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Abstract. Lipids comprise the bulk of the dry mass of the brain. In addition to providing structural integrity to membranes,

insulation to cells and acting as a source of energy, lipids can be rapidly converted to mediators of inflammation or to signaling

molecules that control molecular and cellular events in the brain. The advent of soft ionization procedures such as electrospray

ionization (ESI) and atmospheric pressure chemical ionization (APCI) have made it possible for compositional studies of the

diverse lipid structures that are present in brain. These include phospholipids, ceramides, sphingomyelin, cerebrosides, cholesterol

and their oxidized derivatives. Lipid analyses have delineated metabolic defects in disease conditions including mental retardation,

Parkinson’s Disease (PD), schizophrenia, Alzheimer’s Disease (AD), depression, brain development, and ischemic stroke. In

this review, we examine the structure of the major lipid classes in the brain, describe methods used for their characterization,

and evaluate their role in neurological diseases. The potential utility of characterizing lipid markers in the brain, with specific

emphasis on disease mechanisms, will be discussed. Additionally, we describe several proteomic strategies for characterizing

lipid-metabolizing proteins in human cerebrospinal fluid (CSF). These proteins may be potential therapeutic targets since they

transport lipids required for neuronal growth or convert lipids into molecules that control brain physiology. Combining lipidomics

and proteomics will enhance existing knowledge of disease pathology and increase the likelihood of discovering specific markers

and biochemical mechanisms of brain diseases.
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(EPA) DHA, docosahexaenoic acid
(DHA) HETEs

HDL, low density lipoprotein

IP, inositol phosphate

LC-MS2, liquid chromatography tandem mass spectrometry

LDL, low density lipoprotein LO, lipoxygenase

LT, leukotriene

PA, phosphatidic acid

PAF, platelet-activating factor

PAFA, platelet-activating factor acetylhydrolase

PC, phosphatidylcholine
PE, phosphatidylethanolamine

PhosGl, phosphatidylglycerol

PG, prostaglandin

PI, phosphatidylinositol

PIP, phosphatidylinositol phosphate

PL, phospholipase

PLA2, phospholipase A2

PLC, phospholipase C
PLD, phospholipase D

PS, phosphatidylserine

PUFA, polyunsaturated fatty acid

SRM, selected reaction monitoring

pAD, probable Alzheimer’s disease

PD, Parkinson’s disease

SRM, selected reaction monitoring

Glossary

Lipidome- All known lipids, includes phospholipids, fatty acids and cholesterol. The study of structure, biosynthesis and function of all

lipids is lipidomics.

Phospholipidome- All known phospholipid classes, subclasses and molecular species. The study of structure, cellular distribution, biosyn-

thesis and function of phospholipids is phospholipidomics.

Sphingolipidome- All known sphingolipid classes and molecular species. The study of structure, cellular distribution, biosynthesis and

function of sphingolipids is sphingolipidomics.

1. What are lipids and why are they important in

brain function?

Lipids are organic compounds with long chain hy-

drocarbon molecules that are soluble in organic sol-

vents but not soluble in water. Lipids are derived from

living organisms; some examples of lipids include long

chain hydrocarbons, alcohols, aldehydes, fatty acids,

their derivatives (glycerides, wax esters, phospholipids,

glycolipids, sulfolipids, and fatty acid esters), fat solu-

ble vitamins (A, D, E and K), carotenoids and sterols.

Lipids are usually subdivided into neutral or polar lipids

and are now classified into eight categories based on

hydrophobic and hydrophilic composition [68]. About

half of the dry weight of the brain is made of lipids.

Lipids are important in many brain functions includ-

ing membrane composition, signal transduction, and

biological messenger functions [18,39,40,61,67,69,88,

206,221]. Thus, changes in the concentrations of brain

lipids may reflect physiopathologic processes.

One class of lipids proposed to be important in brain

function is the polyunsaturated fatty acids (PUFAs).

PUFAs are released from phospholipids by lipases to

carry a myriad of biological functions. For example,

arachidonic acid (20:4, n-6) can be released and sub-

sequently converted to eicosanoids by cycloxygenases

(COX), epoxygenases, lipoxygenase (LO) in combina-

tion with prostaglandin or leukotriene synthases [6,160,

180,190,195]. Eicosanoids act on specific receptors or

ion channels to influence physiological processes such

as sleep and pain [94,95]. Likewise, several neuros-

teroids derived from cholesterol have been shown to

have important physiologic functions in the brain [10,

99,116,170,213]. In addition to providing signaling

molecules, lipids are the building blocks of cell mem-

branes that confer structure and insulation to nerve cells

and are a major reservoir of stored energy. With these

important functions, changes in their amounts or de-

fects in lipid metabolic pathways can have a signifi-

cant impact on brain function. Therefore, an accurate

measure of lipid concentrations in the central nervous

system is needed for understanding their role in the

pathology of diseases.

Lipids encompass a range of structurally dissimi-

lar molecules consisting of several isomers that are

difficult to isolate. Lipids do not easily ionize and
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upon collision-induced dissociation, fragment into ions

that can not be useful fingerprints for distinguishing

the thousands of molecular species found in cells.

No single ionization method can be used for all lipid

classes. Moreover, differently charged headgroups in

lipids make some lipids easy to ionize in the positive

mode while others are better measured in the negative

mode. However, recent advances in mass spectrome-

try have made it possible to use electrospray ionization

(ESI) [90,105,129,133] with negative or positive ions

under atmospheric pressure conditions to measure sev-

eral molecular species of lipids. Combined with liquid

or gas chromatography, hundreds of lipid molecular

species can now be identified.

2. Structures of lipids detected in human brain

and CSF and their biosynthetic pathways

2.1. Phospholipidome

The phospholipidome consists of the major polar

lipid class found in mammalian cells and the study of

their structure, biosynthesis and catabolism is hence-

forth referred to as phospholipidomics. Structurally,

phospholipids are composed of a glycerol backbone to

which is esterified a fatty acid at the sn-1 and sn-2 car-

bon and a phosphor-headgroup moiety at the sn-3 posi-

tion. When the headgroup is choline, ethanolamine or

serine, the phospholipids are known as phosphatidyl-

choline (PC), phosphatidylethanolamine (PE) or phos-

phatidylserine, respectively (Fig. 1A). Phosphatidyli-

nositol (PI) and phosphatidylglycerol (PhosGl) are

formed when inositol and glycerol are the headgroups,

respectively (Fig. 1A). Phosphatidic acid (PA) and

diphosphatidylglycerol (cardiolipin) are other impor-

tant phospholipids classes with structures depicted on

Fig. 1.

Phospholipids are further divided into subclasses

based on the type of linkage of fatty acids at the sn-1

position. In ester lipids, fatty acids are attached via

1-acyl bonds while for ether lipids or plasmalogens,

fatty acids at the sn-1 position are linked via 1-alkyl-

or 1-alk-1-enyl- bonds (Fig. 1B). 1-Acyl-, 1-alkyl or

1-alk-1-enyl- subclasses are predominant in PC and PE

while diacyl-linked subclasses comprise most of PI, PS

and PG found in cells. Ethanolamine plasmalogens are

abundant in myelin sheath and changes in their compo-

sition are proposed for several diseases including AD.

Choline plasmalogen is a precursor of the potent biolog-

ical mediator known as platelet-activating factor (PAF)

or 1-alkyl-2-acetyl-sn-glycero-3-phosphocholine. PAF

is a mediator of hypersensitivity, acute inflammation,

anaphylactic shock, platelet aggregation and serotonin

release [31,37,149,152]. Bazan et al. have proposed

that PAF is important in brain plasticity [12].

In most phospholipids, the fatty acid at the sn-1 po-

sition is palmitic (16:0), stearic (18:0) or oleic acid

(18:1) while either a saturated, unsaturated or a polyun-

saturated fatty acids (PUFAs) can be found at the sn-2

position of the glycerol backbone. In certain classes

and subclasses found in cells or tissues, PUFAs are

the major fatty acids at the sn-2 position. This dis-

tribution gives rise to subclasses of lipids that are tar-

geted for the release of PUFAs and the generation

of specific lipid mediators and signaling molecules.

An example is 1-alkyl-2-arachidonoyl-sn-glycero-3-

phosphocholine, the precursor of platelet activating fac-

tor and leukotrienes [77,122]. The incorporation of

PUFAs into phospholipid subclasses is highly chore-

ographed such that most PUFAs are initially incor-

porated into 1,2-diacyl phospholipids subclasses be-

fore they are remodeled into the ether-linked phos-

pholipids classes by coenzyme A (CoA)-dependent

or CoA-independent transacylase activities [73,84,126,

165,167].

Phospholipids are not only variable in their head

groups, fatty acids and bond profiles on the glyc-

erol backbone, but they are asymmetrically distributed

within lipid bilayers of cells. This molecular diver-

sity results in hundreds of molecular species in a given

cell and theoretically thousands of species in mam-

mals. Even more intriguing is the fact that different or-

ganelles may be enriched with specific lipid classes or

subclasses. These distributions are unique in establish-

ing the functions of different organelles by influencing

membrane fluidity or generating signaling molecules

in specific sites when cells are stimulated.

Phospholipids are synthesized when cystidine

diphosphate (CDP)-activated polar headgroups are at-

tached to PA (1,2-diacyl-sn-glycerol-3-phosphate) or

when CDP-activated diacylglycerol (DAG) is attached

to polar headgroups. For example, PC or lecithin

is synthesized when choline is phosphorylated by

cholinephosphotransferase [106] and then coupled to

CDP prior to attachment to PA. Cholinephosphotrans-

ferase catalyzes the final step in the synthesis of

PC via the Kennedy pathway by transferring phos-

phocholine from CDP-choline to DAG [98]. For

PE biosynthesis, ethanolaminephosphotransferase cat-

alyzes a similar transfer of ethanolamine with CDP-

ethanolamine as the intermediate. PC can also be ob-
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Fig. 1. Structure of phospholipids- Ester-linked phospholipids (A) and ether-linked phospholipids (B). Stereospecific numbering (sn) system

of nomenclature for the glycerol backbone is indicated while R1 and R2 denote fatty acyl moieties. The classification of phospholipids into

subclasses (1-acyl-, 1-alkyl- or 1-alk-1-enyl-) is shown by the fatty acyl-bond at the sn-1 position of glycerol.

tained when PS is decarboxylated to PE followed by N-

methylation of PE by S-adenosylmethionine-dependent

methyl transferase [216]. Base exchange reactions

when ethanolamine is exchanged for serine in PE re-

sults in PS biosynthesis. Similar to PC biosynthesis,

PI is formed when 1,2 DAG is activated by CDP fol-

lowed by condensation with myo-inositol. PI can un-

dergo a series of phosphorylations catalyzed by various

PI-kinases to form phosphopolyinositides. PIP2 is an

example of phosphorylated PI that has been well char-

acterized and been shown to be a signal for cell growth,

differentiation and synaptic vesicle formation [59,177].

The phospholipidome undergoes dynamic remodel-

ing of fatty acids and phospho-headgroups under rest-

ing conditions and this remodeling process is enhanced

when cells are stimulated and decreased when cells

are undergoing apoptosis [79,84]. Examples of en-

zymes that catabolize phospholipids and the products

they generate are listed on Table 1. The major en-

zymes that modify phospholipids include phospholi-

pases (PLA1, PLA2, PLC, PLD), acyl transferases and

PI specific kinases. Phospholipases hydrolyze ester
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Fig. 2. Sites of action of phospholipases on phosphatidylcholine-

The major groups of phospholipases include PLA1, PLA2, PLC and

PLD. Products of these enzyme activities and their relevance to the

brain are shown on Table 1.

bonds shown on Fig. 2. Many isoforms of PLA2 that

differ in structure, substrate specificity, requirements

for calcium ions, mode of activation and cellular local-

ization have been cloned and described in various mam-

malian cells [123]. Several PLA2 isoforms have been

characterized in the brain [73,204]. One PLA2 isoform

(cPLA2) co-localizes with reactive astrocytes and glial

cells and is involved in neurodegeneration [47]. Var-

ious PLC isoforms are involved in the generation of

DAG and IP3 in the rat and human brain [183,192].

Two isoforms of PLD (PLD1 and PLD2) generate sig-

naling molecules in the brain and involved in the gen-

eration of choline required for acetylcholine biosynthe-

sis [230]. PLD isoforms are implicated in neural out-

growth and hormonal/stress signaling [219,220,236].

Lysophospholipids generated by the action of PLA2 can

accept acyl groups from other phospholipids in a reac-

tion catalyzed by lysolecithin-lecithin-acyltransferase

(LLAT) [203]. Other CoA-dependent and -independent

remodeling of PUFAs are responsible for the buildup

of PUFAs in ether-linked phospholipids [82,121,165].

Lecithin cholesterol acyltransferase (LCAT), a protein

with both lipase and transferase activity transfers fatty

acids from lecithin to cholesterol [1,110]. LCAT is

associated with lipoproteins that are involved in the

transport of lipids from the liver to organs and vice

versa. Although not recognized as the major path-

way by which cholesterol is excreted from the brain,

lipoprotein-mediated transport is important in neural

outgrowth and may be the major transcellular transport

mechanism within the brain.

2.2. Sphingolipidome

The sphingolipidome is a subset of the phospho-

lipidome consisting of sphingomyelin and glycosphin-

golipids (cerebrosides, sulfatides, globosides and gan-

gliosides). Sphingolipids are composed of a polar head-

group and two non-polar tails (Fig. 3). A long chain

amino alcohol known as sphingosine is linked via an

amine and a long chain fatty acid is attached to carbon-

2 to yield ceramide. Sphingolipids are components

of membranes found mainly in myelin sheaths. The

major route of sphingolipid formation is the transfer

of phosphorylcholine from PC to ceramide by sphin-

gomyelin synthase (Fig. 3). Sphingomyelins are im-

portant in nerve cell membranes where very long chain

saturated and monounsaturated fatty acids are the main

N-acylated molecules at carbon-2 of sphingosine [96,

142,188].

The action of sphingomyelinase on sphingomyelin

forms choline and ceramide. Ceramide can be fur-

ther broken-down to sphingosine by ceramidase or can

be converted to glucosylcerebroside by glycosyl ce-

ramide synthase [179,184] (Fig. 3). Sphingosine phos-

phate and related molecules have recently been shown

to regulate apoptosis [128,153]. Although these novel

mediators have not been characterized in the brain,

their presence may account for brain diseases that are

known to result from defects in sphingolipid biosyn-

thesis. Thus, one may postulate that changes in sphin-

gosine phosphate levels in the neurodegenerative brain

may be early indicators/biomarkers of brain atrophy.

In summary, the phospholipidome provides struc-

ture, is the precursor of signaling molecules and plays

an important role in the formation of vesicles re-

quired for neurotransmitter release and the transport of

metabolites. These important functions make it neces-

sary to study the composition of brain phospholipidome

because early changes are possible events in brain dis-

eases.

2.3. Cholesterol and hormones

The brain is a very rich source of cholesterol and is

estimated to represent 25% of total cholesterol in hu-

mans [60]. Although it is known that a major portion

of this cholesterol is localized in myelin sheaths, lit-

tle is known about the metabolic pathways that control

this vast reservoir of cholesterol. Brain cholesterol is

mainly produced by de novo synthesis (Fig. 4) and is

segregated from plasma cholesterol by the blood brain

barrier (BBB). Homeostatic control of brain cholesterol
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Table 1

Some enzymes that modify phospholipids, their products and functions in CNS

Enzymes Lipid substrates and products Importance of products

PLA2 Hydrolyzes the ester bond at the sn-2 position of phos-

pholipids (Fig. 2) to release free fatty acids (FFA) and

lysophospholipids. For example, PC is hydrolyzed to

LPC and FFA or PA hydrolyzed to LPA and FFA.

If the FFA is a PUFA, it may be a substrate of COX, CYP

or LO. PLA2 activity is implicated in endocytosis, fusion

and membrane structure and asymmetry, neurodegenerative

diseases and autistic disorders [20,73,204,208].

PLC Hydrolyses phospholipids to DAG and phospho-

headgroup moiety, e.g. PI(4,5)P2 to DAG and
I(1,4,5)P3 [21]

Important in vesicle priming and synaptic vesicle dock-

ing [52,59]. DAG activates PKC and/or PKA while IP3
induces intracellular calcium release [22].

PLD Releases PA and free headgroup from phospholipids

(Fig. 2). An example is the release of choline from

PC.

Implicated in synaptic vesicle fusion. PA promotes exo-

cytosis, phagocytosis, membrane trafficking and cytoskele-

tal structure [48,51,62,147,219,220]. Headgroup such as

choline can be used for neurotransmitter biosynthesis.

Lysophospholipase Glycerophosphate and free fatty acids [218]. Im-

plicated in ether lipid formation by brain micro-

somes [229] and anandamide biosynthesis [205]

Important in signal transduction [174,210,218].

PI kinase or PIP

kinases and PITP

Phosphorylate PI to form PI(4)P and PI(4)P to

PI(4,5)P2. PITP is involved in membrane remodeling.

Required for synaptic vesicle formation, fusion, trafficking

and exocytosis [49,50]

involves biosynthesis and cytochrome P450 (CYP)-

mediated excretion with 24S-hydroxycholestrol as the

major product [24,28]. Cholesterol serves several im-

portant functions in the brain. First, cholesterol helps

maintain brain structure and is important in controlling

lipid fluidity and the transport or permeability of ions

and metabolites. Second, cholesterol provides the nec-

essary insulation to neurons that allows efficient prop-

agation of an action potential. Third, cholesterol is

needed for the growth and development of neurons.

Fourth, cholesterol is the precursor for the synthesis

of steroid hormones that are important in controlling

physiologic processes such as stress, plasticity, and de-

pression [11]. Fifth, the cholesterol biosynthetic path-

way generates molecules (isoprenenyl-pyrophosphate,

geranyl-pyrophosphate, farnesyl-pyrophosphate) used

for the modification of proteins and RNA and for the

biosynthesis of ubiquinone, dolichol and Heme A [65,

66,196]. Modification of G-proteins is critical for

their function. Thus cholesterol biosynthesis may in-

directly influence receptor mediated physiologic pro-

cesses controlled by G-protein coupled receptors. Fi-

nally, the cholesterol composition affects the activity

of transmembrane proteins and receptors. For exam-

ple, gamma amino butyric acid (GABA) transport re-

quires cholesterol and lipid rafts/coated pits that are im-

plicated in endocytosis and protein remodeling are all

eriched with cholesterol [138,193,200,209,227]. These

functions of cholesterol underscore its importance in

brain function. For example, 24S-hydroxycholesterol,

the major excretion product and has been shown to in-

crease in CSF of AD subjects [24,60]. Moreover, CYP

enzymes that oxidize cholesterol are differentially ex-

pressed in brain cells and around amyloid plaques in

the AD brain [33]. Several other brain diseases are as-

sociated with metabolism, transport, recycling, excre-

tion and degradation of cholesterol [2,24,64,120,135,

143,161,163,178,202,227].

Levels of cholesterol in the brain are controlled by

the rate of biosynthesis, catabolism, transport and ex-

cretion. Two major pathways for cholesterol biosyn-

thesis are known in mammals (Fig. 4). Both path-

ways require acetyl-CoA derived from glucose oxida-

tion or from fatty acid metabolism (Fig. 4) [85,87,112,

113]. Conversion of HMG-CoA to mevolonic acid by

HMG-CoA reductase is the rate-limiting step for both

pathways in many cells including glial cells. In one

pathway, 7-dehydrocholesterol is an intermediate while

the alternate route involves 7-dehydrodesmosterol as

an intermediate (Fig. 4). Several enzymes involved in

cholesterol synthesis have been characterized in vari-

ous brain cells. The differential expression of these en-

zymes in brain cells suggests that there is transcellular

metabolism or highly specialized functions of choles-

terol products by brain cells or specific brain regions.

For example, astrocytes synthesize two to three times

more cholesterol than neurons and fibroblasts [169].

Oligodendrocytes that are normally involved in myeli-

nation have higher capacity to synthesize cholesterol,

underscoring the need and importance of cholesterol

for myelination [212].

Cholesterol synthesis and distribution may play a

critical role in the onset and progression of degener-

ative brain disorders. A study showing that choles-

terol synthesis is higher in developing neurons but is

decreased with aging has several implications for ag-

ing and neurodegenerative diseases [227]. While total

cholesterol may not change, the distribution of choles-
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terol favors amyloid peptide accumulation upon ag-

ing. In terms of biomarker discovery, it may be impor-

tant to examine the biosynthetic pathway in individuals

with a neurodegenerative disease to determine whether

cholesterol biosynthesis is slower than in normal sub-

jects. Alternatively, a compromised BBB may disrupt

the tight control of brain cholesterol levels. Finally,

enhanced catabolism via CYP-dependent mechanisms

or by auto-oxidation may generate oxidative products

that cross the BBB easily and are excreted from the

brain. Any decrease in cholesterol level may result

in enhanced proteolytic digestion of membrane bound

proteins by exposing them to proteases or secretases in

the case of amyloidosis (AD) [27,60]. Other ramifi-

cations may include enhanced oxidation or increased

inflammation, leading to neuronal cell death.

Since cholesterol is independently controlled in the

brain, it is unlikely to be strongly influenced by in-

hibitors of biosynthesis if these do not cross the BBB

or by dietary manipulation, since the plasma pool is

not interchangeable with the brain pool. Given an esti-

mated half-life of 5 years in the brain, enhanced degra-

dation or CYP-mediated catabolism of cholesterol will

significantly alter its levels [28,33,136,224].

Lipoprotein-mediated uptake and reverse transport

is proposed to play a small role in the removal of

cholesterol from the brain. However, several groups

have characterized many cholesterol-binding proteins

in the CSF and brain [2,53,131,217,226]. If not di-

rectly involved in cholesterol transport out of the brain,

these proteins may be crucial in transporting cholesterol

within the brain from sites of synthesis to sites needed

for neuronal growth or for the synthesis of neuro-

hormones. There may also be cross-talk between 24S-

hydroxycholesterol and lipoprotein-dependent trans-

port since 24S-hydroxycholesterol has been shown to

enhance ApoA1 dependent efflux of cholesterol from

cultured cells. Several lipoproteins synthesized in the

brain have been detected in CSF by 2D gels [80].

These include ApoA1, ApoD, ApoJ, and ApoE. Ex-

pression of one ApoE allele (ApoE4) increases the risk

of late onset AD [32,41,124,127,134,238]. ApoE pro-
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duced in high amounts by astrocytes is important in
cholesterol transport in the brain and is a major com-
ponent of cholesterol-containing lipoproteins found in
CSF. In vitro studies show that ApoE3 is more efficient
in cholesterol transport and delivery to neurons than
ApoE4. In addition, ApoE3 from astrocytes stimu-
lates neuronal outgrowth more than ApoE4 expressing
cells [156]. Lipoproteins are integral parts of HDL or

LDL particles that are the suggested route of cholesterol
transport from the liver to organs and vise versa. Scav-
enger receptors (SR-B1) or other lipoprotein recep-
tors may be responsible for cholesterol removal from
the brain. LDL receptor (LDLR) is expressed in the
brain [17]. Seven members of the LDLR family have
been characterized. Typical features of the LDLR in-
clude a ligand binding domain, an EGF repeat, a trans-
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membrane segment and a cytosplasmic tail containing
a NPxY motif that controls endocytosis and interac-
tion with the phosphotyrosine binding-containing pro-
teins [17,158,166,185]. ApoE is a common ligand of
the LDLR family. ApoE binds to LDLR and initiates a
signaling pathway that promotes cell survival (Akt).

In addition to lipoproteins, several ATP-binding
cassette (ABC) transporters assist in the shuttling of
cholesterol from glial cells to neurons [217]. Prelim-
inary results from our laboratory combining 2D-LC
with a linear ion trap mass spectrometer have revealed
several isoforms of ABC proteins in CSF (unpublished
data). Studies to determine whether their expression
or isoform profiles change in brain diseases or whether
their expression is linked to cholesterol are underway
in our laboratory.

Cholesterol metabolism is associated with several
diseases including neurodegeneration, hypercholes-
terolemia, AD, multiple sclerosis, and Niemann Pick
disease type C. CNS cholesterol is mainly unmodified;
it is not conjugated to fatty acids,or modified by sulfates
and glucuronides. Our studies show several cholesterol
molecular species in CSF including fatty acid esters
and sulfates (Fig. 5). CSF may be a medium of trans-

port of cholesterol from areas of synthesis to other parts

of the brain where it may be needed for hormone syn-

thesis or neuronal growth. Alternatively, cholesterol

and its esters may exist in lipoprotein bound particles

that are needed for LDLR binding. Studies showing

LCAT, cholesterol esters and various constituents of

lipoproteins in CSF suggest that this mode of choles-

terol transport may be important within the brain for

neuronal function. These studies underscore the im-

portance of cholesterol in growth and neurodevelop-

ment. Considerable levels of esterified cholesterol in

human CSF may reflect a preferred mode of extracellu-

lar transport since most cholesterol within brain cells is

free. It remains to be determined whether levels of free

or esterified cholesterol are altered in CSF from sub-

jects with neurological diseases compared to normal

subjects. Moreover, it would be of interest to determine

whether profiles of cholesterol, CYP, lipoproteins, re-

ceptors and ATP-binding cassette proteins can form a

multiplex biomarker panel for the detection of neuro-

logical pathologies linked to cholesterol metabolism in

the brain.
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Fig. 6. Oxygenation of PUFAs and endocannabinoid biosynthesis- PUFAs are released from the lipid bilayer by the action of PLA2 enzymes.

Free PUFAs such as AA, DHA or EPA are metabolized by major oxygenases pathways numbered 1–4. 1) Lipoxygenases (5-LO, 12-LO or 15-LO)

generate hydroxyperoxyeicosatetraenoic acid (HPETE) that are subsequently converted to leukotrienes (5-LO) or lipoxins (15-LO). 2) PUFAs can

also be metabolized via the Prostaglandin H synthase (PGHS) pathway to form PGH2. Terminal synthases convert PGH2 to prostanoids. PGIS,

PGES, PGDS and TXBS are the major terminal synthases responsible for PGI2, PGE2, PGD2 and TXB2 biosynthesis. 3) Cytochrome P450
monooxygenases (P450) convert PUFAs by hydroxylation to hydroxyeicosatetraenoic acids (HETEs), by allylic oxidation to generate isomers

of HETEs and by olefin bond epoxidation to generate regioisomers of epoxyeicosatetraenoic acids (EETs). 4) Auto-oxidation of PUFAs can

generate isoprostanes or neuroprostanes and oxidized lipid products such as malonaldeylde and 4-hydoxynonenal (HNE). 5) DHA and EPA can

serve as substrates of these oxygenases to for docosatrienes and resolvins, respectively. 6) A combination of acyltransferase activity in concert

with PLD is proposed for the biosynthesis of the endocannabinoid, arachidonoyl ethanolamide (AEA). AEA levels in the brain may be controlled

in part by fatty acid amide hydrolase (FAAH) activity. Overall, products from these pathways are implicated in processes such as sleep, pain,

secretion and inflammation.

2.4. Fatty acids, eicosanoids and endocannabinoids

Compared to other tissues, the brain is highly en-

riched with PUFAs . The major classes of PUFAs in

the human brain belong to the n − 6 or n − 3 classes

where n denotes the total number of carbon atoms and

the numbers denote the presence of a double bond 6

or 3 carbon atoms from the terminal omega (ω) carbon

atom. The major PUFA species are arachidonic acid

(AA, 20:4, n-6), eicosapentaenoic acid (EPA, 20:5, n-
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Fig. 7. LC-ESI tandem MS of eicosanoids, isoprostanes and fatty acids in CSF- After the addition of 2 ng deuterated internal standards to

400 ul CSF, eicosanoids and free fatty acids were extracted using ethyl acetate. Samples were reconstituted in water/methanol (70:30) containing

0.01% acetic acid. LC-negative ion ESI-MS2 was performed with SRM of parent and product ions for thromboxanes (TX), prostanoids (PTs),

leukotrienes (LT), isoprostanes and fatty acids (PUFAs).

3) and docosahexaenoic acid (DHA, 22:6, n-3) [146].

Mammals cannot synthesize AA, EPA and DHA be-

cause they lack the desaturase enzyme required to in-

troduce a double bond at the n-6 and n-3 position [125].

Therefore, the major precursors of PUFAs must be pro-

vided by the diet and are thus referred to as essential

fatty acids (EFAs). Linoleic acid (18:2, n-6) and α-

linolenic acid (18:3, n-3) are the major plant oil-derived

EFAs. EFAs are important in brain development and

function [54,125,186,214]. Once ingested, EFAs are

subjected to elongation and desaturation to form sev-

eral PUFAs including AA and DHA [199]. Consider-

able evidence suggest that PUFAs diffuse through the

lipid bilayer and FA transporters have also been im-

plicated in their uptake [173,176]. Upon internaliza-

tion, PUFAs are converted to CoA-derivatives by acyl-

CoA synthetases (ACS), which require ATP. PUFA-

CoAs are utilized for the synthesis of phospholipids,

triacylglycerides or can be utilized for energy gener-

ation via mitochondrial β-oxidation [38,130,145,157].

PUFA-CoAs also function as signaling molecules [38,

93]. PUFA levels and metabolism have been implicated

in several neurological processes. These include neural

outgrowth, neurodegeneration, depression, membrane

activity of receptors and the sodium pump, synaptic

lipid signaling and plasticity [29,86,115,140,142,194,

214,232]. Although PUFAs are thought to be involved

in diseases ranging from AD, PD, stroke, and anxi-

ety, the mechanisms that would account for their roles

still awaits discovery [115,140]. PUFA levels may be

influenced by uptake from the diet, biosynthesis and

release/catabolism within the brain.

Phospholipases release PUFAs from membrane

phospholipids. Released PUFAs are converted to

bioactive lipids or other signaling molecules (Fig. 6).

Bazan has recently reviewed the significance of PU-

FAs in synaptic lipid signaling [14]. Likewise, the im-

portance of phospholipases in releasing PUFAs from

phospholipids and their potential role in brain func-

tion has been reviewed [73]. However, the isoforms

of phospholipases and the source and mechanism by

which PUFAs may be mobilized for eicosanoid for-

mation are not yet defined in CSF. Given the pres-

ence of several oxygenases and terminal synthases that

can convert PUFAs into eicosanoids, resolvins and do-

cosanoids/neuroprostanes [139,186] (Fig. 6), it is im-

portant to determine the PUFA composition of brain

lipids and the ancillary pathways that control their avail-

ability to neurons. Using LC-negative ion ESI tandem

MS, we have detected many eicosanoids, isoprostanes

and fatty acids in human CSF (Fig. 7). Changes in the

amounts of these molecules in CSF may not only be

an indication of physiologic process in the brain, but

could suggest pathologic conditions.

In addition to eicosanoids, another AA-derived class

of molecules implicated in pain reduction, motor regu-

lation, learning, memory, reward and appetite has been

recently described [57,100,215]. These molecules are
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Fig. 8. LC-ESI tandem MS of phospholipids in human CSF- 10 ng phospholipids standards were added to 200 µl CSF and total lipids were

extracted using chloroform and methanol. Samples were reconstituted in chloroform/methanol (2:1) and LC-positive ion ESI-MS2 was performed

with parent ion monitoring for choline containing phospholipids or neutral ion loss for PE, PI, PG and PS. Figure 8(A) shows the TIC obtained

for all phospholipids classes while Fig. 8(B) shows a chromatograph of choline-containing molecular species. Figure 8(C) shows spectra of
sphingosylphosphocholine/phosphocholine species eluting at 1–20 min, PC at 20–35 min (Fig. 8D), sphingomyelin at 35–45 min (Fig. 8E) and

lysophosphatidylcholine/PAF at 45–65 min (Fig. 8F). Over 450 choline-containing molecular species are identified in CSF.

known as endogenous cannabinoid ligands or endo-

cannabinoids. The first endocannabinoid was initially

identified as an ethanol amide derivative of AA and

termed arachidonamide or anandamide (Fig. 6). A sec-

ond endocannabinoid also contains AA that is attached

to glycerol (2-arachidonoyl glyceryl ester or 2AG).

Endocannabinoids are synthesized and released from

neurons upon stimulation [215]. Inactivation of anan-

damide and 2-AG is accomplished by rapid uptake via

a membrane transporter (AMT) followed by intracel-

lular enzymatic degradation by fatty acid amide hydro-

lase (FAAH) [100,215]. Endocannabinoids bind to the

CB1 receptor. Similar to the CB1 receptor, the distribu-

tion of AMT and FAAH are high in the hippocampus,

cerebellum and cerebral cortex. Recent studies have

clarified endocannabinoid signaling. Upon release by

postsynaptic neurons, endocannabinoids diffuse back

to the presynapatic neurons where they act on CB1 re-

ceptors to inhibit release of neurotransmitters such as

GABA and glutamate [3]. Interestingly, recent stud-

ies show that CB1 receptors are coupled to another

lipid second messenger, ceramide [3]. Also a pro-

posed pathway for endocannabinoid-inducedapoptosis

involves ceramide. Structural similarities between 2-

AG and lysophosphatidic acid (LPA) also suggest pos-

sible cross-talk between these lipid-signaling ligands

and their receptors. Measurement of these signaling

molecules in CSF and correlation of any changes in

their levels with enzyme activity or protein levels will

represent disease markers and provide tangible path-
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ways that can be influenced by therapy.

3. Methods for measuring lipids in CSF

Early methods for analyzing the lipidome depended

on organic extraction coupled with thin layer chro-

matography (TLC) or high performance liquid chro-

matography (HPLC). Further structural identification

of lipid classes and molecular species were possible

only after extensive digestion of lipids, derivatization

and further chromatography (Table 2). This laborious

strategy employed over many decades revealed sev-

eral metabolic pathways. However, low sensitivity and

the labor-intensive process limited extensive profiling

of lipid molecular species. Advances in mass spec-

trometry have made it possible to detect thousands of

lipid molecular species. Initial advances in lipid anal-

yses were made by Murphy and colleagues using fast

atomic bombardment [44,117]. The advent of soft

ionization processes such as ESI-MS2 [108,171,175]

or APCI-MS2 [35] have revolutionized metabolic pro-

filing of lipids. Not only are these modern instru-

ments sensitive, but enzyme digestion and derivatiza-

tion procedures are not needed for most lipids. By

combining LC with MS, many more molecular species

of lipids can be measured. For example, Fig. 8(A)

shows the total ion current (TIC) obtained from CSF

phospholipids monitored using LC tandem MS with

parent ion monitoring of PC or neutral ion loss for

PE, PI, PS and PhosGl. Figure 8(B) shows the TIC

of choline-containing phospholipids species. Spectra

of choline-containing molecular species correspond-

ing to sphingosylphosphocholine/phosphocholine, PC,

sphingomyelin and PAF/LPC are shown in Figs 8(C),

8(D), 8(E) and 8(F), respectively. Over 450 different

molecular species were identified in human CSF. Sim-

ilar to PC, hundreds of PE, PI, PS and PhosGl molec-

ular species were identified in CSF (data not shown).

Other studies use 2D mass spectrometry with either

parent ion monitoring, neutral ion loss of specific lipid

fragments or multiple reaction monitoring (MRM) to

identify hundreds of lipid species [102,207] (Table 2).

Information from these studies is important in obtain-

ing structure, composition of lipids in cells, turnover of

lipids and characterization of lipid synthesis/transport

and degradation pathways.

4. Proteomic strategies for the identification of

lipid-metabolizing proteins in CSF

While lipidomic approaches reveal lipid composi-

tion, protein expression and the putative biosynthetic

pathways in CSF that account for specific changes in

lipid levels or distribution can best be understood if the

levels and activity of metabolizing enzymes and trans-

port proteins are determined. For example, if the level

of PAF is found to change in CSF for a specific disease,

various possibilities may account for this change. An

increase in PLA2 activity resulting in the generation of

lysophosphatidylcholine (LPC) and subsequent acety-

lation of LPC by acetyltransferase can result in an in-

crease in PAF. Likewise, a decrease in PAF acetylhy-

drolase activity may result in a build up in PAF levels.

Alternatively, an increase in PAF acetylhydrolase activ-

ity will decrease PAF levels. Similar arguments can be

applied to most lipid signaling molecules (eicosanoids,

DAG, IP3 etc). One way of understanding why there is

a change in the lipidome is to examine all the proteins

in the biosynthetic and catabolic pathways associated

with specific lipid molecules as outlined on Fig. 9. In

addition to the use of systematic animal knockout mod-

els, enzyme analyses or use of proteins chips, 2D gel

electrophoresis and shotgun sequencing of CSF pro-

teins are the most valuable approaches for interrogat-

ing changes in lipid-metabolizing proteins. In 2D gel

electrophoresis, CSF proteins are identified by their

isolelectric point (pI) and by their size. A 2D map is

then obtained by staining gels with fluorescent dyes

or with silver stains [92,101]. Densitometric profiles

and normalized total densities are obtained for relative

quantification. Proteins on 2D gels are identified by

extraction and MS sequencing, immunoblotting, or by

reference to published 2D database (SWISS-2DPAGE,

http://www.expasy.org/ch2d/). While very laborious,

2D gels are useful because they resolve posttranslation-

ally modified isoforms of proteins [101].

In shotgun sequencing, CSF proteins are reduced,

denatured and alkylated prior to enzyme digestion, of-

ten with trypsin. Peptide fragments are subsequently

resolved using capillary columns and detected using

an ion trap mass spectrometer. Sequences are ob-

tained using several software packages such as Se-

quest/Bioworks and multidimensional protein identifi-

cation technology [225]. Improvements in mass spec-

trometric methods and the availability of human se-

quence databases makes it possible to analyze complex

mixtures of peptides in CSF by liquid chromatography

coupled to tandem mass spectrometry. The handling of
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Fig. 9. An overview of lipid metabolism and its pathological significance- A comprehensive analysis of CSF lipids composition by LC tandem

MS will reveal how lipids get into the brain, their usage once in the brain and physiologic processes that they influence. Lipid compositional

data are complemented by measures of proteins that metabolize lipids in the CSF. This approach will result in a better understanding of the

pathophysiology of brain diseases.

data using automated data processing with improvedal-
gorithms has increased confidence in the identification
of proteins [42,63].

Once both the identities and the levels of CSF pro-
teins have been determined, apparent differences in the
proteomes of normal and diseased individuals can be
used to explain the mechanisms by which changes in
the lipidome occur in disease. Mechanistic changes
could be reflected in observed differences in protein
abundance (COX, 5-LO, PLA2, etc.), or variance in
the levels of protein activation (e.g., phosphorylation of
cPLA2). This combinatorial strategy will be useful in
assessing confidence for novel lipid or protein biomark-
ers and allow for direct comparison between variable
levels attributable to chance, diet, genetic variability
and environment and changes related to the onset and
progression of disease. Furthermore, this strategy will
prove to be clinically useful in helping to develop inter-
vention strategies involving drug inhibitor discovery as
well as in the rational design of diet/lifestyle changes
necessary for disease prevention.

4.1. Some examples of lipid metabolizing proteins of

interest in CSF

Several 2D gel electrophoresis studies have revealed
lipid-metabolizing proteins in human CSF. These pro-

teins may be classified by their functions in biosynthe-
sis, transport or catabolism/degradation of lipids. Our
studies show nine different prostaglandin D synthase
(PGDS) isoforms, 4 apolipoprotein (ApoA1) isoforms,

and 9 apoliprotein J (Apo J) isoforms in CSF [80].
These initial studies are being expanded using 2D-
capillary LC in combination with high resolution, high
sensitivity linear ion trap mass spectrometry. With this
approach, we have been able to increase the dynamic
range more than 7 fold such that less abundant pro-
teins not visualized on 2D gels are discovered with high

statistical confidence [104].
Lipid metabolizing proteins that we have found in

CSF include enzymes with a variety of functions such
as: ligases, synthases, transferases, lipid binding pro-
teins, ABC cassette proteins, all major lipoprotein iso-
forms, lipases, COX, LO, CYP450 enzymes, kinases
for choline, ethanolamine, inositol and PI, and recep-

tors for steroids and prostaglandins (unpublished data).
Bazan and colleagues, and others have extensively
reviewed roles of COX in brain physiology [13,16].
Other studies have shown close association of cPLA2

to amyloid plaques in AD brain and the importance
of phospholipases in the brain has been reviewed [47,

70,72,73,201]. The importance of apolipoproteins in
lipid transport in the brain has been suggested based on
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Table 2

Methods for profiling lipids classes

LIPIDS Lipidomic procedures

Phospholipids 1) Normal phase HPLC or TLC followed by PLC digestion and derivatization of diglycerides.

([76] and references therein)

2) LC-ESI-MS2 [102,207]

3) ESI-MS2 [91,171,198,235]

4) NMR [25,26]

Ceramides,

sphingomyelin.

1) LC-ESI-MS2 [34]

2) ESI-MS2 [91]

Cholesterol and

steroid hormones

1) LC-ESI-MS2 [91,132,172]

2) GC/MS [187]

Fatty acids and eicosanoids 1) Saponification, derivatization and GC or GC/MS [7,89]

2) LC-ESI-MS2 [83]

3) LC-APCI-MS2 [83]
4) NMR [107,228]

Triacylglycerides 1) ESI-MS2 [91]
2) APCI-MS [36]

cell studies showing increased secretion of ApoE and

cholesterol by astrocytes over-expressing ApoE [156].

Close association of ApoE4 alleles to late onset AD

and epidemiological studies showing a link between

high cholesterol to AD has given more credence to a

link between ApoE and cholesterol transport [137,150,

156]. However, the functions of other CSF lipopro-

teins are not known. Given that ApoA1 interacts with

the ABC cassette transporter and ATP phospholipid

binding proteins to transport cholesterol in cells [223,

237], it is likely that a similar mechanism takes place

in the brain. While of great importance to brain lipid

metabolism, these can not be fully addressed because

of the limited knowledge in the living brain. We will

concentrate on our discovery of groups of enzymes that

exemplify synthesis and degradation of bioactive lipid

molecules. Specifically, we will review platelet ac-

tivating factor acetylhydrolase and CYP enzyme iso-

forms that are important in cholesterol, neurosteroids

and PUFA metabolism.

4.2. Platelet-activating factor acetylhydrolase (PAFA)

At the site of inflammation, several cells are recruited

to counteract tissue damage. Cells are recruited to

these sites by mediators such as platelet-activating fac-

tor (PAF). PAF is a phospholipid that is a potent me-

diator of inflammation. PAF is formed by sequential

action of PLA2 on PC to generate LPC that is subse-

quently acetylated at the sn-2 position by acetyltrans-

ferase. PAF-like molecules can also be formed by ox-

idative fragmentation of PUFAs at the sn-2 position

of PC [46,77,97]. PAF receptor antagonists, throm-

boxane B2 (TxB2) and leukotrienes C4 (LTC4) reduce

PAF activity [69]. The biological properties of PAF are

diminished by hydrolysis of the acetyl moiety or the

short-chain oxidized esters.

PAFA hydrolysis of the sn-2 ester bond of platelet-

activating factor (PAF) and PAF-like oxidized phospho-

lipid species release an acetate or oxidized moiety and

lysophosphatidylcholine, thus attenuating the bioactiv-

ity of PAF by reducing its levels. Several PAFA iso-

forms (1 secreted and 4 intracellular) have been cloned

or characterized based on substrate specificity, cellu-

lar localization and structure. Isoform1b forms a G-

protein-like complex consisting of two catalytic sub-

units (a1 and a2) and a regulatory subunit (b). Another

well-characterized isoform of PAFA consists of a sin-

gle polypeptide and is homologous to plasma PAFA.

Isoform II has anti-oxidant properties and a catalytic

triad of amino acids characteristic of most esterases,

including the G motif found in most serine esterases

and lipases [4,114].

Deficiency in plasma PAFA is associated with stroke,

asthma, myocardial infarction, brain hemorrhage and

non-familial cardiomyopathy [4,114]. Animal studies

and preclinical studies show that recombinant plasma

PAFA can prevent inflammation and thus has the poten-

tial of controlling human inflammatory diseases [211,

222]. As much as two thirds of PAFA activity is asso-

ciated with LDL and the remainder is found in HDL

particles. Expression of PAFA is regulated by bacterial

liposacharides (LPS), cytokines, PAF and the lyso-PAF

concentration. PAFA levels are strongly correlated to

LDL cholesterol and an increase in PAFA has been

shown in essential hypertension, vascular disease, is-

chemic stroke, diabetes mellitus, rheumatoid and non-

rheumatoid arthritis [8,159,211,231]. In other diseases

such as asthma, Crohn’s disease, sepsis, acute myocar-

dial infarction, multiple organ failure, juvenile rheuma-
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toid arthritis and systemic lupus erythematosis, PAFA

has been shown to decrease. Given the proposed role of

PAF in plasticity and the role of inflammation in brain

diseases, PAFA levels may change with diseases and

control of PAFA activity may influence neurological

pathologies.

4.3. CYP450 and brain function

Cytochrome P450 (CYP) are phase 1 enzymes in-

volved in oxidative activation /deactivation of com-

pounds or toxins [233]. CYPs belong to four major

families (CYP1, CYP2, CYP3 and CYP4) that are fur-

ther subdivided into subfamily members. The liver is a

very rich source of CYP [233]. However, whole brain

CYP activity is approximately 1% activity of the liver.

Specific brain regions or cell types may have higher

expression of CYP than others. For example, the major

CYP families are localized at the BBB, choroid plexus

and posterior pituitary [148,168,197,233]. CYP1 fam-

ily proteins are often expressed in basal ganglia and

cerebellum of human brain. CYP2, especially the D6

subfamily has been mapped to the BBB of human brain,

are expressed mainly in arachnoid, choroid plexus and

vascular areas as well as in neuronal cells. CYP3 family

enzymes are mainly localized in pituitary cells and are

probably involved in the regulation of growth hormone.

Higher levels of CYP are associated with oxida-

tive stress. Drugs, xenobiotics and endogenous com-

pounds are known to be substrates of CYP. Endogenous

substrates include neurotransmitters such as dopamine,

neurosteroids and PUFAs. PUFAs are modified by

CYP1A, 2A, 2C, 2D, 2E, 2J and 4A [23,103,131].

Arachidonic acid is converted to epoxygenase metabo-

lites (14,15, 11,12, 8,9, 5,6-epoxyeicosatetraenoic acid,

EETs) or ω-terminal hydroxylase metabolites (20, 19,

18, 17, 16 hydroxyeicosatetraenoic acids, HETES)

and lipoxygenase-like metabolites (15-, 12-, 9-, 8-, 5

HETES) [45,131,234]. In the brain, EETs are pro-

duced by astrocytes close to cerebral microvesicles and

are likely involved in control of cerebral blood flow.

The pituitary and hypothalamus both produce HETEs

that stimulate neuropeptide formation. HETEs are also

potent vasoactive agents that modulate normal brain

function and are altered in cerebrovascular pathologies.

CYPs are also involved in cholesterol and steroid

biosynthesis. Steroid hormones influence brain growth

and development [131,144,182,191]. Steroids pro-

duced by the adrenal glands and the gonads readily

cross the BBB. In addition to steroids synthesized out-

side the CNS, the brain is the site of synthesis of sev-

eral neurosteroids that are known to influence its func-

tion. Steroids are implicated in behavior, mental ill-

ness, activation of the immune system, fatigue, de-

pression, some forms of epilepsy and dementia [131].

The role of CYP family enzymes in PUFA metabolism,

steroid biosynthesis and neurotransmitter modification

underlines their importance in brain function.

5. Lipid-related mechanisms in neurological

diseases

The brain is composed of cells (neurons, astrocytes,

glial cells, oligodendrocytes, etc) that communicate via

chemical or electrical signals in response to stimula-

tion. These cells are highly shielded to prevent fluctu-

ations in ion or chemical concentrations and are sepa-

rated from the rest of the body by a blood brain barrier.

The cell membranes of cells are critical in maintaining

ion and chemical balance in the brain. Therefore, dras-

tic changes in lipid composition may have significant

pathological ramifications (Fig. 9).

5.1. Structure and distribution

Cell membranes are composed of complex lipids (di-

acyl glycerophospholipids, sphingomyelin, ether phos-

pholipids, plasmalogens and cholesterol) and contain

ion channels as well as several receptors for neuro-

transmitters, neuropeptides or neurohormones. The

complexity of lipids is reflected in important ways.

First, lipids are composed of different classes and sub-

classes (e.g., PC, PE and plasmalogen). Second, each

class is further differentiated by the fatty acid content

that make up thousands of molecular species. Third,

some complex lipids such as glycerophosphatidylinos-

itols are modified by phosphorylation of the inositol

base at the 3, 4 or 5 position to generate PIP, PIP2

or PIP3 derivatives. Fourth, complex lipids are asym-

metrically distributed within cell membranes and lipid

composition varies within organelles of the same cell.

For example, lipid rafts have been shown to be rich

in PI-anchored proteins and cholesterol while PUFAs

seem to initially accumulate in the nuclear membrane

before being remodeled to organelles [155,227]. Fifth,

the difference in distribution is not limited to specific

cells but also to specific regions of the brain. Sixth,

these complex lipids are subject to constant remodel-

ing of fatty acyl groups and are rapidly degraded by

phospholipases (A2, C or D) to generate several lipid

derivatives [14]. This complexity coupled with the fact
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that lipids interact with the internal and external envi-

ronment of cells makes it critical that their composi-

tion be well controlled. An abnormal lipid composition

or distribution within the cell bilayer is likely to influ-

ence important physiologic processes associated with

ion channels or receptor function. Several brain dis-

eases described in this review display changes in these

physiologic processes.

5.2. Lipids and secretion

In response to stimulation, some cells secret neuro-

transmitters, hormones and enzymes to the extracellu-

lar space by a regulated process involving the fusion of

cytoplasmic organelles to the plasma membrane. Un-

der other conditions, there is a transfer of organelle

membrane components to the cell membrane. The for-

mer process involving release of contents has recently

been termed secretory exocytosis and the latter involv-

ing fusion to cell membrane is known as non-secretory

exocytosis[43]. Fusion of organelles to plasma mem-

brane may be important in the transfer of membrane

proteins to the cell surface or transfer of specific lipid

domains to the plasma membrane. Once transferred

to the plasma membrane, these proteins serve as either

receptors, transporter of ions and metabolites, or are

enzymes generating signals that regulate cell growth

and function [43,52,55,58,59,74,111].

Other particles variously called endosomes, vesicles

or exosomes are also secreted into the extracellular

space without releasing their contents [43]. These par-

ticles have been characterized in brain where they may

be important in transporting metabolites, hormones or

enzymes [56,75]. Lipid-rich particles conjugated with

various proteins such as HDL and LDL are important

in the transport of cholesterol and other lipids between

cells and organs. A common feature of these particles,

vesicles or exosomes is the involvement of lipids or

lipid signaling molecules that are essential components

of the particles or are signals that control the secretory

process.

An important component in the secretory cascade is

the involvement of proteins that generate specific phos-

pholipid moieties needed for secretion. The major pro-

teins involved in synaptic vesicle formation bind ma-

jor lipids or have activities that modify the phospho-

lipidome. Several classes of proteins known to play im-

portant roles in secretion have been characterized. PI

kinases generate polyphosphoinositol moieties while

lipases form several signaling molecules (Table 1). For

example, PIP2 is formed from PI by the action of PI ki-

nases. PIP2 has been shown to be required for synaptic
vesicle formation [59]. Another example involves the
signaling protein, phospholipase D1 (PLD1) that has
been shown to control the secretion of tissue plasmino-
gen activator and thus to facilitate neural outgrowth by
generating PA [147]. PA can be further metabolized to
lysophosphatidic acid by PLA2 or to DAG by PLC [51,
236]. PA facilitates membrane fusion events and serves
as an anchor for membrane proteins. Likewise, sev-
eral PI species are important in membrane fusion and
in the anchor of membrane bound proteins. Lipid-
metabolizing enzymes also initiate signaling cascades
within cells by forming co-activators of kinases such
as PKC or PKA. Activation of PKC by DAG and the
release of intracellular calcium mediated by inositol
phosphates are events closely associated with secretion.
During secretion, cells have to synthesize, and transport
lipids to the plasma membrane. The major substrates
of phospholipases are the phospholipid components of
plasma membranes that are constantly remodeled by
the action of lipases and acyltransferases [5,78,82,84].
The activities of all these enzymes replenish lipid com-
ponents or aid in the transfer of the correct compo-
nents to specific domains on cell membranes during the
cytosis cascade.

5.3. Lipids, ion channels and receptors

In addition to anchoring membrane bound proteins,
lipids are required for the functions of ion channels, ion
pumps and receptors for several neurotransmitters [71].
Lipids not only provide the proper environment for the
assembly of ion channel complexes and the barrier that
maintains an ion gradient across the cell membrane,
but they are also modulators of these same complexes.
For example, AA has been shown to regulate the Na
channel and DHA is required for the action of the Na+

pump [29,118,164]. IP3 and related molecules are in-
volved in intracellular calcium mobilization. Byprod-
ucts of lipids such as eicosanoids induce signaling pro-
cesses that eventually influence ion channels and ion
pumps. Together, these data underscore the role of
lipids and proteins that metabolize lipids in regulating
important functions of the brain. The proteins that reg-
ulate lipid metabolism or the lipid products that they
generate may be altered in various pathological con-
ditions and may be useful indicators or biomarkers of
diseases. A recent example is temporal lobe epilepsy
(TLE), a common form of epilepsy affecting 1–2%
of the population where expression of PLD1 has been
implicated in tissue plasminogen activator release and
neurite outgrowth [119,236].



56 A.N. Fonteh et al. / Identification of disease markers in human cerebrospinal fluid

5.4. Signaling molecules, mediators of inflammation

and oxidation damage

Phospholipases and kinases generate several signal-

ing molecules described above. In addition, several

oxidized lipids are important in the pathophysiology

of brain diseases [14,15,80–82]. Lipids are modified

by specific enzymes or by non-specific auto-oxidative

processes (Fig. 6). For example, stimulated brain cells

release PUFAs such as AA, DHA or EPA that can be

converted to eicosanoids or docosanoids by the action

of enzymes (COX, LO) [9,14]. Under conditions of

oxidative stress, PUFAs are oxidized by reactive oxy-

gen species (ROS) alone or in combination with en-

zymes to form bioactive signaling molecules known

as isoprostanes [30,141,151,154,162,189]. Free PUFA

and the concentrations of several oxidized products

are known to increase in the brain of AD subjects or

subjects with ischemic stroke and PUFA supplemen-

tation is neuroprotective [19,109,115]. Phospholipids

in lipid bilayers are also subject to enzymes and auto-

oxidation. LDL-associated phospholipids are more

readily oxidized to form lipids that induce inflammation

or can induce apoptosis of cells. Several hydroxylated-

derivatives of cholesterol are also formed by specific

CYP450 enzymes [131,144]. These hydroxylated or

oxidized derivatives of lipids are implicated in neurode-

generative diseases, making it important for the devel-

opment of sensitive and specific methods to measure

products.

Improvements in ionization technology, especially

soft ionization methods typified by ESI or APCI have

facilitated study of an expanding area of lipidomics

dealing with oxidized products (Table 2). This excit-

ing area of research is likely to reveal oxidized lipids

that could be biomarkers of biochemical processes (in-

flammation, immune response, infection, environmen-

tal toxicity, etc.) in the CNS. For example, our pre-

liminary studies show a significant increase in oxi-

dized lipid derived products in urine from probable AD

(pAD) and PD subjects compared to individuals with

no classifiable neurologic disease (N) (Fig. 10). These

data were obtained using the less specific thiobarbituric

acid (TBAR) assay. Thus, it is not known whether these

excreted products are brain-derived or represent a more

systemic increase in oxidative stress. Furthermore, the

mechanism by which these oxidized lipid products are

formed and excreted is not understood.

We have also used negative ion LC-ESI tandem MS

with SRM to examine 40–75 oxidized lipid products

(thromboxanes, prostaglandins, leukotrienes, HETES,
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Fig. 10. Thiobarbituric acid-reactive products in urine from normal,

AD and PD subjects- Urine samples from normal (N, n = 9), prob-

able AD (pAD, n = 19) or from PD (n = 5) subjects were reacted

with TBA. The OD at 532 nm was obtained. The mean OD for each
group was obtained and comparison between groups was performed

using non-parametric statistics for unpaired data. The p values for

pAD versus N and PD versus N are indicated.

isoprostanes) and their fatty acid precursors in hu-

man CSF. As shown by Fig. 7, several eicosanoids

are present in CSF. Total ion monitoring in combina-

tion with chromatographic methods (chiral phase chro-

matography or GC) will likely reveal hundreds if not

thousands of isomers derived from many PUFAs in

CSF. Overall, our knowledge of lipidomics in combi-

nation with free radical chemistry or with proteomics

should increase our understanding about the formation

of oxidized lipids and their utility as potential disease

markers.

6. An overview of brain pathology and lipids

In examining the structure, biosynthesis and impor-

tance of lipids in the CNS, several biochemical path-

ways and mechanisms were proposed for their role in

pathophysiology. The major pathways involve lipid

biosynthesis, oxidative and structural damage of lipids,

lipid transport and formation of signaling molecules

(Fig. 9). Lipids from the diet or obtained from de

novo synthesis are transported and catabolized in the

brain. Transport is affected by lipoproteins, lipopro-

tein receptors, albumin and binding proteins such as

PGDS/lipocalin. Lipids are transported to sites where

they are needed for nerve cell regeneration or for se-

cretion of transmitters. When the brain is under stress

due to infection, trauma or environmental factors, lipids

are also metabolized by oxygenases. Simultaneously,

lipids that control ion channels, induce inflammation,
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sleep or control pain may be formed. Lipids can be

controlled at the various points of this metabolic chain.

Impairment at any level may result in destabilization

of metabolic processes manifested by pathologic pro-

cesses linked to brain diseases. An accurate measure

of lipids or proteins that bind/transport or metabolize

lipids can help uncover what has precipitated the neu-

rodegenerative processes in the brain.

7. Conclusions

PUFAs, cholesterol, phospholipids and enzymes that

metabolize these lipids are important in brain function.

Processes that control lipid metabolism are altered in

several brain diseases. Measurement of lipid composi-

tion and examination of enzyme activity or protein lev-

els may constitute a multiplex approach for discovering

how defects in lipid metabolism affect brain physiol-

ogy. Our studies involving a combination of lipidomics

and proteomics of CSF have started to reveal how lipid-

related proteins may be linked to disease pathology.

Lipids, their oxidized products or signaling molecules

are implicated in disease mechanisms (inflammation,

oxidation, pain), and physiologic processes (sleep, re-

lease of neurotransmitters or induction of signaling cas-

cades). Discovery of lipid pathways and elucidation

of mechanisms will provide not only an indication of

what may be wrong as a disease process is initiated,

but preempt strategies to control, prevent or alleviate

symptoms of diseases.

For example, dietary supplements using PUFA-

enriched fish oils, antioxidants that prevent oxidation

of PUFAs or specific inhibitors of enzymes may be

indicated once defects in lipid specific pathways have

been discovered.
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