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Abstract

Plastic deformation of metals involves the complex evolution of dislocations forming strongly connected
dislocation networks. These dislocation networks are based on dislocation reactions, which can form junc-
tions during the interactions of different slip systems. Extracting the fundamentals of the network behaviour
during plastic deformation by adequate physically based theories is essential for crystal plasticity models.
In this work, we demonstrate how knowledge from discrete dislocation dynamics simulations to continuum-
based formulations can be transferred by applying a physically based dislocation network evolution theory.
By using data-driven methods, we validate a slip system dependent rate formulation of network evolution.
We analyze different discrete dislocation dynamics simulation data sets of face-centred cubic single-crystals
in high symmetric and non-high symmetric orientations under uniaxial tensile loading. Here, we focus on
the reaction evolution during stage II plastic deformation. Our physically based model for network evolution
depends on the plastic shear rate and the dislocation travel distance described by the dislocation density.
We reveal a dependence of the reaction kinetics on the crystal orientation and the activity of the interacting
slip systems, which can be described by the Schmid factor. It has been found, that the generation of new
reaction density is mainly driven by active slip systems. However, the deposition of generated reaction
density is not necessarily dependent on the slip system activity of the considered slip system, i.e. we observe
a deposition of reaction density on inactive slip systems especially for glissile and coplanar reactions.

1. Introduction

The plastic deformation behavior of face-centred cubic (fcc) single crystalline metals is characterized
by the phenomenon of strain hardening, especially in stage II. During strain hardening, the formation of
dislocation networks and the associated hindrance of dislocation mobility play an important role as observed
in early experimental studies [1, 2, 3]. Therefore, it is essential to understand and describe the mutual
dislocation interaction and reactions and their effects on the dislocation microstructure.

Taking into account the microstructure evolution, different continuum approaches have been developed
to represent the hardening behavior. The models introduced include physical based formulations using the
intrinsic material behaviour and phenomenological motivated formulations using extrinsic properties and
observations, e.g. [4, 5, 6]. One well-known crystal plasticity approach represents the coupling of the plastic
slip-controlled dislocation multiplication of a Kocks-Mecking formulation [7] with a Taylor- or Franciosi-like
yield stress [8, 9, 10] to consider the strain hardening, e.g. [11, 12, 4, 13, 14, 6].

The yield stress correlates with the square root of the dislocation density and Taylor uses a scalar
prefactor for the yield stress approximation [8, 9]. Franciosi et al. found that the prefactor strongly depends
on the interaction type between two slip systems and extended the Taylor law by a matrix of slip-system-wise
prefactors [10, 15, 16]. Madec et al. [17] confirm the value of the scalar prefactor of the Taylor law, which is
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estimated by theory, e.g. [18], as well as by experiment, e.g. [19], by performing discrete dislocation dynamic
(DDD) simulations. Based on DDD simulations, the influence of each individual dislocation interaction has
been explored by using the Franciosi-like yield stress and its prefactor interaction matrix [20, 21, 12, 22].
Thus, the approach of Franciosi et al. relies on a more profound consideration of the microstructure evolution
by considering details of dislocation configurations and interactions comprising reactions. Other approaches
distinguish between different types of dislocation densities, such as edge and screw dislocations [23, 14, 13,
24], including the curvature of the dislocation lines [25, 26], considering the formation of dislocation dipoles
[14, 27], and/or using separate formulations for mobile and immobile dislocations [28, 29, 24, 30].

Recently, continuum dislocation dynamics (CDD) based models have been introduced that describe
individual dislocation reactions between the single slip systems. These are dislocation annihilation due
to dislocation climb, cross-slip and collinear reactions [31, 30], dislocation multiplication due to (double)
cross-slip and glissile reactions [31, 32] as well as dislocation immobilization due to Lomer reactions and the
associated formation of dislocation networks [30]. In order to ensure the physical basis of the continuum
models one depends on knowledge transfer of the underlying length scales. A roadmap for scale bridging
different simulation approaches with additional information of experimental results is presented in [33]. The
arising challenges of connecting different length scales are addressed in [5]. Some of the limits of dislocation
based continuum theories are discussed in [34].

In order to find meaningful homogenization models for continuum crystal plasticity formulations for
dislocation network structures, there is increasing interest in data-driven methods such as machine learning
to study the microstructural behavior [35, 36, 37]. Starting from a well-defined data set, these methods
can also be applied to predict new data [38, 39]. Working with DDD simulation data sets of fcc metals
under uniaxial tensile loading, discrete distributions of dislocations were homogenized into a dislocation
density by [40, 41, 42, 43] to identify aspects of the microstructure evolution, such as the yield stress and
dislocation multiplication. In the paper from Sudmanns et al. [30], analyzes are shown for the reaction
densities of individual dislocation reactions between slip systems based on a collision rate [44] for a DDD
data set of 〈1 0 0〉 oriented aluminum single crystal under uniaxial tensile loading. The mentioned approaches
illustrate the potential of data-driven analysis to identify microstructural characteristics in the transition
regime between discrete to continuum formulations.

In this work, we use data science approaches as evaluation method for common domain knowledge such
as, e.g., commonly used continuum formulations. Based on that we extend the formulations to enable a
knowledge transfer from discrete to continuum formulations. We analyze a three-dimensional DDD data
set of uniaxial tensile tests of single crystalline aluminum cubes with varying crystal orientation. Herein,
we particularly focus on the evolution of the dislocation network structures and identify a rate formulation
for the homogenized dislocation behavior due to different dislocation reactions (glissile, coplanar, cross-slip,
collinear and Lomer). The influence of the slip system activity of the slip systems involved in the dislocation
reaction is investigated and considered as key for an averaged description.

The paper is organized as follows: Section 2 describes the general workflow, the slip system dependent
rate formulation of network evolution, and the data science methods used. The systems and data sets
considered, including Schmid factors and slip system reactions, are presented in section 3. The results of the
stress-strain response, the dislocation microstructure evolution, as well as determined reaction coefficients
and prediction qualities depending on the slip system activities are shown in section 4. These results
are discussed in detail in section 5 with emphasis on the methodology, slip system activity, and reaction
coefficients. The paper concludes with a summary in section 6.

2. Methods

We use data analysis to enable a knowledge transfer from discrete to continuum formulations. The
objective is the derivation of interpretable data-driven models, which are fully traceable. We show that the
models are able to incorporate fundamental physical processes using data science into a physically based
modelling approach.
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2.1. Workflow - from discrete to continuum

The general workflow is shown in Fig. 1. Our initial data was gained by DDD simulations, where
dislocation networks evolve during plastic deformation. The discrete data sets of DDD simulations involve
information about the local distribution of dislocations and topological connectivity, based on a graph
description of the three-dimensional dislocation network [45, 46] (see Fig. 2 in section 3). This graph
description allows to track deformation history and thus the distribution of plastic slip within the sample.

Homogenization schemes are employed to extract dislocation density representation of the initial discrete
DDD data: the discrete dislocation structure is averaged over a defined volume resulting in a dislocation
density. Moreover, we consider further discrete characteristics of DDD data set, i.e. we homogenize the
dislocation reactions within the discrete dislocation network into so-called reaction densities, and the swept
areas of dislocations, allowing the determine homogenized plastic shear strains at the level of slip systems.
In the context of machine learning, the homogenized characteristics are called features, used here for the
predictions. Additionally, feature engineering is applied, which yields a mathematical operation on single
features and on combinations of different features, respectively. Thus, feature engineering generates further
features characterizing the data. One main function of feature engineering is the transformation of nonlinear
into linear model dependencies, e.g. we transform a square rooted feature into a new feature, on which the
square root has already been applied.

Based on a set of homogenized features in order to identify and validate relationships and interactions,
the next methodological step is applying a machine learning algorithm on the homogenized data by a set of
model equations (see arrow ”Machine Learning” in Fig. 1). The model equations are reaction rate equations
to investigate the evolution of dislocation networks. The reaction evolution equations are derived by domain
knowledge which is physically based. A detailed explanation for the equations is given in section 2.2.1.
The prediction of our non-linear models can be solved by e.g. artificial neural networks or random forests
[47, 48, 49]. However, the non-linear features can be transformed to linear models by feature engineering, to
enable using multilinear regression for solving the model equations. We choose to use linear regression for
the prediction in order to reduce the model complexity and to guarantee a high level of interpretability due
to our objective of providing a traceable model. After applying the machine learning model, the regression
coefficients, the so-called reaction rate coefficients, are generated, which specify the kinetics of the reaction
density evolution.

As indicated on the right-hand side of Fig. 1, the reaction equations and the reaction rate coefficients
can be transferred to crystal plasticity continuum models in order to provide a physically based extension to
improve on the description of the dislocation network evolution. The application of the reaction equations
in continuum models is beyond the scope of this work, but its application in CDD modelling in the context
of a comparison with the existing DDD dataset is straightforward.

Each single procedure step needs to be reviewed carefully (see backward facing arrows in Fig. 1 as a
feedback loop) and, if necessary, executed iteratively, since there might be unforseen artefacts: E.g., the
chosen time step for determining the values of the rates of interest may be too small, so that the discrete
behavior of the dislocations in DDD does not allow for an adequate continuum description (material science
artefact), or the chosen time step is too large, so the data set can shrink too much (data science artefact),
which leads to a insufficient amount of data for data science methods.

2.2. Physically based model for dislocation reaction evolution

In three-dimensional DDD simulations, dislocation networks is highly entangles and complex, comprising
junctions and mobile dislocations. The dislocation network stabilizes dislocations, which can in principle
glide. While deforming the material, the dislocation network evolves. Thereby, mobile dislocations react with
both mobile dislocations or with immobile dislocations stabilized by junctions. In some instances, immobile
junctions can be re-mobilized [30]. In this work, we focus on the evolution of dislocation junctions in fcc
namely the Lomer, Hirth, glissile, coplanar, collinear and cross-slip using their homogenized characteristics.

Plastic shear based model

Regarding the incorporation of dislocation reaction processes in the continuum model, we start with the
consideration of classical phenomenological approaches based on the plastic shear rate of a slip system. In
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Fig. 1: The iterative workflow from a DDD data set to the consideration of identified mechanism within a
continuum formulation is shown.

some approaches, e.g. Roters et al [50], the plastic shear rate ∂tγ
ξ is described by a function of the resolved

shear stress τ ξ and the critical resolved shear stress τ ξcr on the considered slip system. In these formulations,
the material state is estimated using a function of the total shear γ and the total shear rate ∂tγ:

∂tγ
ξ = f(τ ξ, τ ξcr), τ ξcr = f(γ, ∂tγ) (1)

A shortcoming is that the material state is solely dependent on the critical resolved shear stress τ ξcr. A
different approach was already proposed by Taylor [8, 9] to account for work hardening. Thereby, the critical
resolved shear stress and dislocation density ρ are related by τ ξcr ∝

√
ρ. Kocks and Mecking formulated a

dislocation density model for work hardening, which is based on the theory of dislocation accumulation [7]:

dρ

dγ
=

1

b

dL

dA
. (2)

Hereby, b is the length of the Burgers vector and dL/dA is a measure for the dislocation length dL stored
after sweeping an area dA. This quotient can be approximated with dL/dA ∝ √ρ, which derives from the
reciprocal of the average dislocation spacing. Consequently, the multiplication term provides the disloca-
tion density as a function of total shear, which can be substituted into the Taylor hardening term. The
phenomenological models are easily accessible, since external parameters are more easy to measure than
internal ones [50]. However, the microstructural behaviour and size-dependent effects are not considered,
what limits this kind of models.

Dislocation density based model

Physically based models usually rely on internal properties such as dislocation density ρξ on slip system ξ.
The Orowan equation is a physical based relation between the kinetic of mobile dislocation density ρξM and
the resulting plastic slip rate ∂tγ

ξ based on the average dislocation velocity υξ [51, 52, 53]:

∂tγ
ξ = υξbρξM . (3)

Considering dislocation networks, the dislocation density ρξ can be divided into a mobile and a network
dislocation density. The mobile dislocation density ρξM is crucial for plastic deformation. The network

dislocation density ρξnet is important for hardening. Here it is subdivided into a Lomer density ρξlom and a

stabilized dislocation density ρξS . An overview is given in Zoller et al. [54]. However, in DDD, it is not trivial
to get this exact information about the different types of densities. Furthermore, in DDD the velocity has a
jagged behaviour, since dislocations can glide during one averaging time step and stop at the next time step
due to dislocations interactions. For continuum approaches, this behaviour can be averaged out by using
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larger averaging time steps or the swept area Aξ, which has been found to be a more robust parameter and
allows to calculated the plastic shear rate on slip system ξ as:

∂tγ
ξ =

b

V
∂tA

ξ. (4)

By combining Eq. 3 and Eq. 4, a simple relation for the dislocation velocity is obtained. The total plastic
strain tensor εpl of the considered volume is given by

εpl =

12∑
ξ=1

Aξ

2V

(
bξ ⊗ nξ + nξ ⊗ bξ

)
, (5)

where nξ is the slip plane normal and bξ is the Burgers vector of slip system ξ.
Starting from a slip system specific formulation analogous to Eq. 2 including the approximation by the

square root of the dislocation density, the combination with the Orowan equation (Eq. 3) provides a rate
equation of the dislocation densities on the individual slip systems with the following form:

∂tρ
ξ ∝ 1

b

√
ρ ∂tγ

ξ → ∂tρ
ξ ∝ υξρξM

√
ρ, (6)

which is also motivated by the product of the mobile dislocation density with a dislocation collision
rate φξ→ζ = f(ξ, ζ) between the slip systems ξ and ζ:

φξ→ζ =
υξ

Lζ
. (7)

Thereby, the average dislocation spacing Lζ ∝ 1/
√
ρζ is used. The collision rate approach was introduced

in [28] and was used in [4, 44, 6]. In this work, we use this relation and extend it for modelling reaction
densities, which is explained in detail in the following.

2.2.1. Uniform approach for network evolution

A reaction rate equation was introduced in [44, 6] and was applied to the dislocation network formulation
in [30]. These formulations are based on the assumption that the reaction density rate ∂tρreact is due to two
interacting slip systems with a collision rate (Eq. 7), which leads to the following relation:

∂tρreact ∝ ρξMφξ→ζ + ρζMφ
ζ→ξ with ξ 6= ζ. (8)

This leads to the following reaction rate equation:

∂tρreact = Creact

(
1

b

∣∣∂tγξ∣∣√ρζM + ρζS +
1

b

∣∣∂tγζ∣∣√ρξM + ρξS

)
(9)

The subscript ()react indicates all types of reactions (cp. Fig. 3), except for the self-interaction, but it includes
in this work also the cross-slip mechanism, which is topologically handled as a dislocation junction with zero
Burgers vector. It should be noted that the cross-slip mechanism is physically not based on the collision of
two dislocations. However, in order to apply a general approach and be aware of possible misinterpretations
of data-driven results, cross-slip is included in the analysis of the dislocation network. From the topological
point of view, the collinear and cross-slip junctions have the same properties: connecting two slip systems
which share the Burgers vector. Creact is a constant reaction dependent coefficient. The dislocation velocity
is replaced by the Orowan equation (Eq. 3) with the plastic shear rate. In addition to the mobile dislocation
density, the stabilized dislocation density contributes to all dislocation reactions and therefore to the average
dislocation spacing. This leads to the assumption that the mean distance of the interacting slip system ζ

is 1/Lζ =
√
ρζM + ρζS . With respect to the total dislocation density, which consists of mobile, stabilized
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and Lomer dislocation density1, we rewrite the average dislocation spacing to
√
ρζM + ρζS =

√
ρζtot − ρζlom.

Hereby, it is remarked, that for a mobile dislocation density on a slip system, the Lomer density on another
slip system can not be partner for any dislocation reaction.

Different levels of homogenization are applied based on the reaction rate Eq. 9. The homogenization for
each model relates to the considered number of slip systems. Thus, we introduce a individual, a summed
and a grouped model in the following, which differ in the number of constant coefficients describing the total
dislocation network evolution.

The first individual approach aims to predict the reaction density for each slip system interaction pair
individually, i.e. a reaction coefficient Cξ,ζreact is calculated for each slip system interaction between ξ and ζ.
The scale of homogenization is very fine, since each interaction is treated individually, which leads to a
modification of Eq. 9 to following equation:

∂tρ
α
react =

∑
(ξ,ζ)

Cξ,ζreact

(
1

b

∣∣∂tγξ∣∣√ρζtot − ρζlom +
1

b

∣∣∂tγζ∣∣√ρξtot − ρξlom) (10)

The interaction of the slip systems lead to a reaction density on slip system α, which is not necessarily equal
to ξ or ζ. The reaction slip system depends on the type of reaction, which is described in section 3.2. This
leads to a symmetric 12 × 12 reaction coefficient matrix with 66 different coefficients due to the symmetry
and neglecting the self-interaction for the individual approach.

For a coarse homogenization approach, we focus on the behaviour of a set of interacting slip systems.
Thereby, each set relates to the type of reaction, i.e., it consists of the interacting slip systems ξ and ζ,
which store density of a specific type of reaction. Additionally, we do not distinguish, on which slip system
the reaction density is deposited, i.e. we sum over all slip systems α for the reaction density. Based on these
assumptions, we modify Eq. 9 to the summed equation:

12∑
α=1

∂tρ
α
react = Creact

∑
(ξ,ζ)

(
1

b

∣∣∂tγξ∣∣√ρζtot − ρζlom +
1

b

∣∣∂tγζ∣∣√ρξtot − ρξlom) (11)

Hereby, each type of reaction is limited to one slip system independent coefficient Cξ,ζreact → Creact. Therefore,
this summed approach is a coarse homogenization, since there is only one reaction coefficient for each reaction
type.

The third approach is on a scale between the fine homogenization of Eq. 10 and the coarse homogenization
of Eq. 11 and matters for glissile and Lomer reactions. For the other types of reactions there is no difference
to the individual approach in Eq. 10. Thereby, groups of slip systems are considered for the reaction rate
equation. The groups are derived based on two aspects. Firstly, for the glissile reaction there is more
than one possible reaction, which leads to a reaction density on slip system α. Therefore, we group all
four interacting slip systems, which deposit reaction density on α. Secondly for the Lomer reaction, the
reaction product is counted on the two reaction slip systems by 50%. Since for our considered data set
only the total resulting reaction density on the considered slip system was used, a precise allocation into
the contributions of the individual reaction pairings is not possible in this work. However, there is the
peculiarity of Lomer reactions, that the summed reaction density of three slip systems α can be traced back
to various reactions between two slip systems ξ and ζ each, both belonging to the group of these three slip
systems (see section 3.2, e.g. slip system group {A6,B4,C1}). The two modifications for glissile and Lomer
reactions leads to the grouped equation∑

α∈A
∂tρ

α
react = Cjreact

∑
(ξ,ζ)∈B

(
1

b

∣∣∂tγξ∣∣√ρζtot − ρζlom +
1

b

∣∣∂tγζ∣∣√ρξtot − ρξlom) . (12)

1We neglect the Hirth dislocation density due to the very rare event of this reaction type in the considered data set, which
is in accordance to [42]
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Tab. 1: List of groups and amount of coefficients for the individual, summed and grouped model equations.
In the right column the number of coefficients for the activity dependent post-analysis approach is given.
The (*) indicates, where the Hirth reaction is not calculated.

Number of constant coefficients by approach:

individual summed grouped activity dependent

Glissile 24 1 12 3

Collinear 6 1 6 3

Coplanar 12 1 12 3

Lomer 12 1 4 3

Hirth 12* 1 12* 3*

Total 66 5 44 15

Hereby, each type of reaction has a number of groups j, which consist of a group of reaction slip systems
α ∈ A and of a group of interacting slip system pairs (ξ, ζ) ∈ B, where A is a set of reaction slip systems
for the interacting sets of slip systems B. The glissile reaction is divided into j = 12 groups with only one
system α per group A. The Lomer reaction is divided into 4 groups, where each group j consists of three
reaction slip systems α in A and three interacting slip systems pairs (ξ, ζ) in B. Therefore, one reaction
coefficient Cjreact results for each group j, which leads to a group of reaction coefficients for each type of
reaction. A summary of the three different approaches for Eq. 10, Eq. 11 and Eq. 12 is given in Table 1.

2.2.2. Schmid factor dependent analysis

Based on the reaction rate equations in section 2.2.1, we investigate the impact of the slip system activity
on the resulting reaction coefficients. This approach is an activity-dependent homogenization. Thereby, the
information about the activity of a slip system is estimated by the Schmid factor of each slip system.

In this work, there is a clear separation between inactive and active for the highly symmetric orientations
〈100〉, 〈110〉 and 〈111〉, whereby all active slip systems have the same Schmid factor. In contrast, the activity
of the slip systems differs for the 〈123〉 orientation (cp. Table 2). With reference to the resulting plastic shear
(see Fig. A.2 in the Appendix) and under the premise that the chosen limit is also valid for the active slip
systems in the 〈111〉 orientation, we use a minimum Schmid factor Smin of 0.25 for the separation between
active and inactive, i.e. there are four active and eight inactive slip systems for the 〈123〉 orientation. For
our approach, the interacting slip systems ξ and ζ are either both inactive or both active or one is active
and the other one is inactive. This conditional clustering by activity subdivides the reaction coefficient into
three cases:

Creact =


1
n

∑n
(ξ,ζ) C

ξ,ζ
react, if (ξ ∧ ζ) ∈ S ≥ Smin.

1
n

∑n
(ξ,ζ) C

ξ,ζ
react, if (ξ ⊕ ζ) ∈ S ≥ Smin.

1
n

∑n
(ξ,ζ) C

ξ,ζ
react, if (ξ ∧ ζ) /∈ S ≥ Smin.

(13)

The reaction coefficient Creact for each type of activity is calculated by the mean of involved n reaction
coefficients Cξ,ζreact. This leads to three activity dependent coefficients for each reaction type (see Table 1).

2.2.3. Regression modelling

In this work, we solve the reaction density rate equations of section 2.2.1 by multi linear regression
models. In the multiple linear regression (MLR) model, there are linear models in all features. Therefore,
the model has a linear dependency of the target with different coefficients, features and an error term, which
has the form y = Xβ + ε, where y are the target values, X is the matrix of features and ε is a constant
error, e.g. the bias of the prediction. The coefficients β are estimated by a least-square estimator. The
quality of the regression model is the coefficient of determination R2, which has a range ∈ (−∞, 1], since the
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error term ε is set to zero 2. We choose a zero error term, since we evaluate our physical based formulations
of section 2.2.1, which do not contain any additional term. In our model, the reaction density rates are used
as the target values and the variables of the right-hand side of the reaction rate equations are treated as the
features.

It is of great importance in the field of physics-based analysis of dislocations, that the way of modelling
is traceable. This can not be provided by a more complex approach in data science like neuronal networks,
whose algorithm leads to black box models, which is a non-parametric approach. Thus, physical theories
can not be proven adequately. Therefore, we use linear regression models, which are parametric approaches.
Thus, it leads to a traceable and introspective models, so-called knowledge-based models or white box models,
respectively.

3. System and data set

Based on the DDD code described in [55, 45, 56, 46], simulations of tensile tests on fcc single crystalline
aluminum have been performed. The simulations are carried out six times each for four crystal orientations
which leads to 24 DDD simulation data sets. The crystal orientations considered are 〈100〉, 〈110〉, 〈111〉, and
〈123〉. The orientations 〈100〉, 〈110〉, and 〈111〉 are high symmetry multi-slip orientations, while orientation
〈123〉 is a single slip (non-high symmetry) orientation.

For the preparation of the data, we homogenize the discrete characteristics within the system by de-
riving continuum variables, like e.g. the dislocation density (see section 2). Discrete structures and their
homogenized dislocation density distribution is shown in Fig. 2. In the remained of the paper the averages
over the total system volume are used for the analysis of the reaction density.

3.1. Geometry and initial set up of DDD simulations

The following properties are used for aluminum: lattice constant a ≈ 0.404 nm; shear modulus µ =
27 GPa; Poisson ratio ν = 0.347. A drag coefficient of D = 10−4 Pa · s is chosen. The simulation framework
allows for cross-slip. The cubic specimen’s volume is (5 µm)3. Regarding the boundary conditions, the
displacement of the bottom surface of the cube in tensile direction (y-direction) is fixed. Additionally the
rotational degrees of freedom of the sample are fixed. At the top surface the displacement in y is prescribed
corresponding to an applied total strain rate of ε̇tot = 5000 s−1. The remaining d.o.f. on the top and bottom
surfaces (x and z direction) are traction free. The total strain εtot reaches up to 0.3% for the 〈110〉 and
〈111〉 orientations and up to 0.5% for the 〈100〉 and 〈123〉 orientations. The DDD framework [45] uses a
sub-incremental scheme. The dislocation structure evolves over many sub-time steps and only every 100 to
500 sub-time steps leading to the time step used from hereon the boundary conditions are updated.

The Schmid-Boas notation for the fcc slip system is used. The letters A, B, C and D stand for the slip
plane normal. The numbers 1 to 6 mark the possible Burgers vectors in fcc [57] as shown in Table A.1 in
the Appendix. Additionally, we use the DDD numbering of the slip systems from 1 to 12. In Table 2, the
DDD numbering and the Schmid-Boas numbering are contrasted for a better understanding.

The activity of each of the twelve slip systems depends on the crystal orientation and is described by the
Schmid factor Sξ. Table 2 shows the Schmid factors for all investigated orientations. For the high symmetry
orientations, in 〈100〉 there are eight, in 〈111〉 there are six, and in 〈110〉 there are four active slip systems.
For high symmetry orientations, the Schmid factors are equal on active slip systems and zero for inactive
slip systems. Nine slip systems are non-null in the non-high symmetry orientation 〈123〉, but with unequal
Schmid factors. The DDD framework assumes small strain thus no crystal rotation and change in Schmid
factor occur. Consequently, the constant Schmid factors can be calculated a priori.

For an ideal external tensile stress in y direction (σ = σyy ey⊗ ey), the Schmid factors are calculated by∣∣τ ξ∣∣ =
∣∣Mξ · σ

∣∣ = Sξ |σyy|. Here, Mξ denotes the Schmid tensor defined by the dyadic product of the slip
direction dξ = 1

b b
ξ and the slip plane normal: Mξ = dξ ⊗ nξ.

2Remark for coefficient of determination R2: The coefficient of determination is an indicator of how well the model predicts
the target data. If MLR is applied with a non-null error term ε then R2 ∈ [0, 1]. If the error term ε is fixed to a zero vector,
then R2 ∈ (−∞, 1], since the prediction can be worse then the mean target value.
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(a) Initial relaxed configuration at εtot = 0.0% (b) Dislocation configuration at εtot = 0.5%

Fig. 2: Spatial dislocation distribution in the original DDD data set (respectively left) and the homogenized
dislocation densities in the central x-y cross section at z = 2.5 µm (respectively right) for one data set in 〈100〉
orientation of (a) the initial relaxed configuration and of (b) the dislocation configuration at εtot = 0.5%.

Tab. 2: Schmid factors of 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation for each slip system. The Schmid-Boas
notation of the slip systems is indicated with SB and the DDD numbering is indicated with iDDD.

SB A6 A2 A3 B4 B5 B2 C1 C5 C3 D4 D1 D6

iDDD 1 2 3 4 5 6 7 8 9 10 11 12

〈100〉 0.41 0.41 0.00 0.00 0.41 0.41 0.41 0.41 0.00 0.00 0.41 0.41

〈110〉 0.00 0.41 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.41 0.41 0.00

〈111〉 0.27 0.00 0.27 0.00 0.00 0.00 0.27 0.00 0.27 0.00 0.27 0.27

〈123〉 0.35 0.12 0.47 0.35 0.17 0.17 0.00 0.00 0.00 0.12 0.29 0.17

The initial dislocation microstructures used for the tensile tests were obtained by a relaxation procedure
established in [58, 44], aiming at structures free of artificial pinning points e.g. through Frank-Read sources.
The relaxation procedure was started with randomly distributed circular loops of various size which may
also be partly outside the volume (so called virtual dislocations). The structures relaxed using traction free
boundary conditions and a highly interconnected dislocation networks are obtained. The relaxation was
stopped after reaching a constant dislocation density. The initial relaxed dislocation density ρ0 is in the
range of 1.0− 1.5× 1013 m−2 for the 24 data sets.

3.2. Reaction types in dislocation networks

The data structure of the DDD model can be described as a graph: there are nodes which are connected to
segments, representing a straight dislocation section. There are two type of nodes, the first kind is topological
necessary and connects to more than two segments and the second type connects to two segments only and
served mainly to discretize (curved) dislocation lines. Moving dislocation segments may collide on form
junctions, which requires reconnecting the dislocation lines at nodes of the first kind. A dislocation junction
is bounded by nodes of the first kind. A junction consists of a superposition of segments: each loop involved
in the junction contributes one segment. This data structure allows to determine the plastic slip due to each
dislocation of a configuration with respect to a reference configuration, e.g. the initial configuration. We
focus on binary reactions, thus, ternary and more complex reactions are neglected in our work [44, 59]. In
our DDD framework, the dislocation junction with finite resp. zero Burgers vector are named physical resp.
virtual junctions [45].

1. Physical junctions have a finite Burgers vector: in fcc these are the Lomer and Hirth lock. Both are
sessile and their respective endnodes may only slide along the intersection line of the two glide planes.
The reaction length is attributed to the two interacting slip systems. The reaction density for Lomer
and Hirth reactions is assigned equally by 50% each to the two interacting slip system.
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Interaction between
Slip Systems:

Self-Interaction
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Glissile (Same Plane)

Glissile (Different Plane)

Collinear & Cross-Slip

X Reaction Slip System

Fig. 3: On the left the simulation volume is shown. In the centre the four investigated crystal orientations
〈100〉, 〈110〉, 〈111〉 and 〈123〉 are shown. On the right the interaction matrix for the twelve slip systems in
Schmid Boas notation (and its number) for a fcc crystal is shown. The interaction matrix is symmetrical.
The different coloration of the glissile reactions has a purely visual aspect in order to recognize the slip
systems involved more easily. Within the cells the slip system of the reaction product is noted.

2. Virtual junctions have a zero net Burgers vector. They serve to track the topology and the virtual
segment length is distance between the respective endnodes. Glissile, collinear and coplanar junctions
are treated as virtual junctions. For a glissile junction a segment of a new glide loop is added to
the junction during formation. The collinear junction captures the annihilation of two dislocations.
The coplanar junctions involves two dislocations on the same slip plane but different Burgers vector
leading to a new glide dislocations within the plane. The concept of virtual dislocation and junctions
is detailed in [45, 59].

In addition, the cross-slip mechanism is included in the investigation and measured similarly to the virtual
junction approach. The distance between the start and end point of the cross-slip sector is determined.

Fig. 3 shows the interaction matrix for interacting slip systems, whereby the slip system of the reaction
product is written in the cells of the matrix. The color coding relates to the reaction mechanism. The
glissile reaction is split up into reactions, whose reaction product lies on the same plane as the considered
slip system and whose product lies on the partner’s plane, respectively. Due to the rare occurrence of the
Hirth reaction (energetically not very favourable), we do not investigate Hirth reaction in detail.

4. Results

The results are presented as follows. First, a general overview of the DDD simulation results is given
in section 4.1 followed by the results of the dislocation reaction evolution model in section 4.2. Based on
the model results we apply an activity dependent approach, whose findings are presented in section 4.3. An
in-depth analysis of the activity dependency is shown by individual specific Lomer and glissile reactions in
section 4.4.

4.1. DDD simulation results

The resulting stress-strain curves of all DDD simulations are shown in Fig. 4a. Each single simulation
has a jagged stress-strain curve during plastic deformation. An orientation dependency for the stress-strain
curves is observed as expected from the different Schmid factors for the high symmetry orientations, the
initial yield strength in 〈111〉 orientation is around 60 MPa and therefore higher than in 〈100〉 with around
45 MPa or in 〈110〉 and in 〈123〉 with around 40 MPa. We observe a significant hardening for the 〈100〉
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Fig. 4: Evolution of the normal stress and the total dislocation density over the total strain in 〈100〉, 〈110〉,
〈111〉 and 〈123〉 orientations. Thin lines indicate single simulation and bold lines indicate the mean of the
simulations for each orientation.

orientation and a weak hardening for the 〈111〉 orientation. No hardening is detected in the other orientations
except a small stress drop after reaching the initial yield strength.

The evolution of the total dislocation density during the deformation is shown in Fig. 4b. The different
initial dislocation densities can be seen on the y-axis intercept, with the initial dislocation density deviating
more than in 〈100〉. Apart from a small dip, due to the activation of weak elements in the initial realaxed
dislocation network, barley any change of the dislocation density is visible during the elastic regime. During
plastic deformation the dislocation density increases constantly for all orientations. The dislocation density
evolution in 〈111〉 shows the highest slope. The dislocation density increase for the 〈100〉 orientation is
slightly stronger than for the 〈110〉 and 〈123〉 orientations.

The evolution of the fractions of ”simple” glide sections of dislocation and sections involved in reactions
are displayed in Fig. 5. For each category the total line length is calculated and normalized. The results
for each orientation are averaged over all six simulations. The initial reaction configuration are very alike
among the orientations and differs only slightly, e.g. the coplanar reaction is less present in 〈100〉 than in
〈123〉. We observe a slight change of the fractions in the elastic regime and a more significant change during
plastic deformation. The fraction of coplanar, cross-slip and collinear reactions rises while straining whereas
the fraction of Lomer and glissile reactions as well as of mobile, so-called simple, dislocations decreases. The
Hirth reaction has barely any contribution. A major difference concerns the fraction of cross-slip, which rises
more sharply in the plastic regime after a strain of 0.1% in 〈100〉 and in 〈111〉 than in the other orientations.
The figure is cut at a strain of 0.3% for better comparability among the orientations. The evolution of the
number of junctions and their average length is shown in Fig. A.1 of the Appendix.

4.2. Physically based dislocation reaction rate models

The coarse homogenization approach of the summed reaction density evolution, see Eq. 11, provides
one constant coefficient Creact for the behaviour of all interactions of each reaction type. Table 3 lists the
reaction type dependent and orientation dependent results of the coefficients and the model quality R2. The
model quality exceeds 0.42 for all of the reaction rate predictions except for the Hirth reaction and reaches up
to 0.98. The model prediction performs better for the collinear reaction and the cross-slip mechanism than
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Fig. 5: The average fraction evolution of mobile, so-called simple, dislocations and reactions with respect to
all dislocations and reactions over the total strain εtot in the 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation. Simple
dislocations as well as Lomer and Hirth reactions are physically existing junctions, whereas the reactions
indicated with a (*) are virtual junctions. The Hirth reaction is very rare, which is why it is barely visible.

Tab. 3: Results of the coarse homogenization by using the summed Eq. 11, which provides one constant
reaction coefficient for all interactions of each reaction type. The constant reaction coefficients Creact and
the model qualities R2 are presented for 〈100〉, 〈110〉, 〈111〉 and 〈123〉 crystal orientation.

〈100〉 〈110〉 〈111〉 〈123〉
Creact R2 Creact R2 Creact R2 Creact R2

Collinear 0.5777 0.90 0.5488 0.86 0.6448 0.96 0.5933 0.82

Glissile 0.0647 0.72 0.0823 0.53 0.1090 0.98 0.0937 0.56

Lomer 0.0320 0.64 0.0552 0.54 0.0704 0.94 0.0544 0.63

Hirth 0.0008 0.08 0.0001 0.04 0.0001 0.12 0.0009 0.01

Coplanar 0.0635 0.59 0.1105 0.59 0.1377 0.96 0.1330 0.42

Cross Slip 1.3920 0.88 0.6107 0.81 1.3138 0.97 0.6269 0.82

for the other reactions. The reaction dependent model qualities in 〈111〉 orientation are above the model
qualities in the other orientations, especially for glissle, Lomer and coplanar reactions. The reaction rate
coefficients are strongly reaction type dependent. The coefficients of collinear reactions and of the cross-slip
mechanisms are about one order of magnitude larger than glissile, coplanar and Lomer reactions and up
to three orders of magnitude larger than the Hirth reaction. Reactions with finite Burgers vector (physical
lines) like Lomer and Hirth have a strong propensity to smaller reaction coefficients than reaction with
zero net Burgers vector (virtual reactions). Combining the results of the model qualities and the reaction
coefficients, there is the tendency for a better model quality the higher the reaction coefficient.

The grouped approach leads to symmetric slip system dependent heatmaps, which are shown in Fig. 6
for all considered orientations. No obvious pattern is visible. We observe a tendency that more reaction
density rates are in accordance with our model for 〈100〉 orientation than for the other orientations, since
darker read corresponds to a better model quality. The model qualities show high values for most of the
colored squares in 〈111〉 orientation. Only a few slip system interactions are in accordance with our model
in 〈110〉 and 〈123〉 orientation.

We condense the information of the heatmaps in Fig. 6 by aggregating each reaction type except for
Hirth in each orientation. The result is present in the low transparent (pale colored) box plots in Fig. 7. We
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Fig. 6: Slip system dependent heatmaps for 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation by using the grouped
Eq. 12. The colored background indicates the model quality R2, which reaches from negative values (here
cut off at 0.0) up to 1.0 (see section 2.2.3). Red squares indicate good model quality, white squares a bad

model quality. The coefficients Cξ,ζreact of each interaction are printed inside the squares.

observe a large deviation for the model qualities R2 for each reaction type in Fig. 7a. The Lomer reaction
rate can be predicted best whereas our model fails for the other reaction types especially the coplanar
reaction rate prediction. An orientation dependence can not be identified.

The results for the coefficients Cξ,ζreact are shown in Fig. 7b. A large deviation of the coefficient values is
visible for collinear and coplanar reaction as well as for the cross-slip mechanism. The coefficients of glissile
and Lomer reaction vary less than the coefficients of the other mechanisms. The reaction coefficients are up
to one order of magnitude smaller for glissile, Lomer and coplanar reactions than for the glissile reaction
and cross-slip, which have both a net zero Burgers vector. The value of the coefficients resembles in the
different orientations except for the cross-slip mechanism, where the values are higher in 〈100〉 and 〈111〉
orientation than in the other orientations.

4.3. Activity dependent model results

In this section, the results of the grouped approach of Eq. 12, which are presented in section 4.2, are
subdivided by the activity of the interacting slip systems, i.e. into active-active, active-inactive and inactive-
inactive interacting slip systems. For collinear and coplanar reactions as well as for the cross-slip mechanism,
this subdivision is applicable due to the consideration of only two interacting slip systems for each model
equation. In the grouped approach of Eq. 12 we considered groups of slip systems for the model equation for
Lomer and glissile reactions, therefore the activity dependent subdivision for these reactions requires further
declarations. For the Lomer reaction densities, summed up within the respective slip system groups, the
three respective slip systems are relevant in the grouped approach. We consider the interaction as inactive-
inactive, if none of the three slip systems is active, as active-inactive, if one of three slip systems is active,
and as active-active, if two of the three slip systems are active. E.g. the slip system group {A6,C1,B4}
belongs to the inactive-inactive reactions in 〈110〉, while in 〈100〉 it belongs to the active-active reactions.
For the glissile reaction densities, two reaction pairs, each with two slip systems involved, are relevant for
the model in the grouped approach. We choose the interaction as inactive-inactive, if both reaction pairs
consist of at least one inactive slip system, as active-inactive, if only one of the two reaction pairs consists
of two active slip systems, and as active-active, if all slip systems are active.

The consideration of the slip system activity changes the results of the heatmap in Fig. 6. The activity
dependent result is shown in Fig. 8. We observe that the continuum reaction rate model is not able to predict
the interaction between two inactive slip systems as can be seen by the bad model qualities R2. In contrast,
the model can predict most of the interactions with at least one active slip systems. If two slip systems
are active, the model performs best. There are some outliers for the inactive-inactive interactions, which
have good model qualities as well, and for the active-inactive interactions, which seem to be not predictable.
The reaction coefficients Cξ,ζreact are subdivided by the activity dependent approach as well. High reaction

13



Collinear Glissile Lomer Coplanar Cross Slip
Reaction Type

−4

−3

−2

−1

0

1

C
oe

ffi
ci

en
t

of
d

et
er

m
in

at
io

n
R

2

Orientation

〈100〉 〈110〉 〈111〉 〈123〉

(a) Coefficient of determination R2

Collinear Glissile Lomer Coplanar Cross Slip
Reaction Type

0.0

0.5

1.0

1.5

2.0

2.5

C
oe

ffi
ci

en
t
C
re
a
ct

Orientation

〈100〉 〈110〉 〈111〉 〈123〉

(b) Coefficient Creact

Fig. 7: Box plot of (7a) the model quality R2 and of (7b) the reaction coefficients Cξ,ζreact for each type
of reaction and for each orientation. The plots shown in pale color display the condensed results of the
heatmaps in Fig. 6. The plots shown in highly saturated color display the condensed results after the
exclusion of the interactions between inactive slip systems (see section 4.3). The whiskers are defined at
1.5% and 98.5%, the box defines the lower and the upper quartile and the median is shown by a thick line.
The reduction of deviation is visible.

coefficients appear for inactive-inactive interactions, whereas active-inactive and active-active interactions
have smaller reaction coefficients. The reaction coefficients vary only slightly with at least one active slip
system, whereas the reaction coefficients spread largely for the inactive-inactive interaction.

The subdivision by activity classifies the model into two groups, i.e., into the group with interactions
between two inactive slip systems and into the group with interactions of at least one active slip system. In
the following, we observe more closely the group of interactions with at least one active slip system.

The exclusion of inactive-inactive slip system interactions leads to the highly saturated boxplots in
Fig. 7, whose quantitative results are listed in Table 4. The mean model quality R2 increases strongly
and its deviation reduces significantly (see Fig. 7a). The model qualities are greater than zero for all
reaction types except for the coplanar reaction, where some model qualities are smaller than zero (see
Fig. 8). The improvement of the mean model quality by only including slip systems with at least one active
slip system is evident in contrast to the consideration of every slip system. The deviation of the reaction
coefficients Cξ,ζreact is strongly reduced and the coefficients tend to approach to specific values (see Fig. 7b).
Small orientation dependent reaction coefficient differences are visible for all reaction types. The activity
dependent subdivision does not change the outcome, that the cross-slip mechanism has higher coefficients in
〈100〉 and in 〈111〉 orientation than in the other orientations with respect to the results of section 4.2. There
is the peculiarity in 〈100〉 orientation, that there is no difference before and after the application of the
activity dependent approach for the glissile, Lomer and coplanar reaction, which can explained by Table B.1
in the Appendix. Due to the eight active slip systems in 〈100〉 orientation, there is no inactive-inactive slip
system interaction for the glissile, Lomer and coplanar reactions.

As indicated in Table 4, the model show the highest R2 values (correlating with the model quality)
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Tab. 4: Result of the mean reaction coefficients, their standard deviation and the mean model performance
of each reaction by using the grouped approach of Eq. 12 with exclusion of interactions between two inactive
slip systems, i.e. at least one slip system is active for each interaction. The results are listed in 〈100〉, 〈110〉,
〈111〉 and 〈123〉 orientation for each type of reaction.

〈100〉 〈110〉 〈111〉 〈123〉
Creact R2 Creact R2 Creact R2 Creact R2

Collinear 0.569 ± 0.009 0.78 0.508 ± 0.016 0.83 0.646 ± 0.011 0.94 0.615 ± 0.123 0.67

Glissile 0.079 ± 0.030 0.37 0.059 ± 0.007 0.26 0.129 ± 0.053 0.84 0.071 ± 0.032 0.46

Lomer 0.032 ± 0.001 0.43 0.049 ± 0.003 0.64 0.070 ± 0.005 0.86 0.052 ± 0.012 0.50

Coplanar 0.077 ± 0.030 0.16 0.080 ± 0.034 0.24 0.156 ± 0.067 0.55 0.174 ± 0.138 0.22

Cross Slip 1.398 ± 0.017 0.80 0.583 ± 0.032 0.81 1.323 ± 0.084 0.94 0.720 ± 0.132 0.72

for the collinear reaction and the cross-slip mechanism, somewhat lower values for the Lomer reaction,
and the lowest values for glissile and coplanar reactions. Regarding the orientation, the model show the
highest model quality in 〈111〉 orientation, where all reaction types except of the coplanar reaction have an
R2 > 0.84.

The mean coefficients Cξ,ζreact are reaction dependent, i.e., the coefficients of the reaction types can differ
up to an order of magnitude, whereby the collinear reaction and the cross-slip mechanism have higher
reaction coefficients than the other orientations. The mean reaction coefficients Cξ,ζreact show an orientation
dependence. We observe the tendency of higher reaction coefficients in 〈111〉 orientation. However, the
reaction coefficients show not a clear trend for all reaction types in all orientations. Thus, we detect a
coupled dependency on reaction type and orientation. We observe that the standard deviation of the
reaction coefficients is small compared to the coefficients themselves. This observation is even stronger for
the collinear and Lomer reactions as well as for the cross-slip mechanism. We observe that the standard
deviation with respect to its coefficients is larger for the non-high symmetric 〈123〉 orientation than for the
high symmetric orientations. No orientation dependence is visible for the standard deviation in the high
symmetric orientations.

4.4. Detailed model investigation of specific slip system interactions

We investigate the reaction rate model in detail by analyzing specific slip system interactions in a specific
orientation. As described in section 4.3, we classify the interactions into two groups, i.e. into a group with
inactive slip systems and into a group with at least one active slip system. We focus on the Lomer and the
glissile reaction, since the reactions consist of three and four slip systems, respectively, due to the grouped
approach. We investigate the data in 〈111〉 orientation due to the peculiarity for the glissile reaction, that
there is the case of interactions of four active slip systems as well as four inactive slip systems.

The prediction of the reaction rate of Eq. 12 is plotted over the ground truth, which is equivalent to the
measured reaction rate in our data sets. We compare the model for the interaction of (a) active slip systems
with the interaction for (b) inactive slip systems for the Lomer reaction in Fig. 9 and for the glissile reaction
in Fig. 10. Additionally the distribution of the predicted and the ground truth values are plotted on the
right and on the top axis, respectively.

Fig. 9a shows the model prediction for the Lomer reaction with two of the three involved slip systems
active, i.e., for any combination between the active slip systems (A6 and C1) and the inactive slip system
(B4) at least one slip system is active. The model shows a good agreement with the data with a R2 of
0.847. Both distributions have a peak at approximately the same value, which indicates a good agreement
as well. In Fig. 9b the interactions of the slip systems A2, C5 and D4 are used, which are all inactive.
We observe a scattering behaviour of our model, which means that the model is not able to predict the
inactive interactions adequately. The model quality of R2 = 0.108 as well as the different distribution curves
underline the poor model performance.
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Fig. 10a shows the model prediction of the interactions between A6 and C3 and between A3 and D6,
whereby all slip systems are active and whereby both interactions create glissile reaction density on the slip
system A2. The model quality is close to the perfect fit with a R2 of 0.935, although the distributions differ
slightly between the predicted and the ground truth value. In Fig. 10b the interactions between the inactive
slip systems A2 and B5 and between B2 and C5 are investigated, which create glissile reaction on the slip
system B4. Our model shows a high scattering, which is confirmed by a R2 of -1.324 3 , which means that
the performance is worse than a horizontal line. The distributions seem to be Gaussian distributions.

We observe for other slip system combinations that the model performs well in 〈111〉 for the Lomer and
glissile reaction, the more slip systems are active. The collinear reaction and the cross-slip mechanism show
good model performance as well for the interaction of active slip systems, whereas the model shows a slight
scattering for the coplanar reaction. The model performs well in the other orientations, but slightly worse
than in 〈111〉 orientation.

3Reminder: If R2 = 1 the prediction is perfect, if R2 = 0 the prediction is not better than a horizontal line and if R2 < 0
the prediction is worse than a horizontal line.
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(a) Active slip system interactions for the Lomer reac-
tion: The involved slip systems are A6, B4 and C1. The
prediction model score is R2 = 0.847.
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(b) Inactive slip system interactions for the Lomer reac-
tion: The involved slip systems are A2, C5 and D4. The
prediction model score is R2 = 0.108.

Fig. 9: Reaction density rate prediction of the grouped model versus ground truth values (measured reaction
density rate) of specific slip system reactions for the Lomer reaction in 〈111〉 orientation. The dashed red
line indicates the perfect fit.
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(a) Active slip system interactions for the glissile reac-
tion: The involved slip systems are A6, C3, A3 and D6
and create reaction length on slip system A2. The pre-
diction model score is R2 = 0.935.
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(b) Inactive slip system interactions for the glissile re-
action: The involved slip systems are A2, B5, B2 and
C5 and create reaction length on slip system B4. The
prediction model score is R2 = −1.324.

Fig. 10: Reaction density rate prediction of the grouped model versus ground truth values (measured reaction
density rate) of specific slip system reactions for the glissile reaction in 〈111〉 orientation. The dashed red
line indicates the perfect fit.
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5. Discussion

In this work, we present a data-driven analysis of dislocation networks by investigating fcc single crystals
in 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation under tensile loading. We focus on rate equations for dislocation
reactions, i.e. Lomer, Hirth, glissile, collinear and coplanar as well as the cross-slip mechanisms. We use
data scifence methods to determine constant, reaction type dependent and orientation-dependent coefficients,
whereby the number of coefficients depends on the used reaction rate model. We show that the reaction rate
model can be improved by adding the information about the slip system activity. The investigation aims
to evaluate physical-based formulations for dislocation network evolution based on DDD simulation data.
Furthermore, it aims to detect constant reaction coefficients for the characterization of the reaction kinetic
as well as to transfer microstructural information from discrete to continuum modelling.

5.1. Methodology

Three dimensional dislocation networks have a complex topology, since dislocations interact strongly with
each other and thereby form junctions. To characterize the behaviour of the whole dislocation network during
plastic deformation both data-driven methods for analysis due to the high complexity and to analyze the
network in a homogenized volume-based approach for transferring information to higher scaled continuum
based approaches are applied.

The application of data-driven methods fundamentally relies on the data quality. Since the amount of
experimental data on dislocation reaction details in 3d needed for data-driven investigations is not available
so far, synthetic DDD data is used to surrogate this fact. The comparability of the DDD data to experimental
data has been investigated in literature [60, 61, 41]. Thus, a general acceptance of DDD data as database is
presumed [62, 40]. Qualitatively, experiments of tensile tested fcc single-crystals are in good accordance with
DDD results considering stress-strain curves with respect to the yield stress of the crystal orientations, i.e.
the yield stress is larger in 〈111〉 and 〈100〉 orientation compared to 〈110〉 and 〈123〉 orientation [63, 64, 65, 16].
However, the investigated DDD data shows slightly lower hardening compared to the the aforementioned
experiments (see Fig. 4a). A reason might be the formulation of the cross-slip mechanism within the DDD
framework. This mechanism has a major impact on the hardening rate as discussed in [41] or may even
lower the overall hardening rate as shown in [56]. Nevertheless, the qualitative comparability of the DDD
results with experiments is given and thus, the quality of the data base considered in the present analysis is
considered to be sufficient to ensure a physically significant data-driven analysis.

We observe a homogenization limit for the reaction rate equations in the considered cases, since the model
fails for prediction of the individual approach of Eq. 10. This problem origins from the fact that within
the considered data sets the deposited reaction product can not be traced back to a specific slip system
dependent interaction for the Lomer and the glissile reaction. Therefore, we introduce the grouped approach
of Eq. 12. Thus, the homogenization limit for the continuum modelling of reaction rates starts at the
scale, at which the backtracing of the reaction products is no longer possible. Former analysis investigated
each reaction mechanisms isolated [21, 12, 22]. Recent research focuses more on the dislocation network
and its evolution [42, 30, 41, 40]. This work links the approaches of investigating dislocation networks
with generating reaction coefficients for each type of mechanism. In contrast to the isolated investigations,
a three-dimensional dislocation network behaves more complex and therefore our goal of finding reaction
coefficients of individual reactions within the network is not trivial.

Including the slip system activity complements our theory of network evolution. The estimation of the
slip system activities using the respective Schmid factors calculated a priori seems to be sufficiently accurate
(compare Table 2 and Fig. A.2). The applicability of the current model is limited to interactions with at least
one active slip system. The role of the reaction densities of inactive slip systems in the overall microstructure
evolution is uncertain. It is observed that active rather than inactive interacting slip systems are primarily
the drivers of the newly evolved reaction length (compare the absolute values of the interaction of active
and inactive slip systems in Fig. 9 and Fig. 10 in (a) and (b), respectively). However, the dislocations on
the inactive slip systems also serve as necessary reactants for the dislocations on the active slip systems.
It should be noted that dislocations on inactive slip systems can also be formed by the reaction product
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of active slip systems. Further studies are needed to clarify whether and under which circumstances the
interaction of inactive slip systems might be neglected.

Two important questions arise with respect to the reaction coefficients for the reaction rate equations:
(I) What do the coefficients tell about network evolution and (II) how the coefficients themselves need
to be interpreted in context of continuum modelling. For (I) we show a qualitative difference between
the junctions of this system and we assume that the absolute values of the coefficients are meaningful for
the network evolution due to the good model qualities for the 24 DDD data sets including four different
orientations. However, a good model prediction in the considered cases does not necessarily mean that the
model is physically profound. Therefore, we need to confirm the model with further data in future studies.
For (II), we assume that the Lomer reaction coefficient can be interpreted easily, since it represent an non
zero Burgers vector dislocation segment in DDD, i.e., the higher the coefficient, the higher the impact on
the evolution of Lomer density. Therefore, we assume that this coefficient value can be transferred directly
to continuum approaches. The other mechanisms (except the Hirth reaction) consist of virtual segments
in our DDD dislocation structure. Thus, the correlation of the change in virtual segment lengths with the
newly formed physical dislocation lengths on the reaction slip system has to be investigated. Nevertheless,
we assume the transferability in continuum approaches for topological reasons, e.g., in the DDD dataset, a
dislocation segment newly generated by a glissile reaction is described by both a physical dislocation line
from the start to the end point and a virtual dislocation line closing the loop on the slip system.

In this work, the dislocation network is considered as a black box format. The input variables are
acquainted and the discrete state of the network after a certain straining can be measured, but how the
network behaves as a whole is physically not clear. Therefore, we use a hybrid approach by combining
theoretical considerations, which lead to physically based rate equations derived from domain knowledge,
with machine learning tools, i.e. with linear regression. Our data-driven tool should be as transparent as
possible, since we want to proof our physics-based theory without any tool dependent artifacts. Models
with clear transparency are so-called white-box models. This hybrid approach, a so called grey-box model,
is crucial for the data-driven analysis of physical-based dislocation modelling, in order to validate physically
based theories. The results of this work show that this method is suitable for the theory of dislocation
network evolution. Limits of the theory are demonstrated, e.g., the activity dependent approach is discussed
in section 5.2 and the limit of homogenization scale as well as the limit of model performance for certain
reactions are discussed in section 5.3. The model proposed in this work might be oversimplified, but based
on this work’s methodology other linear or nonlinear physically based models derived by domain knowledge
can be verified.

5.2. Slip system activity

We showed that the generation of new reaction density strongly depends on the activity of the interaction
between individual slip systems. Based on our model results (see section 4.3 and section 4.4), we can clearly
point out that (I) for each interaction mechanism, the slip system activity and therefore the amount of
swept area by dislocations of each slip system controls most of the quantitative amount of the generated
reaction density and that (II) the newly generated reaction density by slip system interactions is not tied to
the active slip systems, but can be deposited on inactive slip systems as well. This mechanism is observed
strongly for the glissile and the coplanar reaction. Fig. 9a and Fig. 10a show a strong correlation with our
grouped model for the Lomer and the glissile reaction, respectively, and we observe this strong correlation
for the other reactions as well. The specific glissile reaction in 〈111〉 orientation between A6 and C3 and
between A3 and D6 deposit reaction density on A2, which is an inactive slip system, where no plastic shear
occurs. The increase of dislocation density on inactive slip systems was formerly reported in [66, 44], where
it was contributed to the glissile reaction as well.

We choose the activity dependent model as inactive, when there is at least one inactive slip system for
each of the two individual glissile reactions. This might explain the blue cross marker outliers showing a good
prediction on the right bottom in Fig. 8. Since both glissile reactions can occur between an inactive and an
active slip system, the interaction is counted as inactive in total, although the active slip system contributes
to the increase of reaction density. In general, when inactive slip systems interact with each other, barely
any reaction density results. However, the coefficients for the interaction of inactive slip systems are way
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higher compared to interactions with at least one active slip system. We assume that this is on the one
hand a scattering effect of DDD simulations and on the other hand an interaction, which our model can not
depict. Fig. 9b and Fig. 10b show that the model is not able to predict the inactive interactions.

The summed approach is in accordance to the DDD data, thus, the overall influence of the inactive slip
system interactions on the reaction densities can be considered as small, which is illustrated in Fig. C.1
in the Appendix. Comparing the quantitative values of the reaction density evolution, inactive and active
interactions differ by an order of magnitude. Like the glissile reaction, the coplanar reaction creates a new
reaction density on a slip system, which does not belong to the two interacting slip systems and might belong
to the inactive ones. This mechanism is investigated in detail in [41], where the coplanar reaction contributes
additionally to the dislocation density rate. The fact that the Lomer reaction density is contributed by 50%
to each of the two interacting slip systems, can lead to a deposition of Lomer density on an inactive slip
system as well, if only one of the two interacting slip systems is active. An increase of reaction density on
an inactive slip system is visible in Fig. 9a, where only two of the three slip systems are active.

In section 4.2 we show that the summed approach of Eq. 11 is applicable for all types of reaction, except
for Hirth. Due to the rare, singular occurrence of Hirth reactions, as seen in Fig. 5 and which was observed
in [59, 30] as well, the continuum approach is not able to reproduce this reaction. However, the other
reactions, as well as the cross-slip mechanism, are in good agreement with the summed model. If sporadic
reactions occur for which a reaction formation yields a very small gain in elastic energy, such as for Hirth
reactions, the model cannot represent the evolution. Stronger junction formation comes along with higher
energy reduction. This is reflected in higher reaction coefficients in the homogenized network formulation.
The activity dependent approach is not applied to the summed model, since we do not exclude any slip
systems before we do the calculation of our model. In future studies, a preselection of slip systems can be
investigated.

The grouped approach of Eq. 12 displays a small scale of homogenization, which leads to a high scattered
matrix of reaction coefficients and model qualities (see Fig. 6). The classification by slip system activity
shows the qualitative differences between the interactions and shows the cause of the high scattering, which
is the inactive slip system interaction (see Fig. 8). Thus, the matrix is reduced by excluding the inactive
interactions. Fig. 7 validates this approach that the slip system activity is important for a good model
quality and for the network evolution in general. These results endorse the theory of continuum modelling
with mobile and immobile dislocations. This idea is incorporated in many continuum modelling approaches
like in [28, 67, 68, 50]. We recommend a combined modeling in continuum formulations with a dependence
on mobility, i.e. a slip system activity, and on the dislocation density.

Regarding the high and non-high symmetry orientations, we observe an orientation dependence for the
reaction coefficients for the summed approach of Eq. 11 and for the activity dependent grouped approach of
Eq. 12 (see Table 3 and Table 4, respectively). We assume that the number of active slip systems mainly
contributes to the orientation dependence. The number of active slip systems differ between four and eight
for the multi-slip orientations. The 〈123〉 orientation has four active slip systems, since we use a separation
of a Schmid factor Smin of 0.25 for the activity (see section 2.2.2). However, there is clearly one main active
slip system in 〈123〉, which is shown in Fig. A.2 in the Appendix, which challenges our chosen minimum
Schmid factor. Table 3 shows that the model quality performs slightly worse in orientations with only four
active slip systems, i.e. in 〈110〉 and 〈123〉 for most of the reaction types. However, we observe the best
model performances for the 〈111〉 orientation with six active slip systems, although in 〈100〉 there are eight
active slip systems. This may arise from the fact, that the dislocation density evolution differs significantly
in 〈111〉 orientation (see Fig. 4b).

The orientation dependency was observed in former computational interaction coefficient investigations
for Franciosi yield stress investigations [12, 4] and for dislocation multiplication rate investigations [44, 41]
and agrees with our DDD data analysis. Future research is worthwhile to identify the origin of the orientation
dependence for the dislocation network evolution, e.g. by a more detailed investigation of the dislocation
microstructure and the investigation of further characteristic quantities for interactions.

The tendency of higher standard deviations of the coefficients in 〈123〉 orientation stays is contrast to
the fact, that we use a minimum Schmid factor of 0.25, where only four of the nine non-null active slip
systems are considered. The choice of only four active slip systems should lead to a greater reduction of
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the coefficient scattering. However, due to the strong dominance of slip system A3 in the 〈123〉 orientation,
the swept areas and therefore the shear strain rates of the other three active slip systems are comparably
small (see Fig. A.2). For an appropriate homogenization, the chosen Schmid factor classification seems to
be a good trade-off between number of included slip systems and loss of prediction quality. For future
studies we aim for an adaptation of the classification to a Schmid factor based function, in order to reduce
the simplifications made by classifying into active and inactive. We estimate that this function is of great
importance for non-high symmetric orientations due to their heterogeneous distributed Schmid factors.

5.3. Analysis of reaction coefficients

This work aims to transfer the network evolution information of homogenized dislocation networks, e.g.
reaction coefficients, from DDD to continuum approaches like CDD. Our models correlate the network
evolution rate by constant coefficients and by slip system dependent features, i.e. the plastic shear rate
and the dislocation density. Besides of the slip system activity, which is discussed in section 5.2, the model
quality and the coefficients differ by the applied equations, which depend on the scale of homogenization
(Eq. 10, Eq. 11 and Eq. 12) and on the specific type of reaction including the cross-slip mechanism.

The high evolution rates and therefore the high reaction coefficients of the cross-slip mechanism may
origin from the fact that in 〈100〉 eight and in 〈111〉 six slip systems are active, whereas the other orientations
have only four active slip systems. As shown in Table B.1 in the Appendix, cross-slip occurs between two
active slip systems for 〈100〉 and 〈111〉, while this is not the case for 〈110〉 and 〈123〉. As in [59] described,
the cross-slip mechanism emerges new dislocation loops like the glissile mechanism. It is expected to play a
significant role in dislocation multiplication, which leads to an extension of continuum theory by a cross-slip
term [32].

The findings in [69], that cross-slip is increased at dislocation intersections, matches with our findings of
increased cross-slip reaction for orientations with more active slip systems, which have a higher probability
of an interaction of active slip systems. Fig. A.1 shows the strong increase of the average junction length of
cross-slip in 〈100〉 and 〈111〉 due to multiple cross-slip events, which is indicated by the increasing number
of cross-slip junctions. Although the model has a high predictive quality for cross-slip in the considered
data set, its physical profoundness, any validity limitations, and robustness must be determined for use in
continuum formulations. The comparison of the reaction coefficients needs to be done carefully, since rate
equations of other researchers [70, 41] do not include cross-slip.

The reaction coefficients differ in each orientation. We observe, that the number of active slip systems
does not correlate directly with the quantitative value of the reaction coefficient. The range of the glissile
reaction coefficients, which was estimated in [59, 6] by several orders of magnitude, could be reduced to less
than one order of magnitude. The coplanar reaction has an important role in the evolution of a dislocation
network, especially for orientations other than 〈100〉, where the coplanar density increases stronger (see
Fig. 5). The glissile as well as the coplanar reaction can lead to reaction density on inactive slip systems.
We assume that these two interactions are mainly responsible for the increase of dislocation density on
inactive slip systems. Since the reaction coefficient CCoplanar is similar to the glissile coefficient CGlissile,
we derive that both are equally strong effects for the increase of dislocation density on inactive slip systems.
The importance of the coplanar mechanism for continuum plasticity models is shown in [41]. Our work
underlines the importance due to findings that the kinetics of glissile and coplanar reaction seem to be
similar in the considered data sets.

The collinear reaction coefficients are high compared to the other reactions and compared to former
research [32, 30]. It seems that the collinear mechanism is underestimated by about one order of magnitude.
Collinear reactions lead to a dislocation annihilation. Therefore the high coefficient indicates a high anni-
hilation rate. However, the dislocation density increases steadily during plastic deformation (see Fig. 2).
This might origin from the following. Since the collinear dislocation segments are virtual in DDD, the nodes
of the segments can move apart during plastic deformation, so that the collinear reaction density increases
steadily, although there might be no new collinear reaction. This could explain the high coefficients. Before
transferring the collinear coefficient from DDD to continuum modelling, the onward motion of a collinear
segment after generationn needs to be clarified.
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The Lomer reaction coefficient is in accordance with former research [32, 30] for the 〈100〉 orientation
with CLomer = 0.032. For the other orientations, the coefficient for the Lomer reaction is higher for both
the summed as well as the grouped activity dependent approach. The scattering of the reaction density
prediction curves might indicate that Lomer reactions are built and dissolved as well. Lomer density does
not increase on inactive groups but stay around the initial values (see Lomer in Fig. C.1 in the Appendix).

We observe, that the coefficients differ from 0% up to 31% at most between the summed and the activity
dependent grouped approach. The tendency of slightly higher coefficient values for the grouped approach
stays in contrast to the fact, that inactive interacting slip systems are not included, which tend to have much
higher values (see blue markers in Fig. 8). However, nearly all of the reaction coefficient differences between
the summed and the grouped approach remain within the standard deviation of the grouped approach except
for collinear and Lomer reaction in 〈110〉 orientation.

The model quality R2 of the summed approach outperforms the activity dependent grouped approach
for all reactions in all orientations except for the Lomer reaction in 〈110〉 orientation. Thus, we derive a
better homogenization for coarse homogenization than for a fine homogenization. However, we show that
the fine homogenized grouped approach in combination with the slip system activity classification is able to
predict the reaction rate with an acceptable model quality and a decent standard deviation of the reaction
coefficient.

6. Conclusion

We introduce a dislocation density based model for the evolution of dislocation networks by considering
different levels of homogenizing the slip system interaction. This leads to three network evolution rate
equations, which are specified by data-driven methods, i.e. multi-linear regression. We validate the evolution
equations for four different single crystal orientations, consisting of three high symmetric and one non-high
symmetric orientation.

The analyses show that the reaction density evolution can be predicted well, if the homogenization level
of the model does not exceed a certain threshold. The prediction of every single interaction of all possible
slip system combinations is not possible by the homogenized description. However, groups of dislocation
interactions can be predicted properly. The proposed model couples the network evolution with a slip system
activity dependent consideration. The analysis shows a clear separation of the proposed model predictability
between the inactive and active slip system interactions. We observe an orientation dependency for each type
of reaction for both the homogenized overall and the homogenized grouped consideration of each reaction. In
addition to the high symmetric orientations, the proposed model also shows accurate results for a non-high
symmetric orientation.

The presented investigations suggest that a coupling of slip system interactions with the slip system
activity is needed for the prediction of the network evolution. The provided model uses physically based
equations and provides constant coefficients for continuum modelling depending on the reaction type and
slip system. The number of coefficients differs depending on the need of the continuum model, i.e. it ranges
from one to 24 coefficients depending on level of homogenization and the possible activity consideration.
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Appendix A. Additional information of the DDD data sets

In this Appendix we show additional results of the fcc single crystals under tensile loading. Fig. A.1
displays the evolution of the number of junctions and the evolution of the average junction length over
the total strain in 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation. We observe that the number of junctions
increases while straining the crystals for all reactions and in all orientations. The average junction length
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increases for the collinear and coplanar reaction and the cross-slip mechanism, whereas it decreases for the
Lomer and glissile reactions. Fig. A.2 shows the plastic shear strain evolution over the total strain in every
investigated orientation. Inactive slip systems are clearly visible, since they have a straight horizontal course.
Active slip systems shear plastically in the positive or negative direction. The number of active slip systems
differs with the orientation. An absolute quantitative difference for the plastic shear is apparent for the
different orientations. Especially in 〈110〉 and 〈123〉 orientations the plastic shear is dominated by a few
slip systems. We observe that the shear strain curves of the active slip systems vary slightly for the high
symmetry orientations, although the Schmid factors are equal for these slip systems. Table A.1 shows the
Schmid-Boas slip system notation.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Total strain εtot[%]

0

2000

4000

6000

8000

10000

N
u

m
b

er
of

J
u

n
ct

io
n

s
[-

]

〈100〉

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Total strain εtot[%]

〈110〉

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Total strain εtot[%]

〈111〉

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Total strain εtot[%]

〈123〉

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
ve

ra
ge

ju
n

ct
io

n
le

n
g
th

[m
]

×10−6

Lomer Glissile * Hirth Collinear * Cross Slip * Coplanar * Number Length

Fig. A.1: Evolution of the number of junctions and the average junction length for different reactions over
the total strain in the orientations 〈100〉, 〈110〉, 〈111〉 and 〈123〉. Lomer and Hirth are physically existing
junctions, whereas the reactions indicated with a (*) are virtual junctions.

Slip plane normal Burgers vector

A B C D 1 2 3 4 5 6

(111) (111) (111) (111) 1
2 [011] 1

2 [011] 1
2 [101] 1

2 [101] 1
2 [110] 1

2 [110]

Tab. A.1: Schmid-Boas notation for the slip plane normal and the Burgers vector of fcc slip systems.
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Fig. A.2: Plastic shear strain of each slip system for one dataset in each orientation 〈100〉, 〈110〉, 〈111〉 and
〈123〉.

Appendix B. Number of active and inactive slip systems involved in the dislocation reactions

Table B.1 shows additional information about the activity of an interaction between two slip systems
in 〈100〉, 〈110〉, 〈111〉 and 〈123〉 orientation. It complements the information about inactive-inactive (0),
active-inactive (1) and active-active (2) slip system interactions, which are introduced in section 4.3. We
observe the peculiarity in 〈100〉 orientation, that there is no inactive-inactive interaction for the glissile,
Lomer and coplanar reaction due to the activity of eight slip systems. All the other reactions in every
investigated orientations has an inactive-inactive as well as an interaction with at least one active slip
system (active-inactive or active-active). This binary classification is used in section 4.3 and in section 4.4.

Tab. B.1: Number of active and inactive slip systems involved in the binary dislocation reactions for the
different crystal orientations (cp. Fig. 8). Self-interaction indicates the number of active slip systems.
According to the interaction matrix in Fig. 3, each orientation counts 6 collinear and cross slip reaction
pairs, 12 Lomer, Hirth and coplanar reaction pairs, and 24 glissile reaction pairs.

〈100〉 〈110〉 〈111〉 〈123〉
Number of active
slip systems

2 1 0 2 1 0 2 1 0 2 1 0

Self-Interaction 8 0 4 4 0 8 6 0 6 4 0 8

Collinear 4 0 2 0 4 2 3 0 3 0 4 2

Glissile 8 16 0 0 16 8 6 12 6 2 12 10

Lomer 4 8 0 2 4 6 3 6 3 2 4 6

Hirth 8 0 4 2 4 6 0 12 0 1 6 5

Coplanar 4 8 0 2 4 6 3 6 3 1 6 5

Cross Slip 4 0 2 0 4 2 3 0 3 0 4 2
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Appendix C. Extended results of the data-driven analysis

In this Appendix the results of the inactive and active slip system interaction in 〈111〉 in section 4.4 are
combined in one figure for the Lomer and the glissile reaction. Fig. C.1 shows additionally the interaction
of two inactive slip systems and two active slip systems for the collinear reaction. We observe that the
contribution of the interactions of inactive slip systems is an order of magnitude smaller than between active
slip systems. Thus, the distribution peaks at the small prediction and ground truth values for inactive
interactions, whereas the distribution of active slip systems are equally distributed.
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Fig. C.1: (Left) Lomer, (center) glissile and (right) collinear reaction rate prediction versus ground truth
values (measured reaction density rate) of specific slip system reactions in 〈111〉 of the grouped model
approach.
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