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Abstract

Background: The distribution and deposition of fat tissue in different parts of the body are the key factors affecting

the carcass quality and meat flavour of chickens. Intramuscular fat (IMF) content is an important factor associated

with meat quality, while abdominal fat (AbF) is regarded as one of the main factors affecting poultry slaughter

efficiency. To investigate the differentially expressed genes (DEGs) and molecular regulatory mechanisms related to

adipogenic differentiation between IMF- and AbF-derived preadipocytes, we analysed the mRNA expression profiles

in preadipocytes (0d, Pre-) and adipocytes (10d, Ad-) from IMF and AbF of Gushi chickens.

Results: AbF-derived preadipocytes exhibited a higher adipogenic differentiation ability (96.4% + 0.6) than IMF-

derived preadipocytes (86.0% + 0.4) (p < 0.01). By Ribo-Zero RNA sequencing, we obtained 4403 (2055 upregulated

and 2348 downregulated) and 4693 (2797 upregulated and 1896 downregulated) DEGs between preadipocytes and

adipocytes in the IMF and Ad groups, respectively. For IMF-derived preadipocyte differentiation, pathways related to

the PPAR signalling pathway, ECM-receptor interaction and focal adhesion pathway were significantly enriched. For

AbF-derived preadipocyte differentiation, the steroid biosynthesis pathways, calcium signaling pathway and ECM-

receptor interaction pathway were significantly enriched. A large number of DEGs related to lipid metabolism, fatty

acid metabolism and preadipocyte differentiation, such as PPARG, ACSBG2, FABP4, FASN, APOA1 and INSIG1, were

identified in our study.

Conclusion: This study revealed large transcriptomic differences between IMF- and AbF-derived preadipocyte

differentiation. A large number of DEGs and transcription factors that were closely related to fatty acid metabolism,

lipid metabolism and preadipocyte differentiation were identified in the present study. Additionally, the

microenvironment of IMF- and AbF-derived preadipocyte may play a significant role in adipogenic differentiation.

This study provides valuable evidence to understand the molecular mechanisms underlying adipogenesis and fat

deposition in chickens.
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Background
Chicken is generally accepted as one of the main protein

sources worldwide. In the last several decades, meat qual-

ity has decreased as a result of genetic selection for growth

rate and feed conversion. Intramuscular fat (IMF) content,

an important factor influencing meat quality, contributes

to multiple meat quality characteristics, such as flavour,

tenderness and juiciness [1–3]. Abdominal fat (AbF) is an

important carcass trait in chickens. A higher growth rate

induces larger fiber diameters and lower IMF deposition,

which severely deteriorates the quality of meat [4, 5].

However, the overemphasis on selection for a rapid

growth rate leads to excessive fat accumulation, especially

AbF accumulation [6]. Excessive fat is often discarded as

waste [6–8]. Reducing the levels of AbF and increasing the

levels of IMF have therefore become a major breeding

goals in the chickens industry [6, 9].

Previous studies have indicated that adipose tissues from

different locations display unique physiological and bio-

chemical characteristics [10–12]. In addition, glucose

utilization and lipid metabolism mechanisms and hor-

mone sensitivities are different among tissues from differ-

ent locations [13–16]. IMF has specific biological features

compared with fat from other locations. Previous studies

have suggested that AbF has higher triglyceride (TG)

levels than IMF tissue [17–19]. Hrdinka C et al. demon-

strated that the fatty acid composition of AbF differs sig-

nificantly from that of IMF [20]. Zhou et al. found that

dietary supplementation with 3% conjugated linoleic acid

(CLA) decreased AbF accumulation but increased IMF

content [21]. Leng et al. indicated that a desirable broiler

line with high IMF content but low AbF content could be

obtained by genetic selection [6]. This may be because

AbF deposition and IMF deposition are subject to differ-

ent regulatory mechanisms. However, the mechanisms

underlying regional differences in chicken adipogenesis re-

main unknown.

In the current study, Ribo-Zero RNA-Seq was used to

systematically identify differentially expressed genes

(DEGs), mRNAs (DEMs) and novel genes (DENGs) and

different pathways between preadipocytes and adipocytes

of IMF and AbF. These data may contribute to a more

thorough understanding of tissue-specific adipogenic dif-

ferentiation and poultry meat quality.

Results
Ribo-zero RNA-Seq of different chicken different adipose

tissue-derived preadipocytes and adipocytes

Intramuscular and abdominal preadipocytes were isolated

and cultured in growth medium until they reached 80–

90% confluence (Fig. 1a). Microscopy showed that the

IMF preadipocytes shared the same fibroblast-like morph-

ology as the AbF preadipocytes (Fig. 1b). To construct

intramuscular and abdominal adipogenic differentiation

models, MDI medium supplemented with oleic acid was

used for adipogenic differentiation. After induction with

adipogenic agents for 10 days, chicken preadipocytes read-

ily differentiated into mature adipocytes, and lipid droplets

were visible under a microscope after 10 days of induction

(Fig. 1b). AbF-derived preadipocytes exhibited a higher

adipogenic differentiation ability (96.4% + 0.6) than IMF-

derived preadipocytes (86.0% + 0.4) (p < 0.01). The expres-

sion level of the adipogenic marker genes peroxisome

proliferator-activated receptor γ (PPARγ, PPARG) and

fatty acid binding protein 4 (FABP4, ap2) significantly in-

creased with adipogenic differentiation (p < 0.01) (Fig. 1c).

Pearson correlation analysis showed that the gene expres-

sion correlation coefficient within each group was notice-

ably higher than that between the groups, reflecting a

good linear correlation between the independent samples

of preadipocytes or adipocytes in the IMF and AbF groups

(Pearson correlation coefficient, r = 0.98) (Fig. 1d). Princi-

pal component analysis (PCA) also showed global differ-

ences among the preadipocyte, adipocyte, IMF and AbF

groups (Fig. 1e). All evidence suggested that our data was

repeatability and reproducibility.

Global analysis of gene expression patterns in chicken

adipocytes

As shown in Table 1, 963,374,122 raw reads were pro-

duced from 8 cDNA libraries. We identified a consider-

able number of genes in preadipocytes and adipocytes

derived from chicken breast muscle and abdominal tis-

sues. The percentage of clean reads in each library ranged

from 94.21 to 96.09%. The mapping percentage of the 8

samples ranged from 88.82 to 93.42%. We found that the

genomic loci of the genes were widely distributed across

chromosomes (Fig. 2a). The sequencing depth was satu-

rated at 68M reads for each library (Fig. 2b). The mapping

percentages of the different samples on different regions

of the genome are displayed in Fig. 2c. More than 75% of

the reads were mapped to gene regions. In preadipocytes

and adipocytes derived from breast muscle and abdominal

tissues, less than 0.1% of the reads were mapped to spli-

cing sites of the genome.

DEG, DEM and DENG profiles between different chicken

adipose tissue-derived preadipocytes and adipocytes

To identify potential candidate genes related to adipogenic

differentiation, we examined the expression level of genes

in preadipocytes and adipocytes. A total of 2039 genes

were found to be differentially expressed between preadi-

pocytes and adipocytes in both the IMF and AbF groups

(Fig. 3a). As expected, we noticed that large numbers of

genes or transcription factors related to adipogenic differ-

entiation and lipid metabolism were differentially

expressed, including peroxisome proliferator-activated re-

ceptor γ (PPARG), bone morphogenetic protein 4 (BMP4),
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fatty acid synthase (FASN), adiponectin, C1Q and collagen

domain-containing (ADIPOQ), perilipin 2 (PLIN2), lipin 1

(LPIN1), and carnitine palmitoyltransferase 1A (CPT1A)

(Fig. 3b). The ten most abundant DEGs between preadi-

pocytes and adipocytes in the IMF and AbF groups are

presented in Table 2. Furthermore, we determined the

global gene expression profiles in preadipocytes and adipo-

cytes between different groups. The number of differentially

expressed genes (DEGs) (Additional file 1: Table S1),

mRNAs (DEMs) (Additional file 2: Table S2) and novel

genes (DENGs) (Additional file 3: Table S3) between the dif-

ferent groups are shown in Fig. 4a. As illustrated in Fig. 4b,

Table 1 Characteristics of the reads from eight chicken adipocyte libraries

Sample IDa Raw reads Clean reads Clean ratiob Mapping ratioc Q20 ratio (%)

AbAd1 75,595,006 72,548,947 95.97% 92.85% 95.87

AbAd2 126,110,450 120,496,454 95.55% 93.42% 96.01

AbPre1 114,650,344 109,068,167 95.13% 92.82% 95.75

AbPre2 119,804,518 115,123,603 96.09% 92.37% 96.04

IMAd1 100,975,170 96,608,787 95.68% 89.38% 96.10

IMAd2 107,859,100 103,169,969 95.65% 88.45% 95.88

IMPre1 120,678,792 113,687,015 94.21% 92.47% 95.64

IMPre2 96,725,572 92,307,799 95.43% 88.82% 96.24

aAbAd and IMAd respectively represented ADF- and IMF-derived adipocyte groups; AbPre and IMPre respectively represented ADF- and IMF-derived preadipocyte

groups. bClean ratio = (Clean reads/Raw reads)%; cMapping ratio = Mapped reads/All reads

Fig. 1 Ribo-Zero RNA-Seq of chicken preadipocytes and adipocytes. a Procedure for inducing the differentiation of abdominal (Ab) and

intramuscular (IM) preadipocytes (upper panel). Cells were collected for RNA-Seq at day 0 (Pre) and 10 days (Ad) (lower panel). Each stage

included two biological replicates. Basal medium: DMEM/F12 + 10% FBS; differentiation induction medium: basal medium + DMI + oleate;

maintenance medium: basal medium + insulin. The differentiation induction medium was replaced with maintenance medium after 2 days, and

the maintenance medium was in turn replaced with basal medium at day four. b Oil Red O staining of preadipocytes (0d) and adipocytes (10d)

in the IMF and AbF groups. Arrow indicates cytosolic lipid droplets. c qRT-PCR analysis of the adipogenic markers PPARG and FABP4 to confirm

the identity of the chicken preadipocytes (mean ± SE, n = 3, **p≤ 0.01). d Heatmap showing the results of correlation analyses between different

samples. A correlation coefficient closer to 1 indicates a higher similarity between samples. e PCA of different samples based on the normalized

expression levels of all expressed genes
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the expression levels of the genes of the two different sam-

ples exhibited a significant positive correlation (R2 > 0.81,

p < 0.01) (Fig. 4b). We found that 2742 DEGs were upregu-

lated and 1705 DEGs were downregulated in the AbAd

group compared with the IMAd group, that 3437 DEGs

were upregulated and 1310 DEGs were downregulated in

the AbPre group compared with the IMPre group, that

2797 DEGs were upregulated and 1896 DEGs were down-

regulated in the AbPre group compared with the AbAd

group, and that 2055 DEGs were upregulated and 2348

DEGs were downregulated in the IMPre group compared

with the IMAd group (Fig. 4c).

Functional enrichment analysis of DEGs involved in the

adipogenic differentiation of chicken preadipocytes

To investigate the functions of the DEGs in chicken adi-

pogenic differentiation, GO (Additional file 4: Table S4)

and KEGG pathway (Additional file 5: Table S5) analyses

were performed in the present study. Our results sug-

gested that the DEGs in the AbPre vs AbAd and IMPre

vs IMAd comparisons were significantly enriched in

ECM-receptor interaction, the PPAR signalling pathway,

and focal adhesion (Fig. 5). Interestingly, we found that

ABC transporters, glutathione metabolism and fatty acid

biosynthesis were significantly enriched for the IMF

groups, while steroid biosynthesis and the p53 signalling

pathway were significantly enriched for the AbF groups.

The DEGs in the IMPre vs AbPre and IMAd vs AbAd

comparisons were significantly enriched in the focal ad-

hesion, ECM-receptor interaction, and fatty acid metab-

olism pathways, among others (Fig. 5). To identify the

gene expression patterns associated with adipogenic dif-

ferentiation in both IMF- and AbF-derived adipocytes, the

DEGs shared between the IMF group and the AbF group

were analysed in the present study. Our results suggested

that the shared DEGs were enriched for the metabolism,

cellular processes and translation terms (Fig. 6a) and for

pathways including ECM-receptor interaction, DNA repli-

cation, the cell cycle and the PPAR signalling pathway

(Fig. 6b). Furthermore, we found that the shared downreg-

ulated DEGs (number: 750) were significantly enriched in

the cell cycle, focal adhesion and purine metabolism path-

ways, while the upregulated DEGs (number: 792) were sig-

nificantly enriched in the PPAR signalling pathway, the

adipocytokine signalling pathway and the retinol metabol-

ism pathway (Fig. 7).

Differentially expressed transcription factors and their

potential interacting genes involved in adipogenic

differentiation

To identify the differential gene expression patterns of tran-

scription factors in the context of adipogenic differentiation,

Fig. 2 Global analysis of gene expression in chicken adipocytes. a Circos plot showing the distributions of the genes in the different samples on

different chromosomes. From the inside circle to the outer circle: AbAd1, AbAd2, AbPre1, AbPre2, IMAd1, IMAd2, IMPre1, and IMPre2. b Saturation

analysis of the transcriptome sequencing data from eight chicken adipocyte libraries. c Distribution of the mapped reads on different regions of

the chicken reference genome
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we compared the expression levels of transcription factors

(TFs). Interestingly, our results suggested that most TFs

shared the same gene expression patterns in both the IMF

and AbF groups, while KLF9 and MYOG showed signifi-

cantly different expression patterns between the groups

(Fig. 8). Furthermore, as shown in Fig. 9, the TFs and genes

related to adipogenic differentiation were significantly posi-

tively correlated (r > 0.86, p < 0.01).

Genes expressed in a fat depot-specific manner and the

validation of the DEGs by qRT-PCR

To identify whether gene expression is fat depot-specific

(Fig. 10), the expression levels of genes related to adipo-

genic differentiation at different differentiation stages and

in different groups (IMF and AbF) were compared. Our

results suggested that most genes have different gene ex-

pression patterns during the adipogenic differentiation

process. Most genes reached the highest expression levels

after 6 days of induced differentiation in the AbF group

and after 8 days in the IMF group (Fig. 11). To confirm

the results from RNA-Seq, qRT-PCR was performed in

the present study. Our qRT-PCR results were consistent

with the RNA-Seq results (Additional file 7: Figure S1).

Integrated analysis of DEG-pathway network between

different fat-derived chicken preadipocytes and

adipocytes

To further understand the adipogenic differentiation-

regulated mechanisms of different fat-derived chicken

preadipocytes, we visualized the integrated DEG-

pathway networks for the IMF (Fig. 12a) and AbF

(Fig. 12b) groups. Our results showed that a large num-

ber of DEGs in the IMF group were mainly enriched in

the PPAR signaling pathway, fatty acid biosynthesis,

focal adhesion and ECM-receptor interaction (Fig. 12a).

For the AbF group, we noticed that the DEGs were

mainly enriched in the PPAR signaling pathway, focal

adhesion, ECM-receptor interaction, steroid biosynthesis

and the p53 signaling pathway (Fig. 12b).

Fig. 3 Differentially expressed genes in chicken adipocytes. a Heatmap of the DEGs during adipogenesis for different chicken adipose tissue-

derived adipocytes. b Heatmap of the DEGs associated with lipid metabolism in the present study
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Table 2 The top 10 most abundantly DEGs between preadipocyte and adipocyte in IMF and AbF groups

Groups Gene ID Gene Name Pre Ad log2FC Qvalue Pre VS Ad

IMF ENSGALG00000043064 EXFABP 2.45 6303.41 −11.33 0 DOWN

ENSGALG00000009920 COCH 0.06 134.63 −11.24 0 DOWN

ENSGALG00000030886 PTGDS 0.35 683.12 −10.95 0 DOWN

ENSGALG00000007114 APOA1 4.00 928.17 −7.86 9.94E-310 DOWN

ENSGALG00000008439 CD36 0.95 158.48 −7.38 7.80E-255 DOWN

ENSGALG00000015090 PLIN2 84.52 1333.09 −3.98 1.92E-123 DOWN

ENSGALG00000035345 TXNRD1 46.86 705.14 −3.91 3.05E-125 DOWN

ENSGALG00000042388 LAMA2 0.11 32.04 −8.24 2.94E-265 DOWN

ENSGALG00000015433 ABCA1 0.65 58.08 −6.49 4.59E-247 DOWN

ENSGALG00000011511 CKB 4.91 317.33 −6.02 2.22E-207 DOWN

AbF ENSGALG00000007114 APOA1 132.07 1627.15 −3.62 6.80E-06 DOWN

ENSGALG00000009700 PDK4 68.41 684.73 −3.32 6.93E-05 DOWN

ENSGALG00000030025 FABP4 736.89 2812.84 −1.93 6.13E-11 DOWN

ENSGALG00000015090 PLIN2 296.16 1091.98 −1.88 4.11E-10 DOWN

ENSGALG00000003580 MMP2 143.04 498.55 −1.80 3.33E-09 DOWN

ENSGALG00000005974 COL6A1 266.56 595.62 −1.16 6.90E-05 DOWN

ENSGALG00000009626 THBS1 1122.14 556.32 1.01 3.56E-02 UP

ENSGALG00000040896 FASN 156.98 68.51 1.20 3.80E-04 UP

ENSGALG00000005678 FLNB 537.05 141.80 1.92 4.63E-07 UP

ENSGALG00000003578 FN1 984.39 254.02 1.95 5.53E-11 UP

Fig. 4 DEGs, DEMs and DENGs among four groups. a Venn diagram of the DEGs, DEMs and DENGs among four groups. b Genes expression

correlation between two groups. c Bar plot of the DEGs that were upregulated or downregulated among four groups
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Discussion
Fat deposition is mainly dependent on the proliferation,

differentiation and maturation of preadipocytes [22]. IMF

content is an important factor that contributes to the ten-

derness, juiciness and flavour of meat and thus affects

meat quality. High AbF content causes low slaughter effi-

ciency [5, 7]. It is known that IMF has high genetic corre-

lations with abdominal fat weight (AFW) and moderate

correlations with AF percentage (AFP) in chickens [23].

Previous studies have suggested that the proliferation and

differentiation abilities of genes involved in lipid

metabolism are dramatically lower in intramuscular adi-

pocytes (IMAs) than in subcutaneous adipocytes (SAs)

[11, 14, 24–26]. In the present study, lipids accumulated

in chicken IMF and AbF preadipocytes at the late stage of

differentiation. The oil red O staining results and the ex-

pression levels of two well-known adipogenic markers

demonstrated that the model of adipocyte differentiation

was successfully established. We noticed that the accumu-

lation of lipids in chicken AbF adipocytes was higher than

that in IMF adipocytes, consistent with the findings of

previous studies in pigs [11, 27, 28].

Fig. 5 KEGG pathway enrichment analysis of the DEGs among four groups
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Fig. 6 KEGG classification (a) and enrichment (b) analysis of the DEGs between AbF- and IMF-derived adipocytes during adipogenesis

Fig. 7 KEGG pathway enrichment analysis of the up- and downregulated DEGs shared in both the IMF and AbF groups during adipogenesis
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Ribo-Zero RNA-Seq has been applied as an efficient

method to explore transcriptional characteristics be-

cause it can capture both poly(A) + and poly(−) tran-

scripts [9, 29, 30]. However, to our knowledge, none of

the previous studies were carried out to compare gene ex-

pression profiles between IMF and AbF adipocytes, espe-

cially in chickens. The process by which preadipocytes

differentiate into mature adipocytes is complex and is regu-

lated by various transcription factors [31]. Previous studies

have identified a large number of transcription factors, in-

cluding CCAAT/enhancer-binding protein (C/EBP), per-

oxisome proliferator-activated receptors (PPARs) and sterol

regulatory element-binding protein (SREBP) [32–35].

In this study, we detected global gene expression pro-

files in preadipocytes and adipocytes, providing large

amounts of information for further studies on the regu-

latory mechanisms underlying poultry adipogenic differ-

entiation and tissue-specific fat deposition. Our results

revealed that many genes related to lipid metabolism,

such as matrix metallopeptidase 2 (MMP2), extracellular

fatty acid-binding protein (EXFABP), CD36, prostaglan-

din D2 synthase (PTGDS), chondroadherin (CHAD),

laminin alpha 2 (LAMA2), bone morphogenetic protein

4 (BMP4) and collagen type VI alpha 1 chain (COL6A1),

were predominantly expressed in IMF adipocytes,

whereas apolipoprotein A1 (APOA1), fatty acid-binding

protein 4 (FABP4), perilipin 2 (PLIN2), fatty acid synthe-

tase (FASN), pyruvate dehydrogenase kinase 4 (PDK4),

collagen type IV alpha 1 chain (COL4A1) and glycerol-

3-phosphate dehydrogenase 1-like 2 (GPD1L2) were

highly expressed in AbF adipocytes; these findings sug-

gest that these genes might be involved in tissue-specific

fat deposition in chickens. Previous studies have sug-

gested that transcription factors play important roles in

the regulation of adipocyte differentiation [36–39]. Tran-

scription factors, such as Kruppel-like factors (KLFs)

(KLF9, KLF6 and KLF15), CCAAT enhancer-binding pro-

tein alpha (CEBPA), forkhead box O3 (FOXO3), myogenin

(MYOG), sterol regulatory element-binding transcription

factor 1 (SREBF1), nuclear receptor subfamily 3 group C

member 2 (NR3C2), GATA-binding protein 2 (GATA2)

and myogenic differentiation 1 (MYOD1), were also differ-

entially expressed between preadipocytes and adipocytes

in the different adipose tissues. KLFs and GATAs are tran-

siently induced to control the preadipocyte-to-adipocyte

transition [38, 40–42]. Furthermore, Jiang et al. suggested

that NR3C1/4 may participate in intramuscular adipo-

genic differentiation by binding to glucocorticoid response

elements in the promoters of glucocorticoid-responsive

genes to activate their transcription and by regulating

other transcription factors [43–45].

In the present study, functional annotation analysis

of the DEGs revealed that these genes play important

roles in some lipid metabolism- and adipogenic

differentiation-related pathways, such as the PPAR

signalling pathway, ECM-receptor interaction and

fatty acid metabolism [34, 43, 46]. PPARG, the most

adipocyte-specific and adipogenic member of the

PPAR family, is mainly expressed in adipose tissue

and plays an important role in lipid metabolism and

adipocyte differentiation [47, 48]. The extracellular

matrix (ECM) plays an important role in the regula-

tion of proliferation, adipogenic differentiation and

migration of preadipocytes [43]. Adipocyte differenti-

ation can also be affected by fatty acid metabolism

via the regulation of transcription factors [34, 49].

We noticed that APOA1, CD36, LAMA2, CHAD, MMP1,

RRM2, VWF and PIK3R5 were the most upregulated genes

during the adipogenic differentiation processes between the

Fig. 8 Hierarchical clustering of the transcription factors differentially

expressed during adipogenesis in the IMF and AbF groups
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Fig. 9 Correlation analysis of the expression levels of adipogenic differentiation-related genes

Fig. 10 Integrative Genomics Viewer (IGV) tracks displaying the DEGs with the same (a) and different (b) gene expression patterns between the

different groups

Zhang et al. BMC Genomics          (2019) 20:743 Page 10 of 15



IMF and AbF groups. Therefore, these genes may be in-

volved in the positively regulating position specificity fat de-

position. In addition, the differences in secretory functions

and hormone sensitivities between IMF and AbF might be

caused by the position-specific regulation of adipose tissue

in poultry. Further studies are necessary for to elucidate the

Fig. 11 mRNA expression levels of the DEGs during adipogenesis in IMF-derived adipocytes (upper panel) and AbF-derived adipocytes (lower

panel) (mean ± SE, n = 3, **p≤ 0.01, *p≤ 0.05)
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associated cell microenvironments and paracrine signaling

pathways and the effects of muscle-specific regulation on

adipose tissue in poultry.

Conclusions
In conclusion, our current study showed that abdominal

fat (AbF) preadipocytes accumulate more lipids than

intramuscular fat (IMF) preadipocytes. This study presents

the first analysis of gene expression during the differenti-

ation of intramuscular and abdominal preadipocytes in

chickens. A total of 2039 DEGs were identified by a pair-

wise comparison of preadipocytes at different stages of dif-

ferentiation. The DEGs were found to be involved in the

PPAR signalling pathway, fatty acid biosynthesis, ECM-

receptor interaction and focal adhesion, consistent with

previous reports on preadipocyte differentiation in chick-

ens. These DEGs and pathways might play significant

roles in intramuscular preadipocyte differentiation in

chickens. Our findings provide a solid foundation for fu-

ture studies on the molecular mechanisms underlying

tissue-specific fat deposition and on strategies for the im-

provement of meat quality in poultry.

Methods
Ethics statement

All animal experiments were performed according to the

guidelines of Henan Agricultural University (Institutional

Animal Care and Use Committee (IACUC), Permit No.

11–0085, Date: 06–2011). All efforts were made to decrease

animal suffering. All birds were euthanized by intraperito-

neal injection of pentobarbital (Sigma, St. Louis, MO, USA)

(1.0mg/mL in methanol) at a dose of 45mg/kg of body

weight. The Gushi chickens were provided by the Animal

Center of Henan Agricultural University. All birds were

raised in the same environmental conditions with ad libi-

tum water and food.

Primary preadipocyte isolation and culture in vitro

Primary preadipocytes were isolated from the breast mus-

cles and abdominal fat of two-week-old Gushi chickens

according our previously described method [50]. In brief,

breast muscle and abdominal adipose tissues were sepa-

rated from the body of each chicken under sterile condi-

tions. The tissues were washed using phosphate-buffered

saline (PBS) supplemented with penicillin (100 units/mL)

and streptomycin (100 μg/mL). The washed tissue was cut

into 1-mm3 pieces and then digested with collagenase type

II (1mg/mL, Solarbio, Beijing, China) at 37 °C for 90min.

The digested cell suspension was filtered using 200- and

500-mesh screens to separate the stromal-vascular frac-

tion from undigested tissue and mature adipocytes, and

the fraction was then centrifuged at 1000 x g for 5min.

Preadipocytes were plated onto a 6-well culture plate at a

density of 1 × 105 cells/mL and maintained in Dulbecco’s

modified Eagle’s medium/Ham’s nutrient mixture F-12

(DMEM/F12) supplemented with 10% FBS (Gibco,

Beijing, China) with penicillin (100 units/mL) and strepto-

mycin (100 μg/mL) in a humidified atmosphere with 5%

(v/v) CO2 at 37 °C. For intramuscular preadipocytes, the

differential adherence method was used to separate them

from other cells. The basal medium was replaced with

fresh medium after 2 hours.

Fig. 12 Integrated analysis of the gene-pathway networks between preadipocytes and adipocytes in the IMF (a) and AbF (b) groups
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Preadipocyte adipogenic differentiation assay

Preadipocytes were cultured in 6-well plates until they

reached 80–90% confluence. For adipogenic differenti-

ation, upon reaching confluence (0d), the cells were ex-

posed to differentiation medium consisting of basal

medium (DMEM/F12 with 10% FBS) supplemented with

50 nM insulin, 1 μM dexamethasone, 0.5 mM 3-isobutyl-

1-methylxanthine (DMI) and 300 μM oleate (dissolved

in DMSO). The cells were collected at day 0, 2, 4, 6, 8,

and 10 after induction. Each stage included three bio-

logical replicates (n = 3, three wells of cells were col-

lected for every 2 days). The cell samples were stored at

− 80 °C until use.

RNA isolation, library preparation and sequencing

Total RNA was extracted using TRIzol reagent (TaKaRa,

Dalian, China). RNA was quantified with a Qubit 2.0

(Thermo Fisher Scientific, Waltham, MA, USA) and a

Nanodrop ND-2000 spectrophotometer (Thermo Fisher

Scientific). Qualified total RNA was further purified with

an RNA Clean XP Kit (Beckman Coulter, Inc., Kraemer

Boulevard, Brea, CA, USA) and an RNase-Free DNase

Set (QIAGEN, GmBH, Germany). RNA purity was

assessed using an Agilent Bioanalyzer 2100 (Agilent

Technologies, Santa Clara, CA, USA) with a threshold

RNA integrity number > 8. The total RNA was stored at

− 80 °C until use. After RNA samples were selected for

library construction and deep sequencing, the rRNA was

removed, and the mRNA was enriched using magnetic

beads with oligo (dT) primers. RNA sequencing libraries

were generated with a VAHTS™ Total RNA-seq (H/M/

R) Library Prep Kit for Illumina® following the manufac-

turer’s instructions. The quality of all libraries was con-

firmed using the Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). The libraries were

then analysed by using one lane of a 150 + 150-nt

paired-end Illumina HiSeq 2500 run with Illumina se-

quencing primers. The quality of the raw data was ex-

amined using FastQC.

Read mapping and transcriptome assembly

The splice-mapping algorithm of HISAT2 (2.0.4) [51]

was used to perform genome mapping of the pre-

processed reads. The clean data were mapped to the

Gallus gallus reference genome (GGA5) with HISAT2

(2.0.4), and the default parameters were used.

Analysis of differential gene expression patterns

To determine the differentially expressed genes, Cuffdiff

[52] was used to calculate the expected number of Frag-

ments Per Kilobase of exon model per Million mapped

reads (FPKM) for each gene. StringTie (1.3.0) [53, 54]

was used for quantitative analysis of the transcripts to

obtain the count numbers and FPKM values of the

transcripts in each sample. EdgeR [55] was used for dif-

ferential gene or mRNAs analysis between samples. For

biological replicates, transcripts or genes with a Qvalue

(adjusted p value) < 0.05 and a |fold change| ≥ 2 were de-

fined as differentially expressed genes (DEGs) or mRNAs

(DEMs) between the two groups.

Functional enrichment analysis of the differentially

expressed genes (DEGs)

Gene Ontology (GO) enrichment analysis was per-

formed with the DAVID database (https://david.ncifcrf.

gov/). For Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis, the differentially expressed genes or

transcripts were analyzed on the KEGG online website

(http://www.genome.jp/kegg/). The gene-pathway inter-

action networks for the DEGs were visualized with

Cytoscape 3.4.0 (http://www.cytoscape.org/) [56].

Oil red O staining

An Oil Red O staining assay was performed according to

the methods in our previous study [50]. Briefly, adipo-

cytes were gently washed with cold PBS three times and

fixed with 4% paraformaldehyde for 30 min. Then, the

fixed cells were gently washed with cold PBS three times,

incubated with 60% filtered Oil Red O solution for 40

min and then observed under a phase-contrast micro-

scope to check for positive cells appearing red. The cells

were then washed three times with deionized cold PBS

and photographed using an Olympus CKX41-F32FL

microscope (Olympus, Tokyo, Japan). Subsequently, Oil

Red O was eluted from the stained cells with 100% iso-

propanol (v/v) and quantified with a microplate reader

(Thermo Fisher Scientific) at 500 nm. ImageJ software

(National Institutes of Health, Bethesda, MD) was used

to estimate the adipogenic differentiation ability. The

cells with lipid droplets were regarded as differentiated

cells: Adipogenic differentiation ratio = (differentiated

cells count / total cells count) × 100%.

RNA isolation and real-time quantitative PCR (qRT-PCR)

Primers for the DEGs were designed using Primer3Plus

online software (http://www.primer3plus.com/cgi-bin/

dev/primer3plus.cgi) (Additional file 6: Table S6). qPCR

was performed using SYBR® Green PCR Master Mix

(TaKaRa, Dalian, China). The PCR mixture contained

5 μL of SYBR® Premix Ex Taq II (2×), 0.5 μL of forward

primer (10 μM), 0.5 μL of reverse primer (10 μM), and

200 ng of cDNA, with RNA-free water added to 10 μL.

The qRT-PCR was conducted in a LightCycler 96 system

(Roche) by the SYBR Green method. The program in-

cluded an initial step of 95 °C for 5 min; 40 cycles of

95 °C for 30 s, 60 °C for 30 s, and 72 °C for 20 s; and

melting curve generation, which was performed as fol-

lows: 95 °C for 10 s, annealing at 65 °C for 20 s, and
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heating through a continuous temperature gradient to

97 °C with 5 acquisitions/s. Chicken GAPDH was selected

as an internal control gene. All samples were examined in

triplicate. All data were analysed using the 2-ΔΔCt method.

All data are shown as fold changes in gene expression

compared with the gene expression in the 0d group.

Statistical analysis

Statistical significance between two experimental groups

was evaluated with a T-test for comparisons in SPSS

20.0 statistical software (IBM, Chicago, IL, USA). Statis-

tical significance among three or more experimental

groups was evaluated by one-way ANOVA followed by

Dunnett’s test for multiple comparisons in SPSS 22.0.

Graphics were drawn using GraphPad Prism 7 (Graph-

Pad Software, San Diego, CA, USA) and RStudio 1.1.453

software. All data are expressed as the mean ± standard

error (SE). A P-value ≤0.05 was considered statistically

significant, and a P-value ≤0.01 was considered extreme

significant.
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