A).
Cluster 1 was characterised by the highest BMI, highest
percentage body fat and lowest VO2max. Cluster 2 had the
highest mean VO2max while cluster 3 had the lowest BMI and
lowest percentage body fat (Table 2). There was no significant
difference in the distribution of gender across the clusters.

With regards the glucose curves, Cluster 1 had the highest
baseline glucose, the highest peak glucose value and the
highest glucose at 120 minutes (Table 3). Cluster 2, 3 and 4
had similar baseline glucose values (Table 3). Cluster 2 had
the earliest peak for glucose with a peak value achieved at 20
minutes. Cluster 3 displayed the lowest response with peak
glucose values reaching only 6.47 mmol/l compared to the high
value of 11.28 mmol/l for cluster 1 (Figure 1). Cluster 1 and
cluster 4 displayed the highest peak values and neither
returned to baseline values at 120 minutes. Whereas the

Table 1. Demographics of study population.

 Mean ± S.E.M
Age (years) 32.2 ± 0.74

Weight (Kg) 75.1 ± 1.1

BMI (kg.m-2) 24.8 ± 0.3

Body fat (%) 26.1 ± 0.8

VO2MAX (ml/min/kg) 42.1 ± 1.2

Glucose 0 (mmol/l) 5.4 ± 0.1

HOMA-IR 2.19 ± 0.16

Data are means ± SEM.

glucose values for cluster 2 and 3 returned to values lower than
the baseline values at 120 minutes.

Characterisation of the metabotypes
Cluster 1 was characterised by having the highest HOMA-IR

score, and the highest triacylglycerol, hsCRP, c-peptide and
insulin concentrations. Cluster 3 was characterised by the
lowest, triacylglycerol, hsCRP, insulin and HOMA- IR score
(Table 4). Over the course of the OGTT the dynamic response
of insulin and C-peptide concentrations were also measured.
Interrogation of these response curves revealed that the insulin
response curves were similar for cluster 2, 3 and 4. However,
cluster 1 displayed a significantly different insulin response

Table 2. Demographics of the cluster groups.

 
Cluster 1
(n=17)

Cluster 2
(n=34)

Cluster 3
(n=20)

Cluster 4
(n=45) P Value

Gender (M/F) 10/7 21/13 7/13 19/26 ns

Age (years) 38 ± 33 33 ± 2 29 ± 21 31 ± 1 4.1 x 10-2

Weight (Kg)
87.3
±5.72,3,4

74.9 ±
2.81

68.0 ±
2.41

73.9 ±
2.21

5.0 x 10-3

BMI (kg.m-2)
29.4 ±
2.12,3,4

24.5 ± 0.8
1

22.7 ± 0.5
1

24.4 ± 0.5
1

3.2 x 10-4

Waist
Circumference
(cm)

95.7 ±
4.92,3,4

83.2 ±
2.41

79.4 ±
1.51

83.4 ±
1.61

2.0 x 10-3

Body fat (%) 30.9 ± 6.5 23.5 ± 1.4 24.5 ± 3.0 26.9 ± 1.6 ns

VO2MAX (ml/min/kg) 36 ± 32 47 ± 21 40 ± 1 41 ± 2 1.7 x 10-2

Data are means ± SEM. P value determined using univariant general linear model
with Bonferroni posthoc analysis for group comparison. The numbers indicate
which cluster groups are significantly different (P< 0.05). ns = non-significant

Table 3. Glucose response during oral glucose tolerance
test for the four metabotypes.

 
Cluster 1
(n=17)

Cluster 2
(n=34)

Cluster 3
(n=20)

Cluster 4
(n=45) P Value

Glucose 0
(mmol/l)

6.4 ± 0.22,3,4 5.42 ± 0.11 5.05 ± 0.21 5.26 ± 0.11,3 5.6 x 10-11

Glucose 10
(mmol/l)

7.76 ±
0.382,3,4

6.92 ±
0.131,3

5.50 ±
0.231,2,4

6.79 ±
0.101,3

7.2 x 10-14

Glucose 20
(mmol/l)

10.47 ±
1.162,3,4

8.11 ±
0.191,3

6.30 ±
0.241,2,4

8.25 ±
0.131,3

1.5 x 10-26

Glucose 30
(mmol/l)

11.20 ±
0.532,3,4

7.43 ±
0.231,3,4

6.47 ±
0.241,2,4

8.97 ±
0.161,2,3

5.2 x 10-30

Glucose 60
(mmol/l)

11.28 ±
0.662,3,4

5.49 ±
0.291,4

5.29 ±
0.311,4

8.37 ±
0.231,2,3

1.2 x 10-42

Glucose 90
(mmol/l)

9.33 ±
0.302,3,4

4.99 ±
0.261,4

4.88 ±
0.281,4

7.92 ±
0.241,2,3

5.3 x 10-38

Glucose 120
(mmol/l)

7.30 ± 0.72,3
4.47 ±
0.221,4

4.57 ±
0.281,4

7.02 ±
0.212,3

4.0 x 10-30

Data are means ± SEM. P value determined using univariant general linear model
with Bonferroni posthoc analysis for group comparison. The letters indicate which
cluster groups are significantly different (P< 0.05).
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curve with a significantly larger area under the curve (AUC)
compared to the other 3 groups. Additionally peak insulin was
achieved at the much later timepoint of 90 minutes and insulin
values at 120 minutes were not restored to baseline values
(Table 5, Figure 1B). Similarly the AUC for the C-peptide
response in cluster 1 was significantly higher (p = 2.6 x 10-6)
than the other clusters (Figure 1C). Moreover, the c-peptide
values for cluster 1 at 120 minutes were significantly higher
than baseline values.

Interrogation of the glucose, insulin, C-peptide and
triacylglycerol response during an OLTT revealed that cluster 1
had a significantly higher AUC (p = 7.1 x 10-4) during the
glucose response to the OLTT, with a peak glucose response
at 60 minutes compared to the other clusters where the
glucose values remained constant (Figure 2A). The insulin
response to the OLTT was significantly different across the
clusters with the highest AUC for cluster 1 (p= 1.7 x 10-3).

Cluster 2 displayed a late insulin response with peak values at
240 minutes. With respect to the C-peptide response to the
OLTT cluster 1 had a significantly higher AUC (p = 2.3 x 10-5)
with a peak value at 180 minutes. The TAG response to the
OLTT was significantly higher in cluster 1 (p= 1.7 x 10-4) (Table
5).

Estimates of insulin resistance and β-cell function
across the four metabotypes

β-cell function was assessed as the ratio of the incremental
insulin to glucose responses over the first 30 minutes during
the OGTT [18] (ΔI30/ΔG30). Insulin resistance is known to be a
critical modulator of the insulin response to a stimulus, with
insulin resistance increasing insulin release [19]. Thus, we also
adjusted ΔI30/ΔG30 for the degree of insulin resistance because
this varied across cluster groups (Figure 3B). Dividing ΔI30/
ΔG30 by the HOMA-IR gave an adjusted measure of β-cell

Figure 1.  Identification of four distinct metabolic responses.  (A) Glucose concentration during the oral glucose tolerance test
(OGTT) across the four cluster groups (B) Insulin concentration during an OGTT across the four cluster groups (C) C-peptide
concentration during an OGTT across the four cluster groups. (D) NEFA concentration during an OGTT across the four cluster
groups. Cluster 1 is represented by a black line and ♦ marker. Cluster 2 is represented by black dashed line and ■ marker. Cluster 3
is represented by a grey dashed line and grey ▲ marker. Cluster 4 is represented by a grey line and a grey ■ marker. All values are
mean ± SEM. The AUC was significantly different across the 4 cluster for glucose (p= 1.6 x 10-16), insulin (p= 1.5 x 10-3) and C-
peptide (p= 2.6 x 10-6).
doi: 10.1371/journal.pone.0072890.g001
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Table 4. Metabolic characteristics of the four metabotypes.

 
Cluster 1
(n=17)

Cluster 2
(n=34)

Cluster 3
(n=20)

Cluster 4
(n=45) P Value

INS (µIU/ml)
15.17 ±
4.472,3,4

9.12 ±
1.25 1

7.90 ±
2.03 1

8.09 ± 0.8
1

1.1 x
10-4

C-peptide (ng/ml)
5.52 ±
1.622,4

2.54 ±
0.371

2.71 ±
1.09

2.46 ±
0.281

1.3 x
10-2

Cholesterol
(mmol/l)

4.79 ±
0.293

4.47 ±
0.14

3.96 ±
0.191

4.48 ±
0.13

4.6 x
10-2

HDL Cholesterol
(mmol/l)

1.19 ± 0.22
1.35 ±
0.05

1.40 ±
0.08

1.40 ±
0.04

ns

Triacylglycerols
(mmol/l)

1.79 ±
0.312,3,4

0.96 ±
0.081

0.77 ±
0.06 1

0.94 ±
0.05 1

2.0 x
10-6

NEFA (mmol/l) 0.65 ± 0.1 0.49 ± 0.1
0.51 ±
0.06

0.59 ±
0.07

ns

hsCRP (mmol/l) 3.1 ± 0.83 1.7 ± 0.4 0.9 ± 0.31 1.5 ± 0.2
1.8 x
10-2

Resistin (ng/ml) 4.67 ± 0.6
4.01 ±
0.21

4.46 ±
0.41

4.42 ±
0.27

ns

TNFα (pg/ml) 5.70 ± 0.83
5.11 ±
0.67

5.30 ±
0.77

5.02 ±
0.43

ns

HOMA-IR
2.71 ±
0.482,3,4

1.95 ±
0.291

1.24 ±
0.16 1

1.70 ± 0.2
1

1.2 x
10-3

Data are means ± SEM. P value determined using univariant general linear model
with Bonferroni posthoc analysis for group comparison. The letters indicate which
cluster groups are significantly different (P< 0.05).

Table 5. Area under the curve during oral glucose tolerance
test and oral lipid tolerance test.

 
Cluster 1
(n=17)

Cluster 2
(n=34)

Cluster 3
(n=20)

Cluster 4
(n=45)

P
Value

GlucoseAUC OGTT
963.2 ±
60.02,3,4

629.8 ±
10.81,3

607.6 ±
28.61,4

747.3 ±
9.51,2,3

1.6 x
10-16

InsulinAUC OGTT
7242.1 ±
1237.42,3,4

4064.4 ±
413.61,4

4236.5 ±
442.31

4607.8 ±
310.91

1.5 x
10-3

C-peptideAUC OGTT
2368.1 ±
345.12,3,4

1175.9 ±
92.21

1212.0 ±
109.71

1368.5 ±
91.01

2.6 x
10-6

NEFAAUC OGTT
44.06 ±
6.8.9

28.79 ±
1.56

23.84 ±
4.25

34.93 ±
1.69

ns

GlucoseAUC OLTT
1670.9 ±
79.52,3,4

1464.9 ±
87.41

1385.9 ±
86.11

1508.1 ±
87.91

7.1 x
10-4

InsulinAUC OLTT
9794 ±
1543.32,3,4

3881.2 ±
563.22,3,4

5423.6 ±
565.21,2,4

945.3 ±
52.31,2,3

1.7 x
10-3

C-peptideAUC OLTT
3598.4 ±
569.32,3,4

1171.5 ±
88.31

1483 ±
78.41

972.4 ±
68.31

2.3 x
10-5

TriacylglycerolAUC

OLTT
240.92 ±
15.95 2,3,4

156.03 ±
15.541

127.50 ±
13.151

139.60 ±
12.481

9.4 x
10-4

NEFAAUC OLTT
589.14 ±
53.59

372.65 ±
49.79

311.70 ±
90.75

375.10 ±
38.77

1.7 x
10-4

Data are means ± SEM. P value determined using univariant general linear model
with Bonferroni posthoc analysis for group comparison. The letters indicate which
cluster groups are significantly different (P< 0.05).

function (ΔI30/ΔG30/HOMA-IR) that accounted for variation in
insulin resistance (Figure 3C). Application of this measure
across the cluster groups revealed that cluster 1 had the lowest
β-cell function and that cluster 2 had the highest. In addition,
the oral disposition index (DI) was assessed as previously
described [20]. This provides a measure of β-cell function
adjusted for insulin sensitivity and is predictive of diabetes. As
with the other measures of β-cell function the DI was lowest for
cluster 1.

Discussion

In recent years the use of the response to a challenge of
homeostasis has become an important tool in nutrition
research, as challenging the individual is much more
informative than static homeostatic measures [21–23]. The
present work extended this concept by developing a metabolic
phenotyping approach based on the glucose response to a
standard OGTT. This phenotyping approach identified 4
metabotypes consisting of 4 different responses to an OGTT.
Cluster 1 was of particular interest, with this metabotype having
the highest BMI, triacylglycerol, hsCRP, c-peptide, insulin and
HOMA- IR score and lowest VO2max. level. Cluster 1 also had a
reduced beta cell function and a differential response to insulin
and c-peptide during an OGTT. Furthermore even though not
modeled, cluster 1 displayed a differential response to the
OLTT. Overall, this approach successfully identified metabolic
phenotypes and could be used to identify at risk phenotypes or
metabolically disturbed phenotypes.

The phenotyping approach used here is based on modeling
the response curves and previous data has shown that there is
biological meaning in the shape of the curve during a challenge
test. Tschritter and colleagues [24] confirmed that the plasma
glucose shape during an OGTT was dependent on both
glucose tolerance and gender with genetic factors also playing
a role. The concept of a “shape” index based on the extent and
the direction of the plasma glucose change in the second hour
during an OGTT emerged from this work. Application of this,
lead the authors to conclude that the “shape” index may be a
useful metabolic screening parameter in epidemiological and
genetic association studies. Further studies have also shown
the biological importance of the shape of the curve during an
OGTT. Tura and colleagues [25] analysed the shape of the
glucose, insulin, and c-peptide curves during a 3-h OGTT and
reported that the majority of the glucose curves were
monophasic and that although complex shapes were less
frequent they were not rare. Furthermore there was a tendency
towards the amelioration of the metabolic condition with
increasing complexity of the shape, as indicated by lower
glucose concentrations, improved insulin sensitivity and β-cell
function. More recently, Krishnan and colleagues assessed the
differential response to a low and high glycemic meal and
identified 3 response groups [26]. Although some of these
groups were small (n=3) it adds weight to the method
developed in this paper and strengthens the proposed utility of
this metabotype approach.

Cluster 1 is of particular interest and displayed a very
different response for glucose, insulin and c-peptide during the

Differential Responses to an OGTT
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glucose challenge compared to the other 3 metabotypes. To
probe the basis for this response we estimated the β-cell
function and insulin resistance [18] of each of the 4 clusters.
Cluster 1 had the lowest β-cell function, suggesting that β-cell
dysfunction, is present in this phenotype and may be the
underlying driver of the response curves. Identification of

subjects with sub-functional β-cells is of clinical relevance
considering that previous work has suggested that β-cell
function is a critical component in the pathogenesis of type 2
diabetes [27–30]. Additionally the oral disposition index was
lowest in this group which has been demonstrated to be
predictive of development of diabetes over 10 years [20].

Figure 2.  Differential responses to an OLTT.  (A) Glucose concentration during the OLTT test across the four cluster groups (B)
Insulin concentration during the OLTT across the four cluster groups (C) C-peptide concentration during the OLTT across the four
cluster groups. (D) Triacylglycerol concentration during the OLTT across the four cluster groups. (E) NEFA concentration during oral
lipid tolerance test across the four cluster groups. Cluster 1 is represented by a black line and ♦ marker. Cluster 2 is represented by
black dashed line and ■ marker. Cluster 3 is represented by a grey dashed line and ▲ marker. Cluster 4 is represented by a grey
line and a ■ marker. All values are mean ± SEM. The AUC was significantly different across the 4 cluster for glucose (p= 7.1 x 10-4),
insulin (p= 1.7 x 10-3), C-peptide (p= 2.3 x 10-5), triacylglycerols (p= 9.4 x 10-4), and NEFA (p= 1.7 x 10-4).
doi: 10.1371/journal.pone.0072890.g002

Differential Responses to an OGTT
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Cluster 1 had higher concentrations of triacylglycerols
compared to the other three clusters and interestingly cluster 1
also displayed a differential response to the OLTT. Our results
are in agreement with the work of Harano et al. [31] and
Wybranksa et al. [32], which pointed to a strong correlation
between insulin output following both a glucose challenge and
a high-fat challenge. However, in contrast to these studies the
carbohydrate content was minimal in the present study and this
response to glucose and insulin after the lipid challenge could
be defined to one cluster group/metabotype. The elevated
response in cluster 1 indicated an inherent metabolic
dysfunction in cluster 1 and demonstrates that the
metabotyping approach could be used to define individuals at
risk.

The raised baseline and response concentrations of the
triacylglycerols in cluster 1 is interesting in the context of β-cell
dysfunction: cluster 1 also had the lowest β-cell function. In
recent years a number of papers have clearly demonstrated
that raised concentrations of free fatty acids results in β-cell
toxicity by altering gene expression, function, survival and
growth [33–40]. From this work the term lipotoxicity has
emerged. Elevated free fatty acids in the presence of high
glucose concentrations results in glucolipotoxicity and a
number of mechanisms have been proposed to explain the
emergence of glucolipotoxic conditions including oxidative
stress, ER stress, cytokine induced apoptosis and hypoxia.
Although NEFA concentrations were not significantly different
across the clusters, cluster 1 had higher triacylglycerol
concentrations and triacylglycerols are a key factor for the

Figure 3.  Insulin resistance and β-cell function across the four metabotypes.  (A) Insulin resistance determined by the HOMA-
IR (B) β-cell function quantified as ∆I30/∆G30 (C) (∆I30/∆G30)/HOMA-IR and (D) Disposition Index determined as (∆I30/∆G30) x 1/
fasting insulin from an OGTT in 116 individuals. Cluster 1- White bar (n=17), Cluster 2 – Dark grey bar (n =34), Cluster 3 – Black bar
(n = 20) and Cluster 4 – Light grey bar (n =45). As glucose tolerance declined, insulin resistance increased and β-cell function
deteriorated. HOMA-IR for cluster 1 was significantly different to cluster 2 (p<0.001), cluster 3 (p<0.001) and cluster 4 (p<0.001).
Cluster 1 β-cell function quantified as ∆I30/∆G30 was significantly different to cluster 2 (p<0.05) and Cluster 1 β-cell function
normalised to HOMA-IR quantified as (∆I30/∆G30)/HOMA-IR was significantly different to cluster 2 (p<0.05). HOMA-IR was
calculated as follows: Fasting insulin pmol/l x fasting glucose mmol/L)/ 22.5.
doi: 10.1371/journal.pone.0072890.g003
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development of impaired glucose-stimulated insulin secretion
(GSIS) [41,42]. Thus the increased concentrations of
triacylglycerols in cluster 1 may result in a lipotoxic
environment and impaired GSIS in the β-cells and therefore
contribute to the decreased insulin sensitivity of the subjects
within this cluster.

In conclusion, we have developed the concept of
metabotyping encompassing the glucose response during an
OGTT and demonstrate clearly that we can define distinct
metabolic groups within a study population. Such an approach
clearly identified an at risk phenotype within the group.
Tailoring lifestyle and dietary advice to these metabotype
groups is the next step in promoting the use of such an
approach.
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