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Abstract:
A method is presented to identify the partial differential equations and associated boundary conditions
of a distributed parameter system.

The technique requires that the form of the differential equation or boundary condition be known up to
a set of constants. Finite differences are used to approximate derivatives. Identification is carried out by
using normal operating data.

When the data is exact the identification may be performed on linear, nonlinear and time-varying
systems. The accuracy of the identification depends only on approximation errors. Methods for
decreasing these errors are presented. When the data is corrupted by noise additional errors are
introduced and the unknown constants must be estimated. A performance index is presented which
tends to minimize the combined effect of these two types of errors.

The classical least squares estimator is developed to estimate linear and nonlinear systems. When the
statistics of the measurement noise are available, a modified least squares estimator is presented which
is applicable to linear systems. It is shown that the modified scheme is generally more accurate than the
least squares estimator.

'Examples and results of digital computer simulations are given.
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ABSTRACT

A method is presented to identify the parfial differential equétions

and associated boundary conditions of a distributed parameter system,
The technique requires that the form of the differential equation or

boundary condition be known.up to a set of constants. Finite differ-
ences are used to approximate derivatives, Identification is carried
~out by using normal operating data.

When the data is exact the identification may be performed on
linear, nonlinear and time-varying systems, The accuracy of the
identification depends only on epproximation errors. Methods for
decreasing these errors are presented. When the data is corrupted by
noise additional errors are introduced and the unknown constants must
be estimgted, A performance index is presented which tends to
minimize the combined effect of these two types of errors.

The classical least squares estimator is developed to estimate
linear and nonlinear systems. When the statisties of the measurement
noise are available, a modified lezst squares estimator is presented
which is applicable to linear systems.. It is shown that the modified

scheme is generally more accurate than the least squares estimator.
#*Examples and results of digital computer simulations are given,
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INTRODUCTION




Ll

- 1,1 SCOPE OF THE THESIS - .

1l.1,1 Identification of Systems without Measurement Noise

A technique is presented in Chapter 2 to identify the partisl iiffer-
ential equation describing a distributed parameter system in the absence
of meaéurement noise, The form of the differential equation must be
known to within ce}tain constants, which are to be identified. The .
constants can be changing with time, as long as their rate of change is
siow with respect to the system dynamics. The technique is applicable
to linear and nonlinear systeﬁs, However, the unknown coefficients
must appear linearly. When the precise form of the differential eguation
ié not known:apriori extraneous terms may be included. The conditions
under which thé identification reveals the coefficients in the extran-
eous terms to be negligible are discussed.

A necessary condition for the identification using the proposed
scﬁeme is given, This condition is applicable only when the system is
in a tfansient state., However, no special test signals are necessary
and the identification can be performed on-liné°

The identification of unknown.parameters requires no knowledge of
the boundary conditions. However, a syétém nay ﬁave boundary conditions
which contain unknown parameters. These constants can be determined
using the 'identification scheme described herein T«r‘i’chou'l‘, knowing the
system partial differential equation. - |

The proqedure uses finite diffefences fo approXimate the partial
derivatives at specified points—in time and space, The use of finite

differences in the numerical solution of partial differential equations
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is well known, [1}? but has never been applied to the idehtification
@roblema The methods for improving the accuracy of the finite differ-
ence approximations are discussed, The improvemenfe are applicable to
the identification of distributed systems as %eil as the.numerical
solution of partial differential equations. However, the application
of the finite difference approximations of higher order acceracy to the
numerical solution of partial differential equetions is.limited because
these calculations are recursive and:many of the approximations result
'in'an unsteble recureive scheme, This -complication dees not arise in
the identification problem, for the calculations at each of the stages
are not dependent on the'accurecy of the calculations made at any~other

stage,

1,1,2 Identification of Systems with Measurement Noise

Finite differences are used to approximate partial derivatives in
the proposed identification technigue. The data for the.finite differ-
ences is obtaieed_by‘performing measurements on the systemso. These
.measurements are rarely exact, for the measurement devices have imperfect-
ions, As.a result,'errors due to measurement noise are introduced in the
identification in addition te the errors resulting from the finite differ-
ence approximations. The identification of distributed systems in the
presence of measurement noise is discussed in Chapter 3°

In the identification process, introduction of measurement noise

*¥ Numbers in square brackets refer to the references at the end of this

thesis,.
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suggests that the ﬁnknown parameters are functions of random vériableso
Thus some type of statistical estimation must be employed to determine
the paramgtersn The least squares estimator was found to be well suited
for the problem, This estimator reguires no apriori knowledge of the
. statistics of the measurement noise as do other classicél estimators,
However9 when the system is linear and the mean and variance of the
measurement noise are knovn, it ié possible to improve the accuracy
of the least squares estimator by modifying it. The convergence of the
least squares estimator and modified least squares estimator is compared
and contrasted,

The identification scheme requires tﬁe calculation of the inverse
of a sqguare matrix. This matrix contains errors due to measurement
noise a;d approximation error. Errors in identification of coefficients
become very large if the matrix is ill~conditioned even if the measure-
ment and the apprbximation errors are small. The origin éf the 11l-

conditioned matrix in the identification is discussed as well as methods

for detecting ill-conditioning,

1.1.3 Selection of Optimal Increments in Time and Space

The errors introduced‘by measurement noise and finite differences
are functions of the incéements in time and space selected for the
_finite difference formulae. The effect of measurement noise error is
decreased by making the increments as large as poséibleu On the other
hand,; the error dug to finite difference approximapion is decreésgd by

making these increments very small. This suggests thgre exists a




: .
combination of increments in time andvspace which minimize the combined
effect of thése two errors.

A performaﬁce index which is a function of identification error due
to measurement noise and finite differences is'formulated. Minimiéation
of this index is performed with respectxfo the time and spatial
increments, The technique requires a knowledge of the statistics of‘the
measurement noise and is not well suited to nonlinear systems. Initial
estimates of the unknown parameters must.be made. In spite of this, the
.resulting set of increments provides better results that those sttainable

by simply guessing,

1,2 HISTORICAT, BACKGROUND

1.2,1 Derivation of Partial Differential Equations

Distributed parameter systems, that is, systems described by
partial differentisl equations or multiple integral equations are
often encountered in engineéring‘appiicationso Chemical reactors,
nuclear reactors, heat exchangers and physical étructures are examp;es
of systems with parameters distributed in space, F;equenflys-the
system partial differential equation can be derived apriori from baéic
laws of physics, These equations usually contain constants which.are
unknown and must be identified., This thesis is devoted to the identifi-
cation of these consténts°

In this subsection the-parfial differential equations descriﬁing three
different distributed systems are derived. The resulting géuations are

used exclusively in the exémples appearing in this thesis. Thus, the
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derivations not only demonstrate the application of physical laws to
obtain the mathematical models of distributed systems, but also provide
physical insight into the partial differential equations used in the
examples,
Consider the flow of heat Iin a thin bar or wire. Assume the bar
is perfectly insulated along its length so that heat flows in the x

direction only. Such a system is depicted in Figure 1.1.
/ Wl
perfect insulation
//////

0
/// //////

Figure 1.1 One dimensional heat flow in a thin bar,

e e

If a segment of the bar with boundaries 1 and 2 and length dx is examined,
the heat flow is governed by two basic laws of physics; namely,

Q = cm (1.1)

" where

Q = heat (calories or B,T.U.'s)

¢ specific heat

=)
n

mass




I
u = absolute temperature

and .

20, _ _ . 4 0n |

il k A== cal/sec or B,T.U,/sec | . (1.2)
- where

A = cross-sectional area of surface in a direction perpendicular to the

flow of heat

5§>= gradient of temperature perpendicular to the surface

k = heat conductivity

The amount of ﬁeat contained in the segﬁent.is obtained.by-application
of eqﬁatibn (1.1) with the result

q = c{Adx)pu _ o o (1.3)
where p is the density of the material and hence Adxp is the mass of
the segmént° Thé rate ét,which heat is stored in this elementiis found _

lby differentiating equation (1.3) with respect to time to gef

Q _ 3u
3¢ = cladxle 3% - (1.1)

Let Ql denote the heat flowing into the segment across boundary 1. The

rate of heat flow across this boundary is described by equation (1.2},

Therefore
9t - ax ' : (1.5)

The rate at which the heat, Qs flows out boundary 2 can be fowd

by considering the Taylor's .series expansion of . %, 1 99 pas all
: 3t 3t




8

orders of derivatives with respect to x, the expansion of an about x is
: 2t
given by
. .
e e L e M PO e s (1.6)
at 3t Ix ° 3t 3x2 3t 21 °°¢ °

where ! denotes the factorial., When dx is very small in sbsolute value
compared to unity, the terms of the series involving high powers of dx
may be neglected, Thus a first order approximation for equation (1.6) is

29, (x + &) 39,(x) 5 99,(x)
= 3x 3%

5% 5 x Jax (2.7)

Notice that the term on the left hand side of equation (1.7) is the hest
flow from bowmdary 2. Therefore

W, 9 4 36y

-na—t“ = -==5==€ + ‘5’;(""’3"%")6-}( : ' (ln 8)

Substituting equation (1.5) into the result of equafion (1.8) yields

3q

2 _ Ju 3 Ju
=5 = - F Agp - Rk & (1.9)

The rate at which heat is stored in the element is found by substracting
the rate of heat flow out from the rate of heat flow in, This is expressed

mathematically by

g _%h % | -
at ot ot , (1,10)

Substituting equations (1.4), (1.5), (1.9) into (1.10) gives

du 9 su
- . . . 011
CAp Y dx = 3 (IFAB )dx ‘ R (l 1 )

Assume A is independent of x. Then after dividing both sides of eguation

(1.11) by cApdx there results

su 19 ,.0u : ' '
3t = o5 5%\ %) - | o (na2)




Lo e e

9

Finally, when k is independent of x equation (1.12) can be wfitten

3 3%2 (1.13)
wvhere
.= X

cp (1.1h)

Bquation (1.13) is known as the diffusion equation, It is a linear
partial differential equation containing one constant which may or may
not be known, A simple extension of the above problem leads to a linear
partial differential equation with two constants,

Consider once again the bar shown in Figure 1.1, Assume the bar
moves in the x directiqn vith a uniform velocity, v. The next derivation
leads tq‘the partial differential eguation describihg the heat flow in
the moving bar with respect to a §tationany coardinate sysfem°

Iet the moving coordinate system be denoted by X and . The heat

flow with respect to the moving system is given by equation (1.13). Hence

2
Wz E) = o ZHRT)
ot %2 (1.15)

This equation can be rewritten in terms of a stgtionary coordinate'system
by changing the iﬁdependent variables, First note thét-tﬁe stationary
;nd mo;ing systems are related by the eduation -

X = Ve o+ X+ X

.where x,t denote space and time in the stationary system and X, is the

separation between the origin of the stationary and moving systems at

time zero,
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!
The change of variables is defined to be

t = £(%,%) ’ ‘ (1.17)
=T : | (1.18)
x = x(x,%)
=Vt X4+ X (1.19)
= vE+ X+ x (1.20)

Consider the term on thé left hand side of equation (1.15). 'Application
of the chain rule yields

8u_ 3u3x , 3u 3t

P

.3t 9x 9% 3t % : (1.21)

But from equations (1.,18) and (1.20)

SR o - O (L.22)
Next consider the derivative appearing in the right hand side of equation
(1.15). The first derivative is found by use of the chain rule to be

u su 3x + Ju 3t

D TI weeOeen et

39X 3x 3% 3t % (1.23)

From equations (1,18) and (1,20) there results the relationships

3x _ 1 ' (1.2k)
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and

5% (1.25)
Therefore, equation (1.23) simplifies to read

3u_ 3u

X 9x ‘ (1.26)

Differentiating equation (1.26) once more with respect to x and making

use of equations (1,24) and (1.25) leads to the expression

321 - 321 .
9%¢  ax? : . (1.27)

Substituting for equation (1.15) from equations (1.22) and (1.27) yields

-aql'.!': EN V—mau = awazu
at . X ax2 ' (1.28)

Notice that equations (1.18) and (1.20) can be solved for X and t to get

Cd ]
|

= x(x,t) ' ' (1.29)

E(x,t) ' _ (1.30)

(3]
]

The substitution of equations (1.29) and (1.30) into u(X,%) produces ax
function of x and t, say

u=ﬁu¢) “ (1.31)
Hence equation (1.28) can be written

o 22U _ 23U _ 3y : :
9xZ ~ 9x 9t _ o - (1.32)

This linear partial differential equation contains two constants which
may or may not be known apriori, The third derivation results_in a non-

linear partial differential equation containing several coefficients.

Many unrelated physical phenomena give rise to the same equation if
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!
variables 'and constants are appropriately interpreted. Such a situation
arises in the derivation of the concentration dependent diffusion
equation, Crank [2] shows that when C is the concentration of the diffu-

sing substance and D the diffusion coefficient

3¢

3 3C
3t =57 050 (1.33)

Notice the similarity between this result and equation (1.12), In many
systems,y for example the interdiffusion of metals or the diffusion of
organic vapours in high polymer substances, D depends on the concen-

tration of the diffusing substance, ILet this dependence be given by the

equation
D= == | - , (1.34)

Differentiating this expression with respect to C gives

o 2
ac 8C2 , : (1.35)

Substitution of (1.34%) and (1,35) into equation (1,33) yields

1 32%¢ 1302 _ 3¢ 1 9%%C ., 1 ,3C2

— et & 2 =t s 4 = (== .
i 2 2
2C 3x 803/2 ox 3t hCl/2 ox 2C¢ “3x (1.36)

The derivations leading to equations (1,13), (1.32) and (1.36) are
representative of arguments required to develop the mathematical model
for distributed parameter-systémsn The next subsection concerns the

control of such systems,

1,2,2 Adaptive Control of Distributed Parameter Systems.

In many distributed systems the parameters: which characterize the
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systems dynamics and environmental conditions under which the system
operates are changing with time. Fof example, in a chemical reactor
a catalyst may be slowly deteriorating and the'chemiéal concentration
of the reactants may also be chaﬁging, and these changes affect the
éystem dynamics, Optimum control of such a changing system requires
the use of an adaptive control system which is able to identify the
system dynamics during a given interval of time, and make appropriate
adjustments in the controller to compensate for changes in system
dynamics,

Adaptive control of linear lumped parameter‘systems with slowly
varying parameters has been considered [3,4,5] quite extensivel& in
the literature, There has been some attempt to obtain adaptive control
of distributed systems ﬁsing gpproximate representations of system
d;wnémicé-[6]u However, this area needs a more defailed study, using
more accurate mathematical models of distributed parameter system
dynamies [7,8], The first requisite of aﬁ adaptive contrél-is system
identification, Unlike lumped parametef systems, little work has been

done in the identification of distributed systems,

1.2.3 Identification of Distributed Parameter Systems

| Identification of'distributed paraﬁéter‘systgms_poses a few diffi-

. culties due to mathematical complexities of partial differential equations
- and the associated boundary conditions, Jones {9] and Douglas'and Jones
[16] identified a time—varyiné coefficient a(t) in the diffusion equation

with the following boundary. conditions:




Ll

1k

u(x,0) = 0 0 <x<w
u(0o,t) = £(t) 0<t<T, £(0) =0

- alt) %-%(O,t) =g(t) 0<t<T _ (1.37)

Note that o{t) appears in the boundary condition at x = O as well as in
fhe differential equation, This ié necessary because the authors
restrict themselves to measurivg the state varisble u at the bomdary
x = 0, Hence this problem, in essence, reduces to identification of the
boundar:y'conditio;l°

Recently, Perdreauville and Goodson [11] identified wnknown coeffi-

cients of a system described by partial differential equaticns by using

a'technique'similar to that used by Shinbrot [12] for identification of

lumped parameter systems, This identification technique is limited to
" a class of partial differential eduations which can be redﬁced to an
élgebraic equation'by an integral transformation.

Sanathanan .[13] discusses the identification of the transfer
function of a distributed parameter system by obtaining a harmonic
response function, The method is limited to linear systems and is not

suitable for an on-line identification scheme,




)

CHAPTER 2
IDENTIFICATION OF DISTRIBUTED PARAMETER

SYSTEMS WITHOUT MEASUREMENT NOISE
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2.1 INTRODUCTTON

In this chapter the identification of distributed systems in the
absence of measurement noise is considered. It is assumed that the
partial differential equation is known up to a-se%  of constanf parameters
which must be determingd. The differential equation ma& be nonlinear
in the stste wvariables and their derivatives Sut must be linear'ig the
unknown coefficients. When the precise form of the equation is not
known apriori, extraneous terms may befinéluded. The conditions under
which the identification yields negligible values for the coefficienﬁs
of these extraneous terms is discussed.

The necessary conditions for identification are developed before
introducing the finiﬁe difference approximations. Technigues for re-
ducing the error due to these approximations are presented; It is
shown that the identification of the differential equations does not
depend on the boundary gonditions. Also, when the boundafy conditions
contain an unknown parameter, it too can be identified. Examples and :

results of digital computer simulations are given,

2,2 THEORY

2.2.1 Problem Statement

Let the dynamics of'a distributed parameter system be deseribed by

a partial differential equation of the form

Q .

P

. TB Xa YB 7.3 eees ustsxnv.szﬁcl_sce’ svey CM) = fQ(tsx’YsZ) (2.1)
t 9x 3y 9z : . ’ i

u

F(

where u-= uw(t,x,y,z) is the state variable, t denotes_timé, and x,y, and
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1

2z denote spatial variables in a Cartesian coordinate system. F can be

a nonlinear funétion of‘t,x,y,z and the state variable, but is linear with

respect to Cqys 629 coos Cppe Notice that a system with a nonlinear con-

stant can generally be maﬁe linear by simply substituting a new linear cén-'
.stant'for the nonlinear one, The differential equation is of Qrdgr Q=T+

X+ Y+ Z, The constants Cys Cos oooy C) are the coefficients appearing

M
in the M terms of F and only N of these constants are unknown., N may be
less than or equal to M, fb is a distributed control input where R denotes
the spatial domaip over which the state variable is aefinedo It is
assumed that only u can be measured directly.

Given measurements on the state variable and f,, the problem is to
find the unknown coefficients cm for m = l,‘aoo, N, Here ?or simplicity,
u, F, and fQ are considered to be scalai'° The identification of a set

of partisl differential equétions containing more than one state variable

is discussed in Appendix B.

2,2,2 Solution

Since F is linear in the coefficients Cis Cps - Cyps it is
convenient to write equation (2,1) in the form

clhl + c2h2 + oo * cMhM = fQ

(2.2)
where hm(m =1, c00y M) are functions of u, t, x, y, z and derivativeé
of u, It can be assumed, without loss of generality, that the terms

containing the unknown coefficients are the first N terms appearing in

equation (2.2), Transferring the ternms containing the known constants
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to the right, equation (2.2) méy be written in more convenient form

Cifiy * Cfp * eee Fooyhy = fg = epyabuy woeee = Oy »(203%
This iz a linear equation in the N unknowm céefficients and N such
equations are required to solve for.them° Since equation (2.3) is valid
at 211 points in @ and for all t, these N equations may be generated by
evaluating equation (2.3) at N different pointé in ﬁime.and/or space
as follows.,
For simplicity of notation define

= hm(ﬁi9 X55 Vyo zi) m= 1,2, 3, coes § . ‘ (2.4)

g5 = Toltys %5 vys 23) = Cpuabyyg (bys %55 ¥5s 2,0 = ooe

- : ' . 2,
By Ky Vo Z) | (2.5)
where (xig Vs zi) denotes a point in @ and t, denotes a specific value
of t. At point (ti, Xy ¥y zi)‘equation (2.3) becomes _
. h, . =g 2,6
1By ¥ Coflyp *oeee * Oy = 8y ' (2.6)
When equation (2.6) is evaluated at N different points (i = 1, ..o, W)

the following matrix equation is obtained

He = g o ' (2.7)
where

[ N

hll eee th
H=\|°

Py1 oo P N ' O {2:8)
(2.9)

lo
|
—
0
|.—l
0
N
o
o
o
0
=
| -
-
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= : 9 . . .
g =gy 8 ooo gyl : : (2.10)
with * denoting the transpose, If H is nonsingular and if g is not a
null vector the constants Cys Cps oooy ey are uniquély determined by

the equation

=1

o
=y =N

(2.11)

The proposed identification scheme, equation {2,11), requires that
H be nonsingular, This requiremeﬁt is necesséry for identifying the
partial differentiasl equation using the proposed~method; that is, if H
is nonsingular the comstant vector ¢ can be determined,

At'present no rigorous staﬁement can be made as to Which sysﬁems
possess a noﬁsingular H matrix., However, if a partial differential
equatioh describing the system has a unique solution and if the solution
depends continuously on the initial and boundary conditions, it will
probably have a nonsingular -H matrix [14],

In order té evaluate the inverse of H it is necessary to measure u
and its derivatives which appear in H. This introduces measurement noise,
Also it is not always convenient or poésible to measure the partial
derivatives so it becomes necessary to approximate them, Thus errors are

N .
introduced in the H matrix, Now, the existence of the inverse of the H .
.matrix does not guarantee that the matrix which apppoximatés H has an
inverse, - If H has an inverse and if the errérs have little effect on the
value of the inverse, the précess of faking'tﬁe inverse is said to be
well-conditioned [15]. For a'distributed system, circumstances wunder

wvhich the inversion process is ill-conditioned due to approximation error

RS—)
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and noise is discussed in section 3.5,

Herein, it is assuméd that the matrix H and the vector g are either
known or can be measured directly, unless the elements of Hor g contain
derivatives of the stéte variables., However, since the derivatives are
to be evaluated at specific points in time and space, they can be
approximated by finite differences, This finite difference technigque,
which has been applied extensively in the numerical solution of partial
differential equations, utilizes values of u in the neighborhood of the

desired point in time and space to approximate the derivative, The

feasibility of the proposed identification scheme using finite differences

is demonstrated in the next section.

2,3 EKAMPLES AND RESULTS OF DIGITAL COMPUTER STIMULATIONS

In this section unknown coefficients in the partial diffErenﬁial

equations derived in Chapter 1 are determined by épplying equation (2,11),

Partial derivatives are approximated by finite differences. Though each
of the examples presented is a form of the parabolic equation, the
technique is general and is not limited to this class of eguations,

Numerical results obtained by digital computer simulations are given,

2,3,1 Identification of a Single Constant

Consider the problem of identifying the diffusivify constant o in the

diffusion equation derived in subsection 1.2.1

w

a-m( ) = 2x,t) I (2.12)"

For comparison, this problem is first solved by approximating derivatives
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by central differences [16] and is then solved using high accuracy formue -

lae suggested by Mitchell and Pearce [1T] for obtaining a numerical solu-
tion of the diffusion eguation,
Since there is only one unknowm coefficieﬁt, o , 1t suffices to

evaluate equation (2,12) at a single point, say (xi’tj); thus

3%y, du .

Gz Xy sty) = gplxgsty) | (2.13)
Assuining that only u can be measured it is necessary to approximate

. the partial derivatives by using a finite difference approximation. For

9
<2 consider the central difference approximation

ot

du e U L5 N O, P 1 :
350%5sty) 2A%t (2.28)
where

Yisn  jen T u(x:‘,L t mAx, tj‘ t nAt)y myn = 1, 2, ..o

Ax = Xi+l - xi

M=ty -t : - (2.15)

The approximation of expression (20111) has an error of order AtZ, In
princ:“Lplle9 the accuracy of this approximation.may be improved by decrea~
sing A%, However, if ‘AAt‘is decreas‘ed indefinitely the error due to
measurement nois-e becomes much larger than the improvement in the
‘ accuracy of equation (Zolil), This problem is discussed in detail in
Chapter 3., Also, an extremeiy small At requires & very hiéh rate of
sampling u which may not.always be feasible or desirable., Yet, the

‘ Ju '

accuracy of the approximat'ion for 3¢ cen be improved without decreasing
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A e o ae . . . s
t by 1pclud1ng in the approximation the values pf uisj+2 and ui,j=2°
Thus the approximation
) -u + 8u - 8u +u
Ju . igd*2 ig4+1 i,4=-1 i,3-2 o
E?ﬁxi,tj) = X .(2.16)

" has an error of order At"%, In general, the first derivative of u may
be approximated to within an order At™ by taking m measurements,
A similar argument applies for improving the accuracy of the approx-

s . e du 3%u ‘ .
imation for spatial derivatives Ax® Da? etec, For example, the

approximation

- 2u + 1u
32 u.+l . ;-1 .
axu(,xi’tj) N .2 % Ax;,;i i-1,d §2.17)

has an error of order Ax2, The order of error may be reduced to Axt by
the expression .

-u, + 16u, - 30u, , + 1léu, - u,
i+2 .3 i+l i,j i-1,] i-2,3 (2.18)

Dzu.
SRZ Xy sty) = 12A%2

which requires measurements at five spétial points each separated by Ax,

‘ There are three basic limitations iﬁ.iﬁproving the accuracy of the
approximation of the spatial derivative: (i) Ax cannot be very small
because it is diffiéult to moﬁnt.the transducers very.close>to each.
éthef; (2) £he error due to measurement noise becomes much larger than
the improvement in the accuracy of equation (2.18)3 and (3) for a fixed
Ax sn improvement in the accuracy requires the measurement of the .state’
.vériéblé at a greaterlnumber'of spatial points (2018).which, of_coﬁrse9
increases the number of transducers néededal | |

When the central differences in.equations (2.1k)-and (2.17) are
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substituted for the derivatives in equation (2.13), the following esti-
mate for o is obtained,

2
o Bx2(uy 1,341~ i,j..l) _ . (2.19)

s}
= DAt (u i+1, 3 2ui’j + ui_,l’jf

Notice that equation {2.19) identifies the unknown coefficient ©
independent of the boundary conditions. Results of digital computer
simulations of (2.19) are given later in. this subsection,

A high accuracy formula developed by Mitchell snd Pea,r(_:é" for numer-
ical solution of the diffusion equation is now investigated for its appli-
cation to the identification problem, ‘i'heir highﬁccuracy discrete
formula is

au. . + .bu 4 + da(u, .+ 1. . )

lsj ) isj"'l cui,,j-—l 1+l,,j 1‘1sj
telugy gen *0oa e F g g Y 50) <O (2.20)
where the coefficients are given by
- 2 313
a=16p" - 3 + 57300~
el s 2 3 23 313
b,e = hp" * 5p "IGD * 85 P~ 13,600
Y 12 313
d=-8 +30° - 357750
ook, 13 12 11 13 - .
e, f = -2 * 2"+ 550 % gho? * 35,000 (2.21)
with
At
P =077

When  the constants from eguation (2.21) are substitited in equation
(2.20) a quartic equation in @ results. This equation yields four

possible values of o and'tfxe correct one must be selected from this set,
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The values of o can be calculated on a digitai computer by solving the
guartic explicity or by using é search routine, In either case, if an
apriori estimate of o is available, the correct one can be selected from
the set. When no apriori estimate is available it is necessary>t0'usé a
central difference expression, such as equation (2.19) to estimate o and
then apply equation (2.20) to obtain higher accuracy.

A less accurate formula is derived in Appendix D using the Mitchell-
" Pearce approach, Equation (2.20) in this case has the coefficients

200p° = 90p - 35

o
1]

b = 104p° + 127p + 17.5 ‘ o
¢ = -kp? ~737p + 1T.5 o
d = -100p° - 9p - 2
e = 522 4 p+1
£=02p° + 8p+ 1 ' (2.22)
Substitution of equation set (2.22) into equation (2.20) results in a
quadratic in a. The loss in accuracy using the coefficients of (2.22)
rather than those of (2.21) is offset by the comparatife ease in solving
a quadratic‘vice_a guartic equation,

An analytic soiution of equation (2.12) with a = ;%-and bowmndary
conditions u(x;O) ;.E, u(0,t) = u(1,t) = 0 is given by

fe -]

—(2n)?2t

(2.23)

u= I éisin (onnx)e
n
n=1

Using equation (2.23), values.of u at x = 0.0, 0.05, 0.10, ... and t = 0.0,

8.025, 0.05, ... were calculated on an IBM 1620 II digital computer with
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the results showm in Figﬁre 2.1, Data obtained from this calculation
was used to identify a. Note.that the data for the state variabléﬁu for
this example and those to follow are generated by us;ng an'analytic
solution, The finite difference methods for solution of the boundary
value problems was a%oided in generation of data in order to isolate
the effects of finite difference approximation on the accuracy of the
proposed identification technique. This, of course, has restricted the
examples considered to the class of boundafy value problems for which
enalytic solutions were readily'availab(lee However, this does not imply
.limitations for the applic¢ations of the proposed identification scheme.

The central difference expression of equation (2.19) with At = 0,025
and A% = 0.05,produced the valve of P plotted in Figure 2.2 The ident-
ification of @ is very accurate when the rate of change is'not very large
or very small, It is interesting to note that when equation (2.19) is
applied to thain a numerical solution of the diffusion equation, the
solution is unstable [1]. Since tﬁe identification scheme.presented here
is a single stage process, stability is of no concern., Furthermore, a
itself may be varying in time and space aﬁd still be identified, as long
as the change in @ over one identification interval, 2At by 2Ax, is
negligible,

‘When the high accuracy formula in equation (2,20) with the coeffi-
cients given in eqﬁaﬁion (2.21) was used to identify ¢, the data shown in
Figure 2.3 resulted. Figure 2.4 shows the resulys of ﬁhe identifigation '

using - the coefficients given in eguation (2.22). In both cases, accuracy




Figure 2,1 A solution of the diffusion equation.
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is considerably improved over that of equation (2.19) even though the

same number of spatial and time measurements are wused.

2.3.2 Idéntification of Boundary Conditions

There are circumstances when the nature of the boundary conditions

. of a system are known but the values,of the coefficients involved are
unknovn., The procedure for identifying a constant in a boundary condition
is illustrated using the following boundary value problem.

Let & heat transfer system be described by the partial differential

equation
du 32 .
5t - @ SxZ for 0 <x<L;t >0 (2.214)

and the boundary conditions

du _ (t) ' | o8
=(0,%) = - 9-]-;- | | (2.25) |
g—;l{L,t) = -gu(L,t) . | | (2.26)
w(x,0) = 0 | : o (2.27)

where q(t) is the rate of heat input at x = 0, k is heat conductivity
and 8 = —E— with h being the film heat transfer coefficient. It is
assumed that the value of B is unknown and must be identified.

TIdentification of B ‘is carried out by emplcyihg a procedure similar

to that used earlier for identifying o, From equation (2.26) it is seen

: 3
that B is a function of %—:%(L,t) and u(L,t). Tt is assumed that =(T,t)

cannot be measured directly and therefore must be approximated. Central

. 9 . o3
differences cannot be applied to approximate sikIut) for a specified x

and t, because the derivative must be.evaluated at the bowndary.
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Backward differences [16], on the other hand, are well suited for this
purpose even though ﬁhey require measurements of u at a greater number
of spatial points in order to attain the same order of accuracy -as
central differences. Substituting a backward difference expression for
the derivative in equation (2.26), the following estimate for B, denoted

by E, is obtained.

P OF it 500 B ST Bl 20 Bt U,
- (12Ax)uL 3 - \

(2.28)

.This expression requires five 'spatial measufements of the state wvariable
to estimate B to within an error, of order Ak™.

It may‘be noted that the identification of a by using.equation (2,19)
and the identification of B by using equation (2.28) are independent of
each'oﬁher. In order to identify o it is not necessary to'know the
boundary conditions and in order to identify the boundary conditions, it
is not necessary to know the partial differential equation.- If o and B
are bdth unknown, it is possible to identify .them simultaneously By
using equafions (2.19) and (2.88),

The diffusion equation with the boundary conditions of equations
(2,25), (2,26) and (2.27) was solved using the method of finite ..cosine

e &

transforms discussed in Tranter [18]., The resulting analytic solution

with a forcing function q(t) = sinwt is

© cos(p,x) (p.a)? . 2,
u =_§-E : = B ia)i Tz [sinut - Dga (goswt - e™7i )1 (2.29)
i=1 L+ o L Pit
' i

where the p; are the consecutive roots of the expression ptan(Ip) = B.
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The parametefé selected were o = w = 1, éa 2/117 end L = 1/2. From
equation (2,29) values of u were caiculated on the digital computer to
generate the necessary data, B was identified from this data using
equation (2.28) with 8% =0,05, The resulting identificatioﬁ of 8, having
an error of order Ax”, is plotted in Figure 2,5. This‘figure also
includes estimates of B when backward differerices with errors of order
Ax3 and Ax? were used, Since the dynaﬁics of the system were inifiated-
at time zero from the boundary at x = 0, significant data near ﬁ = L, was
not obtainéd until approximately t = 0.1. This emphasizes the fact that
there have to be changes in thg state varisble in order to be able to .

identify the equations that describe the'dynamics of' the systém.

Is

+2:3:3° Tdentification of Two Constants - -

The identification technigue presented in subsection 2.2.2 is now
applied to differential equations with two unknown. coefficients. The
first exemple is linear in the stéte variable and wag derived in Chapter 1.
The second example, also presented in the first chapter, illustréteé the
epplication of the iaeptification of parameters in a nonlinear partial
differential equafion. The identification of a system with two wnknowmn
constaﬁts when one of the constanﬁs is the coefficieht of an extraneous

term is demonstrated in the third example,

- 2.3.3.1 Linear System

Consider the Jinear pqrtial differential equation

2y ou au '
- S—— T - C. O
- Cl L}:‘a + C2 5 3t 0 (2 3 )
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Figure 2,5 TIdentification of 8 in the boundary conditions.
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where cl and c2 are unknown coefficients that must be identified.
In order to identify cy and s equation (2.30) must be evaluated at

two points in time and/or space. In this example, the two‘points chosen

are separated in time by lat and utilize measurements taken from the same -

points in space. When equation (2.30) is evaluated at thz-two points the

results may be cast into matrix notation to conform with equation (2.7);

thus
——3("’2“;{ t ) 2y, ,ts) A T
ax=TTiY 5T 9x i 1 at i
2 st x.te,y) c My poo| (B3
9X 12V g+h ax 1’ J+b 2 3t 1 j+h

Since tﬁe-derivatives of u cannot be measured directly, central
differences are used to approximate equation (2‘31). Let the first and
second order derivatives be approximated by the central difference
formulae given iﬁ (2.16) and (2.18) respectively. Then equation (2.31)1

may be médified to read

o N\ 2" Y]

By Bip ¢y &1

N . "y . n,

h2l 322 | <, €, _ (2.32)
where’

N .
1
hyy = 12Ax7(‘“i+2,3 * 26wy g - 300y g F l6ui-l,j ‘“1-2,3)

& 1
- - - +
h,, EEZ;< uifZ,j +8ui+l,j 8ui-l,j ui~2,j)

N 1 .
hgl - 12Ax?('ui+2,j+h + l6gi+1,j+h '3oui,j+h

*16u;10 4, ’?11-2,3+h,)

N 1, .
= - - +1.,
Boo 12ha% " Mi+2, g4k +8ui+1,1+h 8ui—l,j+lp _u1-2,j+h)
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8 )

1
17 12At("ui,j+2 B0y ge1 <8 o Yy 4o

pS 1 +8u,

85 = TaAt "% 346 *OU; je5 -8

U 03 Y gep)

sy Y " . ;
with cl-and c2 denoting the approximate values of . and c, resulting

from finite difference errors,

The data necessary for the identification of c1 and c2 is obtained

by solving equation (2.30) with the boundary conditions

u(6,t) = 0, u(1,t) = 1, u(x,0) = 0 (2.33)
The resulting analytic solution is
-c.x/c o .
2*/%y 11 1 i
u(x,t) = 4+ 2 T (=1) e 5
- /%1 1 im @r)zs {ey/2e))
.2 2 2 . .
¢ el 1)/2e) ip(imm)e LETTC) tep/hep Ity (2.34)

In this particular example, cy and c, were chosen to be 1/%% and 2/72

-After these values were substituted into equation (2.34), u(x,t) was
calculated on the digital computer and plotted in Figure 2.6. Thus data
which would be obtained by measurementsfr@nactual ﬁhysical systems was
provided for the solution of ?’1 and '32 in ‘,'equation (2.32). Ax end At
were selected to be 0,05 and 0.025 respectively. When the matrix
expression is sqlved for cq and 62 using Cramer's rule, the arrasy shown

in Figure 2.7 results,

2,3.3.2 Noniipear System

The identification techniqﬁe is now applied to the nonlinear equation

1(au2_ 152y 1 ,duy 1 3%u  du _ '
8,372 352)' * 50 %2 fzuz('a':{ - gt/ 2 o% o (2.35)
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with the boundary conditions

u(x,0) = 0, u(0,t) = 1, and-%%(o,t) = _p~1/2 (2.36)

It is shown by Philip [19] that the solution of this boundary value
problem is given by
t

(x+t 1/2)2

m =

(2,37)
For purposes of illustration it is assumed that the constants in the first
two terms of equation (2.35) are unknown. Letting c, and c, denote

these constents and rewriting (2.35)in the same form as equation (2,3)

one gets
1 ,%u,2° 1 52u MJ 1 ,9u,2 1 9%2u . su (2.38)
a1 u3/2‘ax) MR v 2u2(ax) * ol /2 B2 * : F )

As was demonstrated in example 2.3.3.1, ey and ¢, may be determined by -
evaluating equation (2.38) at two different points.

The coeffiejents c. and ¢, of equation (2.38) were estimated using

1
data obtained by calculating equation (2,37). A plot of the state
varigble u over a limited ranée is shown in Figure 2,8, The derivatives
in equation (2,38) were approximated using,thé central difference express-
ions in equations (2,16) and (2.18) with At = 0.1 and Ax = 0,05,

Eqﬁation (2.38) was evaigated at the same time but at t&o points in space

separated by a distance Ax. The resulting identification of ¢y and 5 is

shovn in Figure 2,9,

2.3.3.3 Mathematical Model Containing an Extraneous Term

- It is shown in Appendix C that when the assumed system partial differ-

ential equation contains an extraneous term, the coefficient of this term
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will be identified as zero if no approximation or noise errofs are
introduced, When thege errors are present, the estim@fed value of the

- coefficient is very small under the restriction that the ﬁroblem is
well-condifioned. The identification of a partiél differential equation
with én extraneous ferm and no measurement noise is considered in the
following example, Tﬁe effects of adding naise to the system are
diséussed in example 3.4.3.3. |

Lét the dynamics of a system be characterized by the diffusion
.equation given by (2.12). Thé qumerical data of the state variable u
is obtained once again from equation (2.23). Given this data the problem
is to find the mathematical model of the system. Due to a lack of apriori
knowledge, it is assumed that the system dynamics are characterized.by
equation (2.30) instead of (2.12). Thus, the assumed mathematicai model
has an extraneous term, (c )22,

2°3x _

‘The analysis proceeds in exactly the same manner as that presented
for the identification of ¢y and c, in exampie 2.3,3.1., The values for
"Ax end At are also unchanged. However, in £his example, equation (2,12)
is evaluatedlat points.separated by Ax wits in space rather than four

) L "
A vnits in time, The calculated values for cJ and ¢, appear in Figure

2,10, -~

2.h SUMMARY

The identification of the mathematical model describing a distributed
parameter system was considered in this.chapter. It was assumed that

exact measurements of the state variable were available to identify

30 N O Y A
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wmknown constants in the system partial differential equation and/or
boundary conditions. Derivatives of the state variable were approx-
imated by finite differences. Methods for reducing the errors resulting
from thése approximations were'presented. Results of digital computer
.simulations were given to illustrate the ldeas presented in the chapter.
The identification of the unknown constants when the state varisble

measurements are not exact is considered in the next chapter.




CHAPTER 3
IDENTIFICATION OF DISTRIBUTED PARAMETER

SYSTEMS WITH MEASUREMENT NOISE
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3.1 TINTRODUCTION

Th;s;chapter is devoted to the identification'of unknown:constants in
partial differentigl equations when measurements of the state variables of
a distributed system are corrupted by noise. The introduction of noise
requires thet the unknown parameters must be estimated. Thé least squares
estimator is found to be well suited for the problem, because its applica-
tion requires no knowledge of the statistics of the noisé. However, for
linear systems, knowing the mean and variance of_the transducer noise
makes it possible to modif& the least squares estimator té qbtain better-
acéuracy. The convefgence of the.least squafes estimator and the modified
least squares estimator is discussed. Resplts of’digital conmputer simu-
lations‘are given to illustrate the accuraéy of the two estimators, -

The errors due to finite'difference approximation and measurement
noise:are functions of the increments in time and space used in the |
finite difference formulae. Increasing the increments reduces errors
resulting from measurement noise but iqcreases finite difference approx-
imation errors. A procedure is presented which leads to the determination
of the spatial anﬁ temporal increments which minimize the combined effect
" of the two errors. The technique is applied to examples.

Finally, the problem of ill-conditioning introduced in Chapter 2 is
discussed in grester detail; The ofigins of ill~conditioning, the methods
for testing for‘ill—conditioning_and a procedure to feduée its effect are

examined.
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3.1.1 Measurement Devites

In Chapter 2 finite differences are ﬁsed to approximate derivatives

of the state variables, It is seen that the resulting finite difference-.

.expressions are functions of the state variables, and the analyéis is
presented under the assumption that the stéte variables are known
exactly.' However, in a real life situation, the state variables must be
measured with transducers., fhis introduces additional error due to
imperfections in the transducers, external noise, and interactions
between the system énd the transducer. |

In a distributed system transducers may be required to measure such
state variables as temperature, pressure, velocity, chemicel concen-

tration, electric field intensity and magnetic flux. A detailed

discussion of individual transducers would necessarily be very involved

and several books, such as the one by -Doebelin [20], have been written on

the subject. However some statistical characteristics of the noise
introduced by the transducers must be considered here,

Iet the noise generated by a transducer at péint xivand associated
instruments be denoted by wi(t). Frequenﬁly, this noise is independent
‘of the noise produced by transducers located at other points. Further-
more, the statistiecs of wi(t) may vary from transducer to transducer.
Since the finite difference equations require measurements at disérete
points in.time, wi(t).is sampled everyyAt seconds. If the samples of
wi(t) are taken at sufficiently large intervels of time, the samples

W.

19 (3 =1, 2, ...), where J denotes the jth saﬁple”Of Wi(tﬁ,_may be
2 .
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may be assumed independent in the probability sense.

As.a way of formulating the above discussion and éstablishing a
framework from which' to proceed, the transducers will be.éssumed to have
the fo}lowing characteristies, ..

(3a) The noise éenerated in each traﬁsducer is statistically

independent from the noise produced by any other transducer.

(3b) The random samples taken from a given trsnsducer are

statistically independent.

(3c¢) The noise‘generated by each transducer satisfies the

ergodic theorem [21]. |
(3d) The sﬁatistics may vary from transducer to transducer, and may
‘ or may not be known apriori.

The gsbove assumptions, of course, eliminate the case where the noise
generated by the different transducers areAcorrelated. Furthermore, the
sampling rate may be very high with the result that the sequence of
samples taken from a particular transducer are not statisticelly indepen-

dent, Identification of a distributed system with correlated measurement

noise is not investigated in this thesis.

3.2 RECURSIVE ESTIMATOR

3.2.1 Problem Formulatioﬁ

| In Chapter 2 the matrix equétion (2.7), rewritten here

He=g

is'generated-for the systenm equation (2.3) so that a solution for the

unknown vector c¢ can-be obtained.

TN L S £}
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Sigce the elements of H and g are now considered to be corrupted
with nqise it is necesséry to evaluate H and g either at different points
in space or at different instants of time so as to generate enough data
for estimation of c. Let k (k =1, 2, ...) denote a specific spatial
end/or time point at which equation (2.7) is evaluated; +thus

k=1, 2, ... .- (3.1)

The problem is to identify the unknown vector ¢ wnder the following
conditions: | |

(3e) No spatial or time derivatives can be measured directly.

(3f) The measurements are corrupted with noise whose statistics
megy or may not be known,

(3g) The identification must beAcarried out using normal operating
data; that is, no test signals that perturb the system operafion
are allowed.

(3h) The boundary conditions may or may not be known,

3.2.2 Introductory Example

Before proceeding to the general development for the solution of
the estimation problen, é simple example-is presented to demonstrate the
effects of measurement noise.

Consider the diffusion equation which is rewritten here for.‘.

convenience
3211 _ ou . (3.2)
e L T : .

Equation (3.1) in this example reduces to a scalar expressionywith'each-
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k corresponding to a unique combination of i,j.
Since the derivatives cannot be measured directly, they are

evaluated approximately by measuring u, and using the finite differences

- -~ l’J
du, . b R O P 1 _ .
FEixgoty) = BAE , ~ (3.3)
azu(x L) . Uipg,g 2% 4 * ui_l,j A |
ax2 Fi0ty = Ax2 . (3.4)

-
~

where u, 3 denotes the measured value of n, j; that is,
Rt ) s

o 3

oo

= u + w

1,3 1,3 i,j_= 1,2, vv., S ) (3.5)

i,d
Thus, in addition to the discretization errors, errors due to measurement
noise have been introduced.

Substituting for u, from equation {3.5) in equations (3.3) and

J
2
(3.4) and comparing with equations (2,14) and (2.17) it is seen that the

errors due to measurement noise are

L W T A Y !

Yy 2ht (3.6)
and
- . +
Tr'T = wt"l .,,'.l- 2W1 93 Wi"l )_j ’
'where-W and W, denote errors related t§ 2u and iig resﬁectively.
1 2 : 9k 7. 3ax2 *
It may be noted that in the evaluation of-%%, the dominant

diseretization error term is proportional to At2 (see subsection 2.3.1)
and the error due to measﬁrement noise is proporfional tq l/At.‘ Thué, if
a very small value of At is chésén to minimize the discretization efror,
the error due to measurément noise beégmes‘excessi§e. .If, on the other

hand, a very large value of At is chosen to minimize the measurement .
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noise error, the discre#ization error becomes excessive., - A similar

srgument applies for approximating g%%“ This.leads to the problem,

" considered in section 3,3, for the optimal selection of AX and At

such that the error in approximating the.derivatives is minimum,

An equivalent expression for equation (3.2) in the presence of

approximation error and measurement noise can be formulated by defining

~

Toy to be
u -u :
- {sel s 2 _
@, = (- 2AT L )z = Az}fi A e K= L2ens (3.9
: i+1, 3 1, i-1,J '

Notice that Oy is a random variagble since it is a function of random
variables, The aim is to estimate the unknown parameter o given the

sequence of the random variable o, (x = 1, 2, veuy S).

-k

3.2.3 General Mathematical Model

The ideas presented in the introductory example can be made more
general, Thus, in anticipation of the requirements éf the following
subsections, a general mathematical model is derived in this subsection,
The develovment is based on the assumption that equation (3.1) satisfies
the following additional requiremént.

(31) The elements of H, and g are linear in.u(xi,tj)k and its

L: . partial derivatives, -
A discussioﬁ of the complications arising in the nonlinear case is given
in subsection (3.2.9).

Wnen the pertinent elements of H  and g, ere approximated by finite

k

.differences,. equation (3.1) suggests the rélationship
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Hksk = By (3.9)
¥ ana o '
where K and 5k denote matrices whose elements:-are finite difference

approximations of H and

K g as shown in equation (2.32) for a specific

n
system. ¢ 1s a vector in lieu of ¢ to ensure the equality in (3.9).

Let o(Hk)‘and O(Ek) denote the error matrices due to finite difference

approximation; these error matrices are given by

oy

H = H_+ o(H) o . (3.10)
L =g, + olg) (3.12)
By T B T OBy 3.11
Also let Agk denote the error vector in Ek defined by

v o + A’\: ) . )

When the measurements of the state variables are corrupted by noise,

equation (3.9) becomes,

Moy = & (3.13)
- ~ '\' ’\‘ )
where Hk and gk denote the wvalues of Hk and 5k when their elements are
-~ "
evaluated using noise corrupted data, S is a vector in lieu of S to

ensure the equality in (3.13). ILet n(Hk) and n(gk) denote the error

matrices due to noise, then

B = K+ n(g) | . (3.1)
= H '+ o(H) + n(H) . (3.15)
- " ) -
gy = By * (g | (3.26)
=g, * olg) + nlg) | , (3.17)
Define Agk to be the grror vector in.c due to noise, thus:
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~

e
=c + A% + Ac (3.18)
- _(ik Sk .

N

- Thus the total error, Agk, in Sy due to finite differences and

noise ig given by
oy ~ .
431; =8¢ + Ao | (3.19)

Substitution of (3.19) into (3.18) yields

& = c¥ A

-

S (3.20)
In anticipation of the requirements for the derivation of the ledst.
N

_ Zx
for H,, g, and ¢, in (3.13) from equations (3.15), (3.17) ana (?.20),

squares estimator, an expression for A is obtained here. Substi%ﬁtihg

vields
[, + o(® ) +n(H )] [c+ 8¢ 1=g + olg) + nlg). (3,21)
In view of equation (3.1), equation (3.21) simplifies to

Bg, = ﬁl{[O(g_k) +n(g, )] -lo(HL.) + n(H)]c} (3.22) .

provided Hk is nonsingular,

3.2.4 Selection of the Estimator

.Tﬁere are several estimaiion schemes from which the most suitable
must be selected. The classical technigues include least squares, least
mean squares, maximum likelihood and Bayesian estimators. In addition to
the classical methods, averaging is vorthy.of congideration due to its

computational simplicity. Of.all these approaches, the least squares

estimator wag found to be the most appropriate for the following reasons.
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4

The least squares gstimator [22] is & linear; estimator which reqguires
no'knowlcl-:-dge of the statistics of the noise-. Howewlrer, when the moments of
the noise genersted by each transducer aré kn'o*.-m, it is shown in this
thesis how the least squares estimator can frequently be modified to
improye the accuracy of the appfoximation. _

A1l of:the other classical est'ima_.tors require an apriori knowledgé
of the statistics of the noise vector., The noise vector 1s defined by

returning to the general mathematical model, When eguations (3,1h4), and

(3.16) are substituted into (3.13) the results may be expressed by

n *

" ~
Moy = g * [nlg) + nlf e (3.23)
The nolise vector is the Nx1l column vector contained within the
bracketé.on the right hand ‘side of equation (3.23); A knowledgé of the
statistics of' this vector requires an aplzfiori knowledge of thé transducer
statistics. As was pointed out in the problem formulation this infor-

mation may or may not be available; but even when the transducer
statistics are known serious problems ‘remain.

" The elements of &, and H are linear partial derivatives by

k
assumption (3i). When these elements are approximated by finite differ-
ences, the resulting equations are 1ineér Junetions of the state variable,
The noise is intrbdu_ced when measurements of the state variables are taken,
Since the finite difference expressioﬁs are linear, the elements of n(Hk)
and n(g_k) are liﬁear functions o?‘.‘ the random samplés. Thus ,° the calcula~

tion of the density function of the elements of n(_g__k)'- and n(Hk)_ requires

the calculation of a.density function of g linear conmbination of random
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samplés taken from distributions with known density functions. This is
usually not a simple task. To make the Jjob e&en more difficult, once
the density function of n(H_) is known, the density function of n(Hk);c;_}{
must be Qetermined. This requires some sort of initial estimate of ék
be made before fhe density function of linear combinations of random
varisbles with known density functions is calculated.

Whén the noise vector is known to have a white gaussian distribution,
some interesting relationshivs exist between the estimators, Aoki [22]
shows that the maximum likelihood estimator and the least squares estimator
are idgntical, under the restriction that fhe Vk matrix (defined in
Appendix A.lj is chosen to be the inverse of the covariance matrix. In
this special case, the least squares estimator is also closely related.to
thé least mean square.- estimator used in Kalmen filtering. Sorenson [23]
has shown that when the state variasble in the Kalman filter is a constant,
as is the ¢ vector in this thesis, the Xalman estimator is identical to
the least squares estimatér; Here again, the matrix Vk in the least
squares estimator must be the inverse of the covariance matrix.

The Bayesian estimator requirés the density function of the noise
vector be known to estimate a random variable with a known density.
Since ¢ is not a random variable this-estimator appears to be an
unreasonable choice for this problem,

In summary all of the classical estimators excent the least squares

estimator are voorly suited for estimating c¢. In the case of the least

mean square estimator and maximum likelihood estimator this is due to the
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difficulty in determining the distribution of the noise vector. The
Bayesian estimator, on the other hang, is intended to be used wvhen cis a
randon variablé with a known density function. Finally, the'averaging '
féchniqﬁe'has been applied during the course of this investigation, but
it r;rely estimates the parameters as well as the least squares:
estimator. A comparison of the results using averages and the lgast-

'squares estimator is given in section (3.L4).

3.2.5 Least Squares Estimator

The least .squares estimator is presented in this section for the
scalar case., The matrix formulation for thé least squares estimator
appears in Appendix A.l. Examination of the scalar case is conducted
'firét to allow introduction of basic idéas without the eicéssivé algébra
that necessarily acéompanies manipulations with matrices.

The general mathematical médel is utilized iﬁ the derivation of
the least squares estimator. The notation presented in subsection 3.2.3
is altered to emphasize the fact that the development is being performed
for the scalar case. In the scalar notation capital letters denoting
métriées are replacad by small letters. and the uwnderlining used to denote
column vectors is omitted, Thus the scalar notation for the matrix Hk is
hk and &y is the scalar form of the colum vector‘gk;

The-least squares estimate of c is by definition the value of g

which minimizes the performance index

s . .- . :
J () = z(hE -g )%v :
3 wel E ¥ 'k . (3.24)
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where the vk's are positive real numbers.
The'extremum of JS(E) is found by setting its derivative équal to

zero, Thus

g (e) s . A o (3.25)
‘—2r—= I 2(hf - g, )v.h_ =0 . 3.25
A T |
Let cg denote the value of £ which satisfies equation (3.25). Then
SA ~
kEl VkBx
F oz erem—a——
c¥ 3 o (3.26)
I hiv
k=1 k'k

That JS is in fact a minimum at & = cg, and not a maximum is apparent from

the second derivative of J

S
3234 (€) S a
—szr— =2 I hlv; (3.27)
13 < kk
k=1
since hi and v, are nonnegative and if hk is nonzero for at 1east_?na
k, BZJS(E)/BEZ is positive. Therefore, c¥, the extremum point, i§

2 loeal minimum for JS(E).

In order to obtain a recursive relationship for the estimate cé

define
1 S 2 ' .
pn = I hv : (3.28)
S ey E K
-] 2
= Pg q * Bgvg (3.29)
S .
ol vy
= T
5 By L C (3.30)
k=
Al " : : '
= + hiv - (3.31)
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and
1 S~ , ' _ . .
Py = L hiv (3.32)
3 ey KK
- A-l h2 . F)
= P51 *BgYg (3.33)

In view of (3.32),~equation (3.26) reads

~ S . . ) .
c¥ = P I hwv £ (30315‘)
S S k=1 k' k&%
- (é;l A A ) e
= I h K + hhv g : U s
8'ey k% s%s . i

Multiplying the first term in the brackets by p_l jo] and substituting
. S-1 “8-1

for pgil from equation (3.33) yields

F - = _ B2
of = pg [(pg™ - hgv )Ps-l z hkvkgk +h q"s g ]
k=1
But from equation (3.34)
-~ S—lA i
D z h KV g = c¥
S-1 k=1 k¥ k S~1
Hence
°g = *S(Ps °s 1 - B3vged g + hgvgeg)
= oF %
cX_, + Act (3.35)
where
9":‘=AA ) A 2 . - ’ b6
Ack pShSVS(g hScS- ) : (3.36)

The recursive relationship for estimating c given in equation (3.35)

may be derived in other ways. Aoki [22] redefines Js(g) in-terms of'Acg

and then minimizes the performance measure with respect to this gquantity.
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A similar approach was presented earlier by Eo [2L4].

A close examination of equation_(3,36) reveals £hat as S bécomés
very large Ac§ approaches zero, €ince 58 approaches zero and the
remaining quantitieé on the right hand side of the equation are bounded.
and é

Also note that as long as h are finite for all k, cg‘which

k k

minimizes J is also finite,

Though the recursive estimator provides insight into how the
estimator is relatgd to the estimate of the previous stage, application
of this eétimator requires more computé£ion than does an alternate
‘'scheme presented in Appendix A.2. The computational savings is partifv
cularly markéd when ¢ is an N-vector and matrix opsrations must be

performed,

3.2.6 Convergence of the least Sguéres Estimator

In this section, the convergence of the least squares estimator for
the scalar casé is discussed. The results of the convergence study are
compared witﬁ the true falue of the parameter,

Substituting equation (5.20) into equation (3.13) and substituting

-~

into equation (3.34) yields

the resulting expression for 8y
» S ~ ~ . ’ " I
* = hd
_cS pskil hkﬁkhk(c + Ack)' _ .(3 37)

-

Recalling the definition of Ps_q in equation (3.32) the sbove expression
simplifies to

- 8 .

% = v 12 , o
¢g = ¢ * Pg k=lhkva?k . (3.38)
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The second term on the right hand side of equation (3.38) is the

error term resulting in the estimation of ¢ at stage 8. Iet eq denote

this error,

In general, when the measurements are taken under the same

circumstances, one measurement is no more accurate than any other

measurement, Consequently, there is no reason to weight. the measure-

‘ments of any stage heavier by selecting a large Vi at that stage. TFrom

hereon it is assumed that for all k, v, equals v, a constant. Using

k

this assumption in conjunction with equations (3.22) and (3.15) eq can
be expressed as ~

S

. 1 ( - . 3

kil‘{hk+[o(hk)+n(hk)]} {[o(g,)n(g, )] ~ [o(n)+n(h, )]}
&g = 75 ; ‘_ (3.39)

z [h, +o(h )+n(h, )12

k=1 & K £ s

Under normal circumstances the error eS is not zero unless the noise

and approximation errors are zero, in which case the numerator of-

*

equation (3.39) vanishes. However, the error is bounded when g is

bounded because c¢ is finite, In the next subsection e is approximated

S

and a modified least squares estimator is presented which tends to

compensate for €qe

3.2.7 A Modified Least Squares Estimator

-

The least squares estimate is modified by adding a correction term
which is an estimate of the error ege ‘Since the denominator in eguation
(3.39) (the expansion of [vps];l) can be obtained by measurements the

problem of estimating the denominator does not arise. An estimate for
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the.numerator which cannot be measured.is nof obtained. No claim to
‘mathematical'rigour_is.made in "obtaining this estimate. The philosophy
has been to get an estimafe of eq éven if it is approximate. in order to
improve.uﬁon the estimate of e, The validity of the approximation is - .
borne out by results of digital compﬁter simulations. -

In Chapter 2 fesults‘of_the digital computer simulations_sﬁbw that
the error in the estimate of a paraﬁeter due to discretizatién.is small
for the system dynamics considered. TFor these same systems, operating
under the saﬁé conditions and-using the same estimator, ﬁhen meaéurement_
noise is added the estimation error iﬁcreaées dramatically. In the case
of the diffusion equation, for example, when the noise to signal ratio
is leéss than or equal to 0.01, the estimation error goes up to as high as
‘sixty-eight percent, The introductory example in subsection (3.2.2)
‘provides an explagation for this large change in percentage erwor. W,

and W., -the noise errors-in evaluating the derivatives, are at least  of

o9
the order 1/At and 1/Ax whereas the discretization erross are, at most,
of the order M2 and A%, Since At .and Ax are usuelly much smaller than
éne and in any case.always lesé than'one, the values of Wl end W2 can be
large even if the noise, wi,j’ is small. For thefe reasons the discreti-
zation error terms in the numerator of eguation (3.39) are assumed
ﬁegligible. The following additional,assumpfibns aré also made;_

(33) The mean af the noise generated by each transducer is zero?
and the vgriance:knéwn.

{3%) n(hk) and n(gk) have no common terms. Note that n(hk) and
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n(gk) in the 1ntroductory examnle satlsfy this assumption
becayse the.w 1,541 énd W, i,5-1 1@,Wl QQ.got appear in NQ.
‘ (31) x-is the only spatial variable in thé'partial difrérential
' equations, | o | |
(3m) The measurement.noise and the:state variables ‘are uncorrelated.
Under tﬁéia;sumptioh that the discretization efro?s o(hk)?and olg. )

are negligible, equation (3.39) becomes

z [n, #n(t )](n( . )-n(n )]
k_l ity hde

o = : - (3.50)
z [h, +n(n,) o
1:—1117‘}?L

If S .is finite, the nwerator and denominator can be divided by it to

give the approximation

S
%-i [ Aulb ) 1n(g, )n(n, )]
esﬁ ) S

§'§ [h +n(hk)]2

l§ ( )( z (h )2+ lgh () €;gh( )

— h n n o 0, n\g - a n{h ’
='Si<_=1n B e T (3.11)
| i§h2+§.§hkn(hk).+}-§h(hk)~? |

Sk=1 ¥ P f=1

Consider the sequence of samples of noise generated by a transducer
located at point_xi. When seversl samples have been taken {in other words

S is finite but large) an unbiased estimator for-the mean is'given by
5 .

1 . .
=% w. ' : (3.42)
; S,]‘=lwl"j ' B ‘ . o -

o g I (3.43)

L

¥i

1]
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An unbiased estimator for the variance ci of:wi(t) is giﬁen by the
approximation
S . .
2% =7y w2 . . . : : :
g% = < .
3 Sj=l 1,3 , ' (3.h4)

By assumption (3a) in section (3.1) wi(t) and wk(t) are statistically
independent for i # k. Since wi(t) and Wk(t) have zero mean, an unbiased

estimator for the covariance of Wi(t) and Wk(t) is

1217137, | | (3.h5) .

But the covariance of two independent random variables is zero. Therefore

™M

W,

1o .
Sj=l 1,J k,;

o ; ' ' (3.146)

The above approximations are useful in evaluating expressions

containing n(hk) and n(gk) in (3,41) which are linear functions of w, .3

i,
that is
JtR i+Q
n(h)=(¢z I a_ w. )
hk s=-R r=i-Q r,s ¥,s'k » (B.hT?
: J+R i+Q : )
n(gk) =(z z br,swr,s)k ) ‘ (3.148)

s=j=-R r=i-Q

.where the a, .'s and b 's are constants determined by the finite

1,4 1,5 °

differences. 20+1 and 2R+1 are the number of transducers and samples
specified by the difference equations. Por illustration consider the
introductory examvle in subsection 3.2.2 where the errors due to noise

are given by equations (3.6) .and (3.7). In this case n(hk) and n(gk)

v

—




63 I

are W, and W, respectively and are rewritten here for convenience,

1 2
n(n) = v, )t (G0 4+ Grdvi gl (3.59)
n(g,) = [(é%f)‘_‘_’i,jﬂ * (éf%’)wi,j-l]k | (3.56)
A comparison of equation (3.49) with (3.47) shows éi+l,j = 1/8%2,
2 .3 = -2/Ax2,'a:.L__..L’j = 1/A%? and 8. = 0 for other values of r and

s. Similarly for equation (3.50)and (3,.48) br . is zero with the

9

exception of bi,j+l = 1/2At and bi,j—l = ~1/2At. As before, k denotes
the kth set of i’s and j's., Notice that even though the LA j's are
b4
- different for each k (k = 1, 2, 3, ...) the 2, 's add b 's in equations
] b

(3.h7) and (é.h8) do not change.
Approximation (3.41) for eq cgntains terms with n(hk)'and n(gk)
summed from 1 to S. These.sums can be approximated in terms of the
mean‘and variance of.the individual transducer noise W .
When equation (3.47) is summgd over the k's and both sideé are

divided by S there results

1 8 1 S J+R  1+Q
o L n( ) =5 ( )X T a w )
Sk=l hk Sk::l S:J_R Ici_Q TS TS k
s 1 S, J*R
==z ( ¢ a, . W, ). .
Sk=l s=3j-R i<Q,s 1-Q,s'k
S J+R
l .
P . + - Z ( 2 a. W, )
= -Q+ + LI 3
' Sk=1 s=j-R i-Q+l,s i-0+l,s'k
1S IR |
HESARL IR (3.51)
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This expression mey be approximated in terms of the statistics of
the transducer noise. Let the points i,j correspénding to each kr
(k = 1, 2, &..,5) be token at the same spatial points, but separated in
.time by some multiple of the sampling interval, say mAt; The reason
for selecting thenpoints in this manner is based upon practical
considerationsi The péints may be chosen in any fashion as long as
they differ in time and/o} space, However, if points are selectea SO
" that they differ in space, additional transducers are required. On the
other hand, displacing the points in time presents no‘problem° Each set
of points uses measurements taken from a minimum nunber of transducers.
Picking the éoints so.that they are:geparated by several sampling
intervaié is advisable to insu;e that each set of measurements is
unrelated to the previous set., However, when this is not practical,
the sets of points can be separated by a single sampling interval.
| When the k's are selected in the above fashion, each term on the
.r?ght hand side of (3.51) is nearly zero. For instance, consider the
first term. Since the a, ,'s are constants specified by the finite

i,]

difference formulae and the w. ,'s are random samples, the first temm

1,]

can be expressed as

J+R 3R S

™MW

C 1 + 1 S
=z ( T a, Ww. ), = r a. =3 (w. ﬁ. )
k=1 s=j-R i-Q,s 'i-9,s8'k - s=3-R 1-Q,s 5, _, "i-Q,8'k

where the order of summation has been interchanged. In this case, the
interchange of order of summation is valid provided the sum is a finite

number, Since consecutive values of k dencte a separation of mt in time,
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the summation with respect to k can be replaced by a sunmation with respect

to § as follows

18 IR J+R N !
I ( ¢ a, Ww. ). = T a. Ly,
Sk:l s=j-R 1-Q,571-9,5'k -s=3-R 1-Q,s S§=O i-Q,s+m$
= a, L Sgl r
.8-1
ta 5w +oa..
1-Q,3-R+1 S0 Vi-0,J-Relms O
1571 i
T %m0, 50R Byl Vie0,JeRims - (3.52)

When mAf is large enough for the sequence of sammles to be inde-
pendent, each of the terms on the right hand side of equation (3.52) is -
approximately zero by expres;ion (3.43). Thus, the first term of equation
(3.51) is approximately zero. A similar argument may be used to shb& the
remaining terms on the right hand side of eguation (3.51) are approxi-~

mately zero., Therefore,

1

Sli n(h) = 0 (3.53)
k=1
Similarly
S S
.S..kij_ln(gk) = 0 (3.54)

When terms of the fbfm

S J+R  i+Q

l :
2 = ema 2

1 Pg=1 s=j-R r=i-q 1°° TSk

LU e IR )]

1
Sk
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are expanded, the results contain terms with Wi 5 38 well as cross product
) s

terms in w s° When these terms are summed over k, the cross product
. £

terms are approximately. zero due to assumptions (3a) and (3b)leaving the

approximation
S S +R i+ '
1 2 . 1 . S P (3.56)
gz n(hk) 5z ( = I aZ w2 s)k
k=1 k=1 s=j-R r=i-Q ~°° °°?

Consider the expansion of the right hand side of (3.56) when
r = i-Q, By applying the same arguments used in the paragraph above

equation (3.52) it is possible to obtain the expression

18  J*R , ,5-1 ,
I ( r a%2., w? ), = a2 I W
k=1 s=j-R i-9,s 1i-Q,s'k 1-Q,3-R S§=O 1i-9,3~R+ms
< 1S--l
2 =
* ai"Qsj"R"'l S§§=O Wl%-"Qsj"R'{'l'}m §+...
S-1
+ a2 1y w2 ~ _
1~Q,J4R Sy  i=Q,J+RemS (3.57)

" But by (3.44) this expression may be approximated by

LS R , ,
s ( ¥ af A . a% . o2
Sk=l s=J-R i-Q,s i-Q,8'k = 1—Q,;—R i-Q

2 2 4 + 52 2
+aLQJ4%fLQ e aLQJmULQ

) (3.58)

o 2 2 + + 22
E— Gi—Q(aimQ’j—-R + ai—Q,j—R+l L ai—Q,j+R

Therefore, equation (3.55) is given by the approximation

Q

R

J+R

a2 g2 _ - (3.59)
Yy T . )

| 0

1. -
3 lé(hk)z =

= g2 , ' ' (3.60)

s=j~R r=i-9Q

+ +
z z
J
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where
A J*R i+Q .
2 2 z £ a2 02 : _ (3.61)
s=j«R r=i-q ~°

Finally, in view of assumption (3k) and expression (3.46) the

following approximation can be made

1 s (b Intes) 1 S ( J*R i+Q R i+ ' (3. 62)
=% n(h )nlg,) = =z X I a w. (= T b, w. ), (3.62
S by k Sy=1 g=jR r=i-g F?5 TsS k s=j~R r=i-Q r,s r,s'k

=" 0 (3.63)

Expressions (3.60) and (3.63) may be substituted into (3.41) with

the result
1 S c s .
2
-co? + = hnlg, ) -==% hnlh)
- X
Lo Sy KR Sy KK (3.64)
e -—
S ) S a
l.z hi
Sk=1
The error term can be simplified further by considering terms of the
S g .
type-l Inh n(hk). Since the state variable and the noise are assumed
Sk=l k - :

statistically independent, h_ and n(hk) are also statistically independent.

Furthermore, the expected value of n(hk) is zero. This is shown by first

taking the expected value of equation (3.53).

J+#R  i+Q - :
E[n(hk)] = E[s=§-3 rzi_Qar,sWr,s)k]
J+¥R  i+Q : ' .
=( : T a_ E[w._ 1) A , (3.65)

s=j~R r=i-Q r,s rso'k

where E denotes the expected wvalue. By.assumptioﬁ (3j) the transducer

"means are zero, Therefore




68

Elhn(h,)] = b Eln(h, )]

=0 _ (3.66)
and
%.g nn(n) =0 - | (3.67)
k=1 : '

Approximation (3.67) follows from the fact that tﬁe expected value of each
term in the expansion of the left hand side of approxiﬁaéion (3.67) is -
zefo._ Since S is a large number, the summation of terms in the left hand
side: of (3.67) is approximately zero. A similar argument may be made td

show

H~Mm

1
s

. hoa(g) =0 ' , o (3.68)

1
Application of the results of approximation (3.67) end (3.68) to

(3.64) gives

o = _ _co? |
S 2 , (3.69)
Sk=l ‘ '
= - SVUZESc - 4 (3.70)

Expression (3.70) provides an estimate of eg in terms of pg, the
“"variance" of the noise ¢2, and the wnknown parameter ¢, Since c¢ is
unknown, the best that can be done at stage S is to replace ¢ by its

modified estimate at stage S-1, thus

~ 22 #3 L - ‘
€5 Svotpgegiy (3.71)

where c¥%*:

S:l is the modified least square estimate of c at the stage S-1.
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As stated earlier, the modified least squares estimate is the least

. squared estimate minus the error, thus

S S S _
= % ZA %% . ’
g * SvotpgesTy . (3.72)
with

It is showm in the next subsection that the accuracy of the
modified least squares estimator is generally better than that of fhe

least squares estimator. Furthermore, this scheme has been applied to

several problems with significant success.,

'3;2:8:’Convergénce‘of’the‘Léasf'SdUares Estimator and Modified Least

Squares Estimator.

In this sectior an approximate expression for the error term in the
modified least squares estimator is derived. This result is then compared
and contrasted with the error term -developed previously for the least
squares_e;timator.

When the error terﬁ, s in the least sguares estimator is approx-
‘imated by the ‘expression

""eS = -SVO'ZPSC - ' . : (3.74)

"then equation (3.38) can be approximated by
* . _ 2‘\ .' - ‘ . . .
cg = ¢-— 8vopge ‘ | . ‘ (3.75)
Now applying (3.75) repeatedly to'equations-(3.72) and (3.73) gives the

following result.
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il

c - 2vo'2p2c: )
and when S = 3

k¥ = o% 4 ZA. %%
3 c3 3va p3c2 )

i

(C - 3VO'?'93c) + 3V0’21;3 (C - 2VU21,;2C)

1

¢ = (2)(3)(vo2 Pogp,e

eand in general

5-1 5 - ' '
e* ze (1« 8Hvo?)" " mp] . (3.76)
3 _ I Px
The second term within the brackets of expression (3.76) can be
approximated by assuming .n(hk_) >> O(hk) and i apolying expressions

(3.60) and (3.67) with the result

. S A 2+5=1
- - !
wep B S X -
L I[v T n?]
k=2 =1 " -
. S!VS—-]_(UZ)S—l
S k
'.vs—l [ Zh§+k02]
k=2 %=1 .
S-1 -
. '81(d?) - :
S : (3.77)
I[Z nb)+ ko?]
k=2 =1 L

For convenience of notation define A2 to be the quantity on the right

hand side of approximation (3.77). Then expression (3.76) is given
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approximatelyiby
ek = c Fl ~:A2] ' : (3.78)

This expression for the approximate error of cgﬁ can be compared

with that derived for c¥. .First, however, e, in expression (3.69)

S S]

must be further approximated by once again assuming n(hk) >> o(hk) and

i

applying approximations (3.60) and (3.67) to obtain

. cg?
s © = 18 .
= 2
= E [hk+n(hk) + O(hk)]
- k=1
= _ o2c
18 (3.79)
5 & hito® '
k=1
Therefore, cg_can be approximafed by the expression
% = -
v = c[1-A)] . . (3.80)
where Al is defined by >
A o2
17 TS (3.81)
=7 B2 4+ 42

The comparison of the convergence of cg* and cg may now be made by

examining A, and A,. To begin with, A

1 5 and AQ are functions of the same

1
parameters and these parameters are nonnegative. Both estimates are

approximately e@ual to ¢ when'Al and A2 are zero, This is reasonable for
only'cr2 appears in the numerators of these expressions and as the variance

of the noise becomes smaller the error decreases. When g? increases

without bound, Al and A2 approach wmity., Therefore, cg* and cg can be
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T2
expected to lie somewhere between O and c.

Additional comparisons can be made by establishing bounds on hi.
Assume the system is overating under transient conditions. Then hi can
be expected to be bounded above ‘and below by the positive real numbers
. { .

U? and €2 , Therefore

€2£h§sU2 - k=1,2, o0,y S (3.82)

It is true, of course, that in a dynamic system hk can be identically.
zero at a finite number of points in time and space, However, it may

be assumed that this happens rather infrequently.

Bownds on A, and A, can now be found in terms of those on hi. Since

1 2

the quantities in Al are all nonnegative, application of the inequality

of (3.82) vields

o2 o2

1 s
U2+c2 5-2 e2402 - (3.83)
k=1 . k=1

i ™Mom

£
s

o’ <a S o? ‘
v + g2 1oe2462
l ) S 'A S l ' - (30811')
2 e :
E§'+ 1 62.+ 1
'Similafly.AQ is bounded by
s1(e)5 o, < _s1(e?)
S: k T2 T T8 Tk (3.85)
I {Z 0P+ko?] [z e2+x0?]

k=2 2=1 k=2 2=1

which can also be further simplified. - Therefore,
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516251 . si(e?)SY

S A =5
T k[U2452) I k[e2402]
k=2 k=2 '
s1(g2)°% <2 st(g2)°-L

s1(02462)%Y 2 gi(e2402)571

S SR S Y. __Tr#L.ﬂ_on~ o
&+ D3R (e )3T (3.86)

Reference to the inequalities of (3.8L4) and (3.86) shows that A

~and A, lie between zero and unity as expected, The bounds on A, in (3.84)

2 1

emphasize the fact that the error in the least squares estimator is, in

general, nonzero when 62 is finite. From the upper bowmnd it is seen that -

Al is small only when €2 is mugh larger than o%. ‘In contrast to this
résult, for a given set of bounds on hi and g specified vafiance, the
bounds oﬁ A2 are smaller than those on Al when S is grester than two.

In fact, when e? is nonzero, the upper bound on A2 approacheé zexro asl
S becomes infinitely large, In general then, the modified least squares

estimate can be expected to be more accurate than the least squares

estimate,

3.2.9 Nonlinear Problems

The least squares estimator developed in subsection 3.2.5 may also

be applied to the identification of systems described by nonlinear

v

partial differential equations, provided that the equations are linear

v o

in ¢. In the nonlinear case,; however, an examination of the convergence.

of the estimator is quite involved. The fact that the least squares
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estimator in the linear case contains a nonzero error suggests that thé
error in the nonlinesdr problém is also nonzero. " However, until an
analytic expression for this error is found, there is no wéy to develop
a modified least squares estimator,
The nature of the difficulties encomntered with the identification
of a nonlinear partiel differential equation is illustrated by the equation

32wy, _ Bu ‘ .
(52)%c = 5 (3.87)

Notice equation (3.87) appears similar in structure to the diffusion
.equation already considered.

The formulation given in eguation (3.1) is still applicable, as
are equations (3.9) and (3.13) when noise and approximation errors are
included. However, equations (3;10) and (3.14) are no lonéer valid. This
is demonstrated by approximating fﬁ/%xz by finite differences and

introducing noise to get

ﬂk = [(uxx + O(UXX) + n(ukx)]ﬁ
=‘[u§x + O(uxx)2 * n(uxx)z

+.2{}1m0(uxx) + uxlxn(uxx).+ o(uxx)n(um)}]k | (3,88)

where ﬁxx = 32u/32x2,-o(uxx?isgthe error in approximating uxx‘and g(uxx)” is
the noise term. The right hand side of equation (3.88) camnot be
separated into terms- containing only noise and approximétion errors as was
.done in equation (3.15), since it has éross'prodyct terms containiﬁg U

discretization error and the noise.
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In order to apply the least squares estimate, equation (3.38), an
expression for Ack is found by following the proéedure used previously
for the linear case, Thus, for the scalar case, the substitution of

equation (3.20) into (3.13) yields

hk(c + Ack) = 8 (3.89)
Therefore, Ack is giveh by the expression

_ I l "~ -~ .
be, = §;< he) | : (3.90)

When (3,17), (3.87) and (3.88) arersubstituted into (3.90) there results

1

I _ 2 2 '
Ae, A, {[O(gk) + n(gk)] [0(uxx) + n(uxx) + ?umo(uxx)
+ 2uxxn(uxx) + 20(u.xx)n(uxx)]c}k o (3:91)
Substitution of equation (3.91) into (3.38) vields the least squares
eétimaﬁe
- 5 - . 2 . 2
% = o - .
ek = c+ pov. I hk{o(ok) + n(gk) [o(uxx) + n(uxx)
k=1 ,
+ 2uxxo(uxx) + 2uxxp(uxx) + 20(u.xx)'ﬁ(uxx)]c}k - (3.92)

The estimation error could ﬁe written in terms of fhe statistics of
the transducer noise by making use of approximations similar to those of -
subsection 3.2,6, The analysis is quite involved and is nét carried out
in this'thesié. However, an”examination‘of equation (3.92) reveals the
following.informaﬁion.about the spproximate value of the identification '
error, :

Since ﬂk contains.n(ux¥)2, terms with n(uxX)“ appear in both the

denoninator and numerator., When n(uxxy+is evaluated using transducer
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Statdstics, see equation (3.55), it will be épproximated by terms which
are a function of the fourth moment of the transducer noise. Furthermore,
terms containing n(uxx)g'and n(uxx) will also be present., Therefore, a
modified estimator would require a knowledge of the fourth moﬁént aﬁout the.:
mean in addition to the mesn and variance of the transducer noise,

‘Fﬂe\error will also contain terms which are products of 5(uxx) and
n(uxx)z. These terms must be included in the expression for the
apﬁroximate error, As a result, a modified scheme would reduire an

estimate of o(uxx). This problem is discussed briefly in subsection 3.3.1.

3.3 SELECTION OF OPTIMAL INCREMENTS IN TIME AND SPACE‘

In section 3.2.2 a dilemma is presented. The error due to
appfoximating derivatives with finite difference; is decreésed by meking
the sanipling interval and spacing between transducers as small as
possible, Howevér, the error fesulting from measurement noise is reduced
by increasing the sampling interval and transducer spacing. Hence, there
is a £radeoff between errors due to noise:and approximations, This
éuggésts that there exists an opfimal sample intefval and fransdﬁcer-
spacing -which mininizes the combined effect‘of these two efrors; The
expressions for these optimal values turn out to be functions of the
variance of the transduéer noise and the:éarameﬁer ¢, The transdﬁcer
statistics may be determined in a straight forvard manner by pefforminé -
tests on ‘the devices. However, c is the qqéntiEy which must be estimated
and an.apriori knowledge of'this'quantity'negétes‘the need to perform

| the identification.
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Despite the need to make an initial estimete of ¢, the procedure

is very useful. .Selecting a combination of Ax and At, with no criteria
other than physical constraints9 can lead to inferior results. By using
all information available to make an initial estimate of ¢ aﬁd accepting
rather large errofs, an estimate of the optimal Ax and At can be

obtained, Though this combination is not precisely.the optimum, .it will
genefaliy lead to a more accﬁrate identification than can be obtained by
simply guessing. For algebraic simplicity the scalar case is consideréd

in this section and the matrix case is considered in Appendix A.3.

3.3.1 Index of Performarnce

For the problem considered in section 3.2 the aim is to find Ax and

At such that]Ack]is minimum. Since Ack is a random variable it is

reasonable to minimize the index of performance

I, = Elack] | | (3.93)

with respect to Ax and At However, this is not a very convenient index
- of performance for the following reason.
When equation (3.15) is substituted into the scalar form of equation

(3.22), Ac, becomes

_ folg) + nlg,)] - To(n) + alh)]le (3.94)

Bey By + n(hk)'+ o(B,)

Substituting equation (3.94) into equation (3.93) results in a very
complicated expression to minimize., An examination of Ac, "reveals that .

the.numerator of equation (3.93) has far greater effect on the
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minimization of Il than»does the denominator; This conclusion results
from the observation that n(hk) and o(hk) are usually small with respect
to hk' Now if the minimization were performed with respect to the
_numerator of Il only; the préblem would bé made much more tractable,

Therefore, let the new performance index be given by

1, = El{leg,) + nlg)] - lo(n) + nln)]e} 12

E[{[n(hk)c - n(gk)] + [é(hk)c - o(gk)]}%]

El{n(n)e - n(g,)}2] + [o(n)e ~ oz, )]
+ 2[o(h )e - o(g, )] E [n(h e - nlg,)] . (3.95)

12 may be simplified further by making use of equations (3.47) and

(3.48), " When the expected value of n(hk) is taken there results -
J¥R  i+Q

E[( I I a
s=J-R r=1i-Q

). ]

- W
r,s r,s'k

Eln(n,)]

-
"

= D J+R i+Q ]
( = I a_ Elw )
s=j~R r=i-Q r,s r,s 'k

But by assumption (3j) the mean of the noise generated by each
transducer is zero, Therefore

E[n(hk)] = 0 | o ' (3.96)

Similarly for n(gk) taking the expectation results in -

J+R  i+Q :
E[( = T v, o w, )]
s=j-R r=i-g "% T°°

i

Eln(g,)]

J+R l iJrQ ]
[z b Elw_ )
s=J-R r=i-Q"*° T°

=0 - o (3.97)

-
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Substituting equations (3.96) and (3.97) into (3.95) reduces I, to the

expression

1, = El{a(n e - n(g)P] + [oln)c - olg,) )2 © (3.98)

When equations (3.47) and (3.148) are substituted in the first term on
the right hand side of equation (3.98)

JR i+ o
El{n(n )e ~ n(g)}?] = E[{ =  (a, e-b v }2] (3.99)

s=j-R r=i-q r,s r,s’ r,s
Since assumptions (3a) and (3b) state the 53
. ]

independent and the means are zero by assump%ion (33)

's are statistically

J+R i+Q ) .
E[{n(hk)c - ri(gk)}zl =[ _Z _}f (a &€ br,s'}zE(Wi,s)]k (3.100)
s=J=-R r=i-Q )

Eqdétion (3.100) may be expressed in terms of tﬁe variance of thg
transducer noise, Assume the points i,J] corresponding to each k, are
Separatea in time, The Justification for not changing the spatial points
is presented in subsection 3‘2'7ﬁ E[Wi,s] at the kth point is Xnown to
be the wvariance of the noise generated by the transdgcer located at X .
Theréfore

. 3 + , .
E[{n(hk)c - n(gk)}z]‘= —Z ’§ (a c-b% )Zgi . o (3.101)
. s=j3-R r=i-Q
Notice that the subscript k has been droppedhbécause fhe gquantities in
the equation do not change as k takes on new values. - Substituting
equation (3,101).into (3.98) results in the following expression for Iét
JHR - 1i+Q

— 3 2.2 2
I,=. _z z (ar’sc - br’s) of + [o{hk)c - O(gk)] - (3.102)
s=J-R r=1-Q  :
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As was stated at the beginning of this section, d% can be calculated
and an initial estimate of ¢ can be made. The problem remains to
evaluate‘o(hk) and o(gk). The nature of the difficulties encountered
in obtaining the finite.difference error may be illustrated by retufning
once again to the introductofy exanple,

The error terms for the central difference apvroximations of

equations (2,17) and (2.1L4) are given respectively by the expressions

_ Ax? .
o(hk) = [(—== 12) ax;] + higher order terms in Ax ‘ (3.103)
o(gk) = [Omg-)ats #Ihigher order terms in At2 , (3.104)

As long as At and Ax are less than one,‘the higher order terms in Ax2
and At? are negligible with respect to the first term on the right hand
side 6f (3.103 and (3.10h5 and may be neglected, Since Ax and At are
knoﬁn this leaves [Buulax“]k and [33u/8£3]k to be evaluated for the
points.in time and space corresponding to k=1, 2, ..., S. This could
be done by approximating the derivatives with finite différence equations
and tﬁen pérforming'tests on the systeﬁ. However, in order to obtain
a'tu/axh with accuracy to within an error of order Ax?, at least five
transéucerslare necessai}. Furthermore, the select%on of Ax and Aﬁ ié én
off-line process and the values of the derivatives for k = i, 2y eees S
'are not known epriori. Hence, in order to proceeé further with the
selectlon of Ax and At, it is necessary to replace O(hk) and o(gk) by
some,representatlve terms, t .

A siméle technique has been applied with considerable succeés which

by-passes -the difficulty in determining the derivatives occurring in the
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finite differencelerrors. The approach is to take only the func£ions of
Ax and At which aépear in the dominent error term. Returning tq the
introductory example,‘the.errprs.o(hk)and o(gk) would be replaced by
Ax? and At2, respectively.

When the performance index has been formulated for a particular

system, I, is nonlinear in Ax and At, Furthermore, Ax and At must be

2
constrained from above and below. The lower constraint on' Ax is the 3?
physical size of the transducers while the maximum sampling rate
determines the loﬁer 1imit.on At. However, these lower constraints are
noﬁ as critical as the upper cogstraints.

As indicated in equatiocms (3.103) and (3.104), the finite difference
error terms contain higher order terms in Ax2 and At2. If Ax and At
are equal.to or grester thén one the errors are unbounded and the finite
differences are no longer valid. Therefore, the upper constraint on Ax
gnd At is one., Tt should be notea that physical considerations may
override this upper constraint. TFor example, if'the length of the materiél
is one wnit and three transducers are required, Ax can be no larger than
1/2 unit. |

The applicationvof the selection of optimal Ax and At to nonlinear’
probléms suffers from the same type of difficulties encouﬁtered'in
formulating the modified least s@uares estimatbr-in subsection 3,2,9. To
demonstrate. this consider the.illustration used:in that subsection,

Once again, the aim is to minimize E[Aéi] and the-important

minimization occurs in the numerator of this performence index, The
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expression for the numerator of Ack is available in egquation (3.91).
Since the numerator cor_ltains\uxx in addition to the‘error terms resulting
from finite differences and measurement noise,’it too must be approxi~
mated. Thus, a point is reached where estimafes of most of the
parameters innthe performance index must be made, and the accuracy of the
bptimizaéion technique becomes very questionable,

Since the independe?t variables are conétrained, the problem fits
into-the éenefal category of a nonlinear pfogramming problem, Sincgh
several texts, such as the one by Hédley [25]’have been wri£ﬁén on this
'squeét’it_will not be considered here, In the examples Whicﬁ follow,

the upper constraints prove to be very critical in selécting the optimal

Ax and At,

3.4  EXAMPLES AND RESULTS OF DIGITAL COMPUTER SIMULATIONS

Examples illustrating the identification of systems in the abseﬁce
of measurement noige are presented in seqtign 2.3. Thi; portion of the
thésis is devoted to examples deménstrating the estimation of'system
varameters in-fhe presence of measuremeﬁt noise, The least sguares
estimator énd ﬁodified least squares estimators are ﬁsed‘in a;l the‘
examples., The accuracy of these estimators is compared_with the results
~obtained by taking averages. The technique'for selecting fhewoptimal Ax
" and At is applied.

Before proceeding to the examples, some coernts concerninglthe
digital computer.simulations used for this section are in orde;. The

@artial differential equations-and gssociated boundary conditions in the
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examples all have anélytic solﬁtions° The solutibné were calculated
on the digital computer to generate the values of the stéte variables at
the desired points in space and time, @he resﬁlting data was accurate to
the least four significant figures, Noise was then added to the state
variable providing the data from which the estimation of the unknown
constants in fhe original partial differential equation could be made,

The noise was obtained by using the output of a raﬁdoﬁ number
generator, Tﬁe generator was a subroutine written for tbe digital
computer. The numbers were random samples frpm.a density fUnction with -
a uniform distribution. The ﬁean and variénce of the distribution were
known’to be 6.5 and 1/12 respectively. However, these parameters were
changed as desired by shifting the origin and scaling the abscissa, In
~8ll the examples which follow no effort was made to chaﬁge the statistics
from transduéer to transducer, Hence, the noise added to the sﬁate

variables in each example are rendom samples taken from the same

distribution with the same probability densitj function,

3.4,1 Estimation of a Single Constant

The identification ¢f o in the diffusion equation with boundary
condifions-given in subsections 2,3.1 and 2.3;2 is now considered. The
system in subsecﬁion 2,3.1 starté from .an initial state and proceeds to-
..a'sbecified steady.state condition. This syétem-is referred to as the
unforced‘example. The forced example in sﬁbsectiqn 2,3.2 has boundary

conditions which keep the system in a dynamic state. Before proceeding




N Y A | (-

8h

!
to a‘discussion of tﬁe individﬁal examples, soﬁe relationships are
developed which apply éé both.
The modified least squares estimator is given b& equation (3,72).
A1l the parameters ih the equation are known except g2 Since the
.statistics of all the transducers are assumed to-be the same,
0} = o= 0% = ... = o2 : (3.105)

The utilization of (3.105) in equation (3.61) gives the results

J+1 i+l
o = o2 L a2 (3.106)
- s=j~1 r=i-1 7?
The a, s's and br s's were determined in the paragraph following
4 s
e@uation.(B.SO). When this information is substituted into equation
(3.106), ¢? becomes
2 = o2 [gp)? + (5202 + (2]
¢ ¢ “CAx2 Ax2
AX® , . (3.107)
Substituting equation (3.107) into equation (3.72) yields
6SVU§; :
. S . ' .
£ o 0¥ g e D A% : 3.108
°s" T s T TExr %5 (3.108)

where c{* = 0 in accordance w1th equation (3.73).

The optimal Ax and At minimize I, ih equation (3 102) with Ax% and

. 2
At? replacing o(hk) and o(gk); Substituting for the a_ S'S and b, S'S in

s . LA

equation (3.,102), the index of performance simplifies to

1y, o ol ys
sie). + Gt

1, =0l (G52 + (G2 + (g2 + (

+ (szc - At2)2

Hence




) - — ] Ll il

85

6dic2 .gi
- 2. Ap2)2
T2 AxH ¥ 2rt2 + (axfe - At%) (3.109)

Consider now the unforced example. In ofder to find Ax'and At that .
minimize I2 it is necessary to know ci and c.. ﬁor this exampie, Gi
was chosen to be 0.01/12, Tﬁe.value of ¢ used in the generation of the
data of the state vgriable was 1/72, Under normal circumstences the
initial estimate of ¢ may.be very poor. Howevgr, the actual value of ¢
will be used in this section to illustrate thg best possible improvement
atfainab;e with the proposed ‘optimization technique. Thus, knowing ci
gnd c, 12 becones

3

o = (sﬁyocﬂ*; 21'42%2 * [(%&)2 - at2]? (3.110)

I

The solution for u in equation (2.23) was based upon a length of
material of unity. Since the number pf spatial measurements required by
the-finite.difference'formulae is.three; the spacing between transducers
can be no larger than 1/2 unit. When 12 is minimized with respect to Ax
and At with an upper constraint of 0.5 for Ag;the resulting optimal
combination is Ax = 0.5 and At = 0.27. The fact that the optimal
combination of Ax and At requires that Ax be as large as the boundApermitS
is not une#pected. Arguments leading to the modifiea least squ#res
estimator ﬁere based upon the.assumption that errors due to noise afe
‘much -larger than those resulting from finite'difference.approximations,
%hen Ax and At are less than unity. Since the performange index was
férmulated to minimize the combined effecthof tﬁé errors.due to noise
and finite diffepenbe~approximations, the minimization will lead to a

rather large value for Ax,
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In the digital computer simulations the upper bound on A x was
reduced from'O.S.to 0.45. In an actual physical systen of lengtﬁ unity,
selecfing Ax = 0.5 would require the placement of two traqsducers at
each end of the material, If the transducers were thermocouples this
would be impracticgl° The resulting optimal value for &t with Ax = 6.h5
was 0,27.

In this example +the weighting function v in the iéast équares
estimator was assumed to be unity., Since %, is known,l the modified

least sQuares estimator can be written
5%10™sp,

To¥¥ = % 4 1rii e _ . .
S S TAX S-1 (3.111)

The least squares estimate and the modified least squares estimate
using the optimal ax aﬁd At are given in Figure 3.1, The data was
plotted by an IBM 1627 Model IT and is accurate to ﬁithin 0.01 inches,
Also included in this figure is the identification of ¢ by taking the

~

mean of c, that is,

k
1 5 - .
c == L ¢
AVE S5,k . (3.112)

én examination of tﬂe results of Figure 3.1 shows that the least
squares estimator estimated o more accurately than did the modified
.1east squares estimator. This appears to contraaict.the conclusioﬁs
" reached in subsection 3.2.8, Hoﬁevef, these results are reaéonable in
light of éhe results of the digi£ai computér caléulationé made in the

example of subsection 2,3.1.
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When the central difference formula of equation (2.19) is used to
calculate E the array of Figure 2.2 is generated. Notice the finite
difference error of the calculations centered about Ax = 0.5 1s always
positive, Now even though the finite difference error at each stage
is very small with respect fo the error due to measurement noise, the
cumulative effect 6f the finite difference error in this example was
significant. |

The dynamics in the unforced éxamplg are of é special type., Figure
2.1 shows that in the absence of measurement noise the dynamiecs are
decaying monotonically with respect to timé. The forced systemn, oﬁ the
other hand hés dynamics which m&re closely typify those encountered in
distributed parameter systems. As a result, the finite difference error
is at times.positive and at other times negative.

The boundéry'conditions for the forced system are given in equations
(2.25), (2.26) and (2.27). The aﬂalytié solution of the diffusion
equation is fownd by the method of finite cosine transforms and appeérs
in equation (2.29). The paramete?s selected for this example are a:= 1,
w=0,6,#%  2/117, L = 1.0 and k = 8, After equation (2.29) was -
calcuiéted on the.digitai computef,measuremeﬁt noise with a variance of -
10‘”/12 and zero mean was added. |

As in the unforced exémple, the weighting function v is -essumed - .
" to be unity in all calculations. 8ince cﬁvis knbwn; the modified least

squares estimator of equation (3.108) can be written

sxlo“SSPS .
XX = * — %% .
°s". 7 % T AR %41 - , o (3.113)
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The initial estimate of o was chosen to he unity for the reason
given earlier in this section. With the ¢ and ci‘selected, equation

(3.109) becomes

- -1
_ 5x107° L, 107"
2 Axt 2hpt2

+ (Ax2 - A$2)2 - | (3.11L)

Once again, the upper bound on Ax is 1/2 unit because L = 1.0,

However, due to the physical restrictions encountered in placing trans—

ducers at the boundary ofa system, the upper bound on Ax was set at 0,15,

For this upper bound the optimal Ax is 0,45 and the optimal At is 0.45.
A comparison of the accurécy using the least squares estimator and
modified least squares estimatof-can bemade by referring tguthe'déta
plotted in Figure 3.2. The estimation error of.the modified.least
squares estimator is less than 1/2 percent for 12 3 stages 'while the
least squares error for the same.numbgr of stages was over 15 percent,

" . Digital computer simulations perfbrmed'during the course of the -
investigations revea;ed= a significant characteristic of ﬁhe estimation
scheme presented in this-chapter; Tt was found that using finite
difference formulae which éecreased the approximation error resulted in
incregsed estimation error when measurement noise was present.  Thus the
us;'of approximations of (2.16) and:(2.18) rather than (2,14) and (2,17)
in fhe estimation of .o in the diffusion eqyation_prpduces inferior
results, The reasoﬁ for this is apparent,

The use of additonal measurements of the state'variable in spaée and

time reduces the error due to finite difference approximations,




Figure 3.2 Estimation of a in the forced example,
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However, these additional measurements introduce extra terms in

the error resulting from measurement noise, This error.is, therefore,

nade even lerger than that resulting from finite differences,

3.4,2 Estimation of Boundary Conditions

This section is devoted to the identification of 8 in the boundary
condition, equation (2.,26), when measurement noise is added to the
example of subsection 2,3,2. The estimation is performed with the least

squares estimator and a modified least squares estimator.

The problem can be formulated in terms of the general mathematical

model by letting

n, = u(L,t>1'g L (3.115)
and
& = L t) : (3.116)

In this case x is fixed (x = L), Therefore, the subseript k denotes the
kﬁh point iﬁ tine,

Backward differences are used to a..pproximate‘gk in equation (3.116).
To reduce the effect of measurement néise a finite difference formula
utiliéing three p&ints iﬁ space is used instead of the five point approx~
imation of subsection 2.3.2, The follo#ing finite difference approximation

has -an error of ordef.Ax?.

B ° 2Ax Saxl Yy, 37 huL.-l,d uL-Q,j)k ' » (3.127)
Since hk in equation (3.115) can be measured directly

O(hk) = (3.118)
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The addition of noise to the system results in the following

expressions for ﬂ(gk) and n(hk).

] = ' L1
n(gk) = 2Ax(3wL,j - hWLwl,j * wL~2,j)k (? 9)
‘alhy) = (ngj)k " (3.120)

Consider the selection of the optimal Ax, Since o(gk), n(gk) and
: n(hk) are independent of At, it does not enter into the minimization of

I, in equation (3.102), thus

- ‘w 2 ‘ '
I, = riLnéarc br) ol + [o(hk)c—g(gk)]2 (3.121)

Since cr's are identical, substituting thé result of equation (3.118)

into (3.121) yields

L
T = 2 x - 2 2
I, G°r=L_3(arc br) + o(gk) | ' (3.122)

In view of equations (3.47) and (3.48), the coefficients a_ and b are
obtained from equations (3,119) and (3.120) as

=1 = =0,b === b = b and b - L
8L, 7t %1 T P2 T Y0 PL T 3R Pre1 T Ty I~2  2Ax

Hence, equation (3.122) can also be expressed as

2 3 32 LY -1y27°
Tp = oelle - 52 + ()" + (5% + olgy)?

g2

=.§§—1{7[(2ch - 3)27-{- 7] + o(gk)z- (3.123)

Whep o(gk) is approximated by Ax? in the dominant error term, the

performance index is given approximately by the expression.
g2

T, = y—or[(2ch 3f + 171 + A o ' ' o L

o = TagZ! X - T + Ax o ’ 3.12k)
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The values of the parameters selected for this example are: o = w =
1,-8 = - 2/117, L =1/2, v= 1 and k = 117/40. 'The sdditive noise
(again taken from the uniform distribution) had a variance of 0.012/12

and a mean of zero. With the parameters selected, 12 in. expression

(3.124) becomes

, .
L (0.01)° (,=hax 2 4
I, * tpT (117 - 32 + 17 + Ax : (3.125)

When the minimization of 12 was performed, the extremum 6ccurred
at Ax = 0,18, Thus, the measurements of the state variable were taken
L= 0.50.

In order to derive a modified least §quarés estimator for.this
example, it is necessary to return to expression (3.41). Approximations
(360),-(3.67).and.(3.68) are valid, but (3.63) is not. The reason
approximation (3.63) does not apply isapparent from equations (3.119) and
(3.120). Sinqe boﬁh expressions contain WL,j, n(gk) and n(hk).are
correlated. Hence
1 S

=== I [(3w, , -
SoAx k=1 L,J

| W

1 -
s n(hk)n(gk) = b

1,5 Yh2,3) 7L, 5 % (3.126)

T
-

By approximation (3.46) the summation of cross product terms in w,

i,d
are nearly zero. As a result, expression (3.126) simplifies to
S . : g '
Y S S A .
Ski n(hk)n(gk2 * 5% [5. 2 (WL,j)k] (3.127)

1 - k=1
Since the variance of the noise generated by each transducer is qi,

approximation (3.41t) may be substituted into (3,127) to give
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. 8 3cg' :
§-kiln(hk)n(gk) o re (3.128)

Therefore equation (3.41) can be written

302

o O 2 4 S : '
e, * Spgv(~co? + e ) (3.129)

vhere o2 is defined by equation (3.61). The modified least squares

estimator is given by

. ) 30%
£% = o 2% _ .S
el & + Spsv(c % Ax)

(3.130)

Before the modified least squares estimator can be applied, o2 in equation

(3.130) must be written in tems of oi. In this example equation (3,61)

LY

is giveﬁ by

L
o2 = oi z ai
r=1-3
= 52 (3.131)
c : : :

Substitution of equation (3.131) into (3.130) yields -

BH = ¥ S o 2(an% 3 (3.132)
cg® = o + Svgoi(ed®) - 537 : :

The result of estimating the boundary condition in the pfesence of noise
is sﬁbwn in figure 3.3. In this example the modified least squares
esfimator and least squares estimator lie between 0 and B as predicted‘

. in. subsection 3.2.8, The value of the estimators were nearly the same.
though the error in the éstimaﬁion of B using the quified-leasf squéres

estimator was 10,1 percent while the least sqﬁares estimate has an error

of 12.} percent.
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Figure 3.3 Estimation of 8 in the boundary conditions.




96

3.4,3 Estimation of Two Constants

3.4,3.1 ILinear System

Consider once again the linear partial differential equation &ith-
two unknown constants given by equation (2.30). The identification of
the unknown parameters was considered in example 2,3.3.1 when the
measurements were known -to be exact. In this section the parameters
are estimated in the presence of measurement noise,'using a least
squares estimator and a modified least squares estimator.

A genefal development for>thé mabtrix modified least squares esti-
mator is presented in Appendix A,1, The modified least squares estimator
is given by equation (A.17). In the derivation the following

assumptions are made: (1) The elements of Hk and are linear partial

gk
derivatives; (2) n(Hk) and n(gk) are independent in. the probability
sense; and (3) the mean of the transducer noise is zero.

Since the examplé under consideration satisfies all three of these

~ conditions, the modified least squares estimator is established as soon

~

as Q; in equation (A.17) has been determined.
Qg is defined by equation (A.16) to be
. .
= “v .
Qg = I n(E)"V,n(H) : (3.133)

k=1
Since there is no reason to weight one of the stages heévier than any

other stage, it is assumed the matrix Vk (k= 1, 2, ou., S) is a constant,

In this example Vk is taken to be the identity matrix; thus, equation

(3.133) can be written
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5

O, = En(H)™m(H) -
8 e - | (3.134)

The first order deri%atives in equation (2.30)-were approximated
by the central difference of (2,14) while (2.17) was used to approximate
the second order derivativgs. For this éxample, equation (2.30) was
evaluated at points separated b& At units in time, The addition of

measurement noise to the _finite difference equations results in the

following expressions for the noise,

- : "
1 : 1
B2 41,57, 51, 5 Bax i1, V41,50
n(HR) =
1 . 1 :
LAx“Z(Wi+l,j+l—2_wi,,j+l+wi—l,j+l) DA% ‘”’1+1,j+1"*’i-1,1j+11 k  (3.135)
and
§K€(W' o=, )
14+l "i,5-1
n(g, ) =
—EF{W -, ) : -
| 287,427,y | K : (3.136)

When the product n(Hk)fn(Hk) is formed for k = 1, 2, ..., S and the

"results summed according-fo equation (3.134), the contribution of the
cfoss'product terms is negligible, This claim is based.upon the relation-
ship given in expression (3.46). However, consider the reméining terms

f

- contained. in the elements of QS

1 2. t o 2 2
= > 2 , + - 4
911 = (52 kzl["iﬂ,j (=2wg 3%+ V0
2 ] 2 2 o '
P, YO 5 Vg g K ' (3.137)
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s
= = 1 2 2 2
9912 ¥ 9501 T Bax3 kfl[wi+1,3 Vi1, T W3?1+1,J+1 =i,k (3.138)
1 s
= (_Ey2 2 + (u 24 2 2
900 = (555 kil[wi+l,j (s q,5)% vien,gen Y Oy 561 Ik (3.130)
where
o = 9311 9512
-'S B
9521 9500 - - (3.1k0)

If the transducer variance is again denoted by o,» expression (3.4k4) can

be used to approximate the elements of QS with the result
'QSdi
agyy © Z;gu{'l + L4+ 1]
12802 .
- e . _
CAxt T ' (3.1k1)

q a - Soi
812 %821 sl 1-1+1-1]

= 0 ' (3.1h42)

25¢2

c .
dgpp = Tzt 1+ 1]

=

C
X2 : : , (3.143)

‘In this example QS’ the approximation for QS, is given by

10542
—_c
Axh

O >
]

_.Sa?
c

=2 S (3.1kh)
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The optimal selection of Ax znd:At is based upon-eguation (A.30).
Since the samples are independent and are taken from a wniform distri-

bution with variance dcz and zero mean

[_ 12 52 ]
< 0
- Bln(, ¥ n(g,)] = ax®
02
0o ) ¢ )
3 - axZ (3.145)

and
Elnlg, )ale, )] = (_,;__)é E (w2 ...+ (~w, , ,)2
Sy /M By St AN TS i,3=1

2 + (~w, )2 ]

+
(g 1,3 k

, 32

2
R (3.1L46)
T AtE

Premultiplying equation (3.1L45) by c¢* and postmultiplying by ¢ yields

5202 202
1 01 9.5 . (3.1h47)

AXY T AxZ

e Ela(g )" n(g,)]c =

Thus the first two terms on the right hand side of equation (A.30) have

been determined leaving only the lastterm to be found. If the elements

of“'o(Hk) and o(g, ) are ai)proﬁmated by the dominant error term there

Zy
results

Ax2 Ax2 -
o) = | e | - O (3.108)
and | |

AG2
olg,) = re2

- (3.1k9)
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Then

2 . a2
(cl + CQ)AX At

[o(H )e - olg,) ] .

(o + ep)ae? = 22| (3.150)

- and
[o(E )e - olg, )] [o(E )e - olg, )] = 2[(c; + c;)ax? - at2]2 (3.151)
Substitution of equations (3.146) and (3.147) into (A.30) and application .

of approximation (3,151) yields the expression

¢ 2 c : . . . .
AT e Yttt 2[(e) + c,)ax? - pt2]2 (3.152)

) ~ 1252¢2 . o203 o2
The boundary -conditions selected for this exémple were given earlier in
equation (2.3'3).. The data f_‘or.‘the state variable Wras obtained -by
calculating equation (2.3hj with the parameters c, = 1/%2 and c, = 2/42.
The noise added to this data had a varisnce 5(2: = (0.05)2 /12, . These |
numbers were also substituted into expression (3.152) and the minimization
of 'I.Aiwas performed with respect to Ax and pAt. The optimum combination
was Tound to be Ax = 0,50 and At = 0.27. prever, for reasons given
earlier, an upper limit of 0,30 was ‘plé.ced on Ax, The- optimal At -With this
constraint on Ax is At = 0,22, |

The results of the estimation of ¢y and ¢, are displayed in Figures
_3.14 and 3.5 respectively. The data obtained using the least squarés

estimator and modified least sguares eétimator can be compared with the

average, which is calculated from the expression

e : (3.153).
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3.4.3,2 Mathematical Model Containing an Extraneous Term

The identification of a system coétaining an extraneous term, when
no measurement. noise was present, wasfgiQen in example 2.3.3.3. "N
cons%der éhe estimation of the coefficient of the extraneous term of the -
sgme'system when the measurements are corrupted by measurement noise.

The di;cussioﬁ of examﬁle 3,4, 3,1 provides the relationships
necessary to perform‘the estimation in this example, even though
equation (2.30) is ;valuated at points sevarated by Ax units in sﬁace
rathef than At units in time. This interchangability is possible
because the statistics of the measurement noise are assumed to be
unchanged fc;r the different transducers. Thus, the modified least
sguareé estimator in this éxample‘is obtained by substituting QS in
equation (3.1L4k) into equation (A.17). The selection of the optimal

A®:and At may be performed by minimizing I, in expression (3,152) with

A
respect to these quantities, Notice ﬁhat IA'in this problem reduces
to the correct expression for the determination of the optimal Ax and
At in the diffusion equation when s is set equai to zero, 'The fact
that _(3.152) wi%ﬁ ¢, =.0 is larger than (3.109) by a factor ofléwo'ha;
no influence on the values of Ax and At which minimize thg perfb}manée
. index.

The data was obtained by calculating equation (2.23)‘énd adding
noise with a variance of (0.05)2/12. The optimal combination. of Ax and

A&t for this value of variance wes calecilated and found to be

0.3 and 0,21 respectively. When the estimation was performed the data
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shown in Figure 3,6 resulted. The curves plotted for the modified

least squares estimator and least squares estimator for c. were almost

2
coincident, The average values for cq and._c2 were mnot shown because
c, exceedg@ the range of the plot.. 1 AVE ranged from 0.111 to

-0,025 with the final estimate being 0.021. ¢ " varied from 0,539

2AVE
to -0.212 with 0.073 being the estimate at the last stage.

3.5 ILI-CONDITIONING

The- concept of ill-conditioning was introduced in subsection 2.2,2,
" In this thesis ill-conditioning is- understood to mean. ill-conditioning

with respect to inversion., When the matrix_H in equation (3.1) is

k
Weli—conditioned with respect to invefsion, the introduction of error
resulting from finite differgnce-épprokimatioh and measurement noise

has little effect on the inverse of Hk' If Hk is ill-conditioned,
however, these errors are greatly exaggerated when the inverse is”.
calculated, This section.is devoted to demonstrating how ill~conditioning
6f Hk arises, what measures can be teken to minimize the inciéence of
ill-conditioning, Wﬁat techniques are available to test Hk fof ill-
conditioning, and the significance of the'ill-conditioning in the

estimation problem.

The difficulties arising from ill-conditioning may be i1llustrated

by the system ‘ P

= . ’ 2 )"' -
X, + X, 2 _ o (3.15k)
% + L.0lx, = 2,00 = ‘ (3.155)
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The solution of this pair of equations is X, =X = 1.0, Now consider

the change in the solution resulting from a very small change in the
coefficients of equation (3.155). Oné such equation is given by

5 = 2,01 . - ' - (3.156)

v

l.‘Ole:L + x

The X, and x, satisfying equations (3.15L4) and (3.156) are 10 and -8
respectively._ Thus, é change in the coeffipiénts of equatioﬁ (3.155)
amounting to less than one percent resulted in at least a 900 percent
change in fhe solution,

The éircumstancgs illustrated in equations (3.154), (3.155) ana
(3.156) could occur in eguation (3.15. This is easily demonstrafed.by

returning to the system in example (2.3.3.1). When the matrix equation

is written in terms of its elements

_ ST T

el %1l |1 Ueq

| Y2 x| [ %2] | M2 ' (3.157)
where

- 32u - e ' .

U g = (3}7&1 Si=1,2 (3.158)
u ;= (24 ' :

xi 3x’1i o i=1,2 . . (3.159)
w, . = (2 ' ‘ |

ti ot’1 i=1,2 ' (3.160)

If points 1 and 2 are selected in such a way that the.dynamics change

very little between them, the following relationships apply

Yexe T Y1 T Mier ' o - (3.161)
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Yo ¥ U3 + Auxl " (3.162)
W, =gt Autl _ | (3.163)
where
lAuxxll <<] uxxil , ete,

When equations (3,161), (3.162) and (3.163) are substituted into
equation (3,157) the following pair of equations result

= ' ‘ )
U 4Cy U, T U (3.16%)

(u

exl f Auxxl)cl+(u + Auxl)c2 = u ., + Au : - {3.165)

x1 t1 Tl
These equations are of the same type as equéticns (3.154) and (3.155)
and are liable to be ill-conditioned.

Ill~conditioning in the more general case arises in éxactly the same
way as that deméﬁstrated above,. If poiﬁts are selected in time and
space very close together the dynamies change very little. Since the
"elements in éach of the N‘columns of Hy

vatives evaluated at N points, the rows are very nearly the same, The

contain the same partial deri-

only way this undesirable situation can be avoided is by spacigg ﬁhe
points far énough-apaft that the aynamics change significantly. .This,
of éourse, can be'donélby selecting the points witﬂ'large spatial'
separatibn and allowing several samples between points. However,
separating the points in sﬁace reqﬁifes additional.transducers. Thig is
nof always possible for physical or economical reasons. Under these

circumstances 1t will be necessary to make the separation in time only.

There are several ways of detecting ill-conditioning of Hk'in
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equa%ion (3.1). Some of the more important indicators are [26]:

1. Small changes in the elements of Hk result in large changes in c.

2, The determinant of H is.very small,-

3. Elgmeﬁts'of 3;1 are very laréé compared t6 elements of Hk'

h, 1f Hké_= g, is solved by placing the augmented matrix [Hkigk]

in diagonal form, some elements along the main disgonal arerverv
small compared to other elements along the diagonal.

5. When the -eigenvalues of Hk are calculated, one or more of them

is very small,

When a method is selected to detect ill-conditioning, one is usually
interested in finding a procedure which can be perfofmed readily on a
.digital computer; This is particularly true when the conditioning of
Hk is in-question,.for tle identification scheme presentea in this
thesis rgquirgs a digital computer to perform on-line coméutations.

Most of the tests for éonditioning.require a comparisén-. of several
'quantities. After. these comparisons have been completed, it is necessary
to establish a rigid criteria as to whether or not the mgt;ix is ill~
.conditioned. For example, in item & above, the relative size of all
the main diagonal elements must_be compared; The probiem is to establish
what discrepency in size must .exist before the matrix-is declared'to be
ill-conditioned. |

Tests involving the determinant of Hk circumvent.this dilemmé,‘for

a single number results from the calculation, However, using the value

of the determinant as a criteria for conditioning can be misleading.
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This may be demonstrated by the system described in equations (3.15L) and
(3.155). The determinant of the coefficients on the left hand side of
this set is 0.01. Wheﬁ equatiéns (3.15k) and (3.155) are ﬁultiplied by
100 the determinant becomes 100, I‘on;r, if the value .of the determinant
were the only criteria, the system having the determirant.of 0,01 would -
appear to be ill-conditioned and that of 100 wellwconditiéned. This
cont¥adicts the fact that multiplidation of a sef of equations by a
éonstant does not effect the soiution for the unknown.

This problem of scaling can be eliminated by normalizing the system.

in some fashion. Conte [26] defines the normalized determinant of Hk by

NofmlHl S - N . | - (3.166)

K1K2. ..KN

vhere

o W2 2 2 41/2 ) e
Ky = [hil *hip ¥ 00t hiN} | == 1,2, oo, N (3.167)

He states the criteria for ill-conditioning for the matrix Hk is
Norm|H| << 1 ' . ‘ (3.168)

When this test is applied to the system in equations (3.154) and (3.155)

K= /2 eand Ky = /2.,0201 - ~ _ HIGT

Therefore

Vorm|H| = 2:2L = g.005 (3.169)
) KiK2 .

Hence the set.is ill-conditioned.
This criteria is very easily mechanized on the digital computer,
The test appears to be quite feliable, though the calculation of qum]HK’

'is rather lengthy when the dimensions of the matrix are large.
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I -conditioning of Hk is of most concern when c is estimated directly

from equationf(3;13). Since

~ -~ lA ’ '
}]k. 'gi{ ‘ ' - . (3.170)
© errors in Hk resulting from finite difference approximations and

PN

measurement noise cause large errors in Gy However,; when the recursive
schemes of section 3.2 are used, the errors resulting from ill-condition-
ing are not serious as long as Hk is well-conditioned for almost all k.

This e¢laim is supported by fecalling that all the recursive schemes

-1 -1

require a matrix inverse to be calculated in Bé only. 3But PS is

defined by equation (A.6) to be

~ 1‘ S ~ ~ .

Pq = z HZV, H . | (3.171)
A_l A‘ ~

Now if HS is 111-cond1tloned and ?Sll is well-conditioned the swm

‘of equation (3.172) will be well-conditioned. Since some of the B 's

in equation (3.171) are assumed to be well-conditioned, Péll can be

expected to be well-conditioned,

When the Hk's are all ill-conditioned, the above argument is no

longer valid, However, the material on ill-conditioning presented by .
Bellman and Kalaba [27] suggests the introduction of a type 6f Lagrange

multiplier to improve the conditioning of PS. This prompted this author

to consider the minimization of the perforﬁance index
s

- T F o m 2 o 2 : ~
Jg(g_)—kf.l[llHk_g_ g_kHV_ g - ef 11171 o (8.173)
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where Ak is a positive number and the remaining notation is desecribed in
Appendix A.1. The minimization of equation (3.173) is performed in

exactly the same manner as the minimization of equation (A.1) with the

result
~ S ~ -~
¥ = T -
e = Pg L H Vg " : (3.174%)
k=1 ) ] '
where Pg. is defined by the expression
1 f (3.175)
Lo 1 (HvE +x}:) 3115
S K'k'k
k=1,
= Pl 4 HIV.E. 4+ AT
s-1 * HgVslg * Ag ' (3.176)
Notice that equations (3,174) and (A.5) are identical in form but Sl

is defined in a slightly different fashion., The recursive relationships

for EE in terms of c* _y are likewise identical in form and are given in

equation (A.8),

The difference in the definitions of P is very significant.

. s
Bellnan and Kalaba state that even though z qulpk is ill-conditioned
3 : k=1
the addition of the terms I AkI reduces the 1ll—cond1t10n1ng signifi-
k=1.

cantly. Unfortunately, in the systems simulated by the au‘thor, the
addition of %k increased the error in the identification. The reason
for this result is believed to stem fr@m the fact that‘only some of the
matrices Hk, .
system could bé'simulated where all the Hk's were ill—cbnditioned,the

k=1, 2, se.5 S were found to be ill-conditioned, If a-

estimator of equation (3.1T4) might very well provide better results than

those of equation (A.5).
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3.6 SUMMARY

.'I'he identificatiox} of ur;known constants in ;iartial\differen"bial
equations_when measureﬁents of the staté variables are corrup%gd by
noise is considered in Chapter 3. 'The classiéal least squares estimator
is presented, The leést séuares estimator requires no aprio?i know- |
ledge of the statistics of the measurement noise., When the statistics
are known and the differential equation is linear; a modified least
squares estimator may be:used. It is~shown that the estimatioﬁ error
of the modified least squarés estimator is generally less than the
least squares estimator estimation error. This claim is supported by
the results of digitél computer simulations.

The magnitude of errors resulting ffom measuremeﬁt noise and finite
difference approximation are_functions of the increments in time and
_space used in the finite difference formulae. These increments must be
.less than unity to insure that the finite difference errors .are bounded.
Because 6f this upper bound, the errors resulting from measurement noise
are of far greater significance than érrors arising from finite differ-
ences. The ﬁse of moreAaccurate finite difference formulae requiriné
addifional measurements.of the gtate variable.inéreéses.the estimation

error, An index of performance is presented which is minimized with

.- respect to the temporal and spatial increments. The minimization reduces

the combined effects of the two types of errors,
The ill~conditioning problem introduced in Chapter 2 is discussed

in further detail., It turns out iil—conditioning did not present any
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i

difficulties in the examples considered. However, a performance

is given which can be used when conditioning is a problem,

index




CHAPTER 4

DISCUSSION AND CONCLUSIONS
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L,1 SYSTEMS WITHOUT MEASUREVMENT NOISE

A method has been presented to identify the partial differential
equation_and the associated foundary conditions describing é distributed
parameter systém. The method requires that the form of the partial
differential equation and the boundery conditions be known up to a set
of constant parameters which are to be dgfermined. When the precise
form of the.equation is‘nét known apriori, extraneous terms may be
ineluded. It is shown in Appendix C tﬁat the coefficients of extraneous
terms are identified as zeroes if there is no approximation error or -
measurement noise, When measurement.néise and approximation error are !
small the identification technigue yields negligible values for the
coefficients of.extraneous terms.. An identifiability condition is also
given, |

The identification procedure makes use of finite differences to
approximate the derivatives at specified points in time and space. In
order to identify the coefficients of a partial differential equation,
2 knowledge 6f the associated bounaary conditions is not necessary,
'Similarly, in order to identify the coefficients in the boundary conditions
a knbwledge of the partial differential equation is'not necessary. The
identification scheme can be used to identify the éiffergntial equation

and the boundary conditions simultaneously. The jdentification scheme

requires normal operating data and can be used for on-line identification.,.’

"It is necessary to have dynamics with respect to all spétial variables

to make a complete identification of the partial-differential equation.
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If there were no dynamicé with respect fo one oflthe spatial variables,
say x, all terms-contéining derivatives of the stéte variable with
respect to x would vanish, UhderAthese circumstances 1t would be
impossible to identify unknown constants ésSociated with these terms.
Approximgtion of partial derivatives by finite differences iﬁtro—

duces limits on the accuracy of the identification., This limitation is

‘also encountered in numerical solution of partial differential eguations

by finite differences. In both problems the accuracy of the finite
difference formulse is improved in three ways. (1) Reduction of
discretization interval, (2) use of higher order approximations for
derivatives, and (3) use of high accuracy formulae. Since the numerical
solution of partial differential equations are sequential or recursive
in nature, stability of the formulae used for approximatiﬁg the system
equations is neceééary. This stability requirement rules out the use

of some difference formulae for numerical solution of partial differ-

ential equations. Since the identification schemey presented here is a

single stage process, stability is of no concern and some of these very
high asccuracy formulae can be employed advantageously.

Experimental results for identification of linear and nonlinear
partial differential equations and boundarywconditions were obtained
using digital computer simulétions'. The results are favorable, An
examination of the experimental results presented in Chapter 2 reveals

that the approximation'error is increased when the rate of change of

the .state variable with respect to time or space is either very large
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or very small., A possible method for redueing this effect is én adaptive
identification. . That‘is, sample the measurements gt a high rate and
perform the identification only after the change of state variable lies
within determined bownds. This would.tend to eliminate data taken in

regions where the results are known to be poor.

‘h,2 SYSTEMS WITH MEASUREMENT NOISE

The identification of unknown coefficients when the measurements of
the state variables are corrupted by noise has been discussed. The
measurements are sampled at a predetefmined rate as requiied for thé
finite diffgrence formulae, The noise produced by the transducers is
-assumed to be stationary and wncorrelated, Furthermore, the noise
introd&ced in the samples for a given transducer afe aisﬁ‘assumed to be .
statisfically independent,

The measurement noise-introduces randomness in the identification
process, -Consequently, an estimate of the unknown parameters is made.
Of the classical estimators fhe least squares estimator was found to be
best suited for the problem, The other schemes were eliminated because
they require an apriori knowledge of the statisticé 6f the noise vector,
Tt is explained why the noise vector statistics are very difficult to
find even whén ﬁhé statistics éf the measurement noise are available.
The least squares éstimator requires no knowledge of thg noise vector
stgtistics. However, when the mean and variance of the meésurement :

noise are available, a modified least squares estimator can be applied-

-to linear systems. The convergence of the two estimators is compared,

(I N
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and the éccuraqy of the modified scheme is shown to generally be superior.
Simple averaging is also considefed because fewer calculations are
reQuired.than for the other estimators. However, the simulation resqlts
show that the-accuracy‘obtained by averaging'is generally inferior. The -
least squares estimator can be used to iaéntify partial differential
equations which are nonlinear in the staﬁe variable, Thg accuracy of
the estimation can be expected to be poorer than that obﬁained in
linear systems. Fur?hermore, the appliéation of the modified least
squares estimator to the nonlinear problen is of gquestionable value,

. The errors inlthe identification resulting from measurement noise
are much larger than those originating from finite difference approx-
imations., The use of higher order,iapproximations for derivatives
decreases thé finite difference error. However, the higher order
approximations require additional measurements of the state variable and
additional terms aré introduced into the e#pressions for measurement
noise. As a result, tﬁe errors due to measurement noise are increased,
It should be pointed out that this characteristic of the egtimati;n
is advantagéous. Finite difference eQuatibns with low order approxi-
matibﬁs require fewér méasurements of the state variable and, Hhence,
. tﬁe number of measurement trénsducers is.kept to a minimum,

A.method.for minimizing the combined effect of errors due.to finite

-difference approximation ahd measurement noise is presented. = The optiéal
combination of increments in time and svace is determined by minimizing

a performance index with respect to these quantities, The spatial and
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temporal increments have an upper constraint of unity and Iower bounds
established by physicai gonsideratidns° Hence, the performance index
minimization fits into the general problem of nonlinear programing.
The teéhnique is developed for linear systems snd is poorly suited for
nonlinear systems. The application to linear systems is demonstrated.
The propoéed identification requires the calculation of the inverse
of a square matrix, If ;s shown that the matrix may be iil—conditioned
with respect to inversion., The bést wey to avoid ill-conditioning is .to
separate the measurements in time and space when generating tﬁe Yows of
H.and ;; This, however, is not aiwa&s possible so methods of detecking
ill-conditioned matrices are presented. No problems associated with
ill-~conditioning were observed in the digifal computer'simulations.
However, a technique'is given to imprové the accuracy of éstimation when

the effects of ill-conditiéning are'significant.




CHAPTER 5

AREAS OF FUTURE RESEARCH
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5.1 ESTIMATION OF PARAMETERS WHICH CHANGE WITH TIME AND/OR SPACE

In the absepce of measurement noise the vector of unknown parameters
¢ can be calculated directly from equation (3.9). This calculation is
ccmplete_at each stage and does not require'any knowledge of the
results of calculations made at other stages; ﬂAs a result the unknown
parameters can be identified when they are changing very slowly with
respect to time and/or space. 1In other‘words? no significant error is
introduced When‘the parameter change is negligibie'over'the time or
spatial interval required for calculation of the finite difference
equations at each stage. .

When measurement noise is preéent,-the least squares estimator of
'Chapter 3 can be used to estimate the unknown parsmeters. The discussion
of fhe convergence of this estimator applies to the case Qhere E,ié a

constant. However, if ¢ is changing very slowly, the estimation can be

restarted after a specified number of stages. This approach has serious

-limitations in that the estimated value of the parameter represents an
"average" over the estimation interval. Thus the change from stage to
stage is masked by the calculation,

An approach which is more sensitive to the change in the parameters

1

from stage to stagé is much more preferable, One such scheme requires
a knowledge of the nature of.the change occurring in the unknown
parameters., Aoki [22] discusses the case where the vector Sy satisfies

the difference equatioh

= 0 ' :
—c'k -k—lgi{-l k = 1’ 2, seoo g S ) ’ ) (501)

L
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1

with @k being a known NxN nonsingular matrii. Even though the relation-
ship between Ek'and Sl is known from stage to stage, therelisino way
of obtaining 1 exactly at any given stage., Therefore, some type of

estimation is required. The least squares estimator, according to Aoki,

is given by the expression

Sf = %5 385 1 * PgHgValag - Bty ok o (5.2)
where
»\_l "'l A._l . -='l ~ ~ )

= &° o] - ‘ . -
Ps = %501 Psoa “sa * HsVsTs | (5.3)

Notice that equation (A.8) is a special case of (5.2) resulting when o

-is the identity matrix.

" This still leaves the very important case where &  in equation (5.1)

k

is not known apriori. Such a problem represents one direction of

investigation which to ‘date has not been solved.

‘5.2 IDENTIFICATION OF THE INTEGRAL EQUATIONS

This thesis deals with the identification of the_diffefential
equations characterizing a system, as have investigations by other
authors [9, 10, 11, 13]. Frequently, however, it is matﬁematicallj
simplérf to work with the integral equations vice the differential.
equations; This is particularly true vhen finding the optimm control-
ler in an adaptive system. |

In order to represent a system by an iﬁtegrél equation, it is
necessary to know its.Green's function. Tﬁe'Green's-function can be

derived when the system'partial differential -equation and associated .
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boundary conditions are compietely specified, Unfortunately, this is
rarely an easy task; It is, ﬂherefore, much nore preferable to obtain’
the Gfeéq's function directly using normal dperating data. Much work
has been done in the identification of the Green's (weighting funétion)
function in lumped systems. However, the author is not aware of any

studies of this type having been completed for distributed systems,

5.3 ESTIMATION OF PARAMETERS WHEN TRANSDUCER NOISE IS CORRELATED AND/OR

NONSTATIONARY

The estimation of parameters in the presence of noise presented in
this thesis is based upon the validity of assumptions (32) through
_(3d)° Thesé conditions preclude the use of sets of random samples
which are not independent, This dependent situation arises when the
noise generated by different transducers is‘correlated ¢nd/or when the
samples .for a Btransducer are not separated sufficiently in time. .

The derivation of the least squares estimator requires no conditions
about the independence of the noise, Hence, the least squares
estimator cen be applied to thé estimation of paraweters when the
samples are cofrelated. However,‘tﬁe estimation error will probably be
larger than that encountered in the umcorrelated case, If sufficient
information concerning the dépendence of the measurement noise is
avallable, an approach similar.to that presented in Chapter 3 might be
used to obtain a modified least squares estimator, | |

The assumptions presented in subsection 3.1.1 also'el;minated the

case where the statistics of noise generated by the transducers is
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changing with time. Here again, the least squares estimator can be
appliéd, but the accuracy of the estimation is in doubt. As with the
uncorfelgted'noise much work remains to be done when the noise is

nonstationary.

5.4 SENSITIVITY

Errors due to finite difference approximations and measﬁrement
Hoise are always present in the pvoposed identificatioﬁ schemé. This
is true even though the combined effect of these errors can be reduced
by proper selection of the increments in time ana space, With this in
miﬁd,consid@r the problem of detefmining the errors incurred in the

’

unknown parameter vector c¢ when information concerning errors due to
finiteddifference approximations and measurement noise is' available,
The seﬁsitivity probiem has been touched on briefly in this thesis,
M explicit expression for the error inlg'under the restriction that
the glements of H and g are linear partial derivatives is given by
equation (3,22), As was stated in'seqtion (3;5), vhen H_ is 111~

conditioned the errors present in Hk are greatly exaggerated in the

8513

the conditioning of H in addition to finite difference approximation

calculation of the inverse. Thus, Ac, in equation (3.22) depends on

. and measurement noise,
Ideally, sensitivity statements can be made apriori by applying

only analytic methods, This provides considerable insigﬁt into the

problem without verforming expensive exveriments on the physical system.
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In éhe proposed identification technique considersble work remains to
5e done in this area. TFor example, sensitivity to the transition fpom
the continuous to the discrete mathematical model mu;t be-investigated
fﬁrther, According to Tomoviec' [28] this problem is as yet unsolved
for the general case,

When more than one constant is identified, some of these parameters
are more sensitive to errors than rothers. An example of this may be
seen by returning to the idehtificétion of ¢y and c, in the nonlinear
example, In Figure 2,9 the finite difference errors had little effect
on ¢, when t was greater than 0.4 mits., c,, on the other hand, had

detectible errors over the same range, A sensitivity study night

reveal why c, is more sensitive to errors.

2

Until it is possible to conduct an analytic sensitivity analysis,
ar alternate study might provide worthwhile information. Consider

the error in ¢ vhen H and g, are scalar with linear partial deri-

k

‘vatives, The error resulting from errors in h, and g, were given by.

k
equation (3.90). The proposed study involves a digital computer
simulation similar to those used in Chgpter é.

After the ﬁeasurement noise with & known mean and variance has been
added to ¢alculations of the state variable, Ack'for several stegés is
calchilated using equation (3,90)., The results of this calculation: will

heve a randomness due to the meeasurement noise, Plot the Ac, on a

k

relative frequency histogram. - The resulting plot has some average
- Y .

value and disversion., UNow, by changing the mean and variance of the
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measurement noise and calculating another histogram of Ack, a

comparison of the aversge value and dispersion can be made, Several
such studies might provide insight into how the errors in ¢ are

related to the errors in hk and gk.
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Al LEAST SQUARES ESTIMATOR AND MODIFIED LEAST SQUARES ESTIMATOR

The least squéres estimator for the scalar case was presented in
subsection 3.2.5. This section of the appendi# is devoted to the
development of the least squares estimator in the matrix case, The
problem statement of subsection 3.2,1 is still applicable as is the
general mathematical model presented in subsection 3.2.3. Since the
development close}yf parallels that presented in subsection 3.2.5, the
discussion is not detailed.

The least squares estimator is foﬁnd by minimizing'the performance

index JS(E) with respect to E. The performance index is given by

S . -
I (8) = zllme-g|]?
S k=1 ¥ kY (4.1)
Where
o 12 A (R - o yev (h - -
“Hk-g- - &l IVk = (BE - g ) (BE - g) (4.2)

and Vk is g positive definite symmetric matrix. Increasing the magnitude
of the elements of Vk tends to make the estimator settle down with fewer
estimates, However, forcing the estimator to reach a steady state value

toorapidly may result in a greater error.

Taking the derivatives of eguation (A.1l) with respeet to f gives

S . . 53 A
Jop,=2[ T HVHIE -2 THVE _
5% g=l BB KT g KK , _ (4.3)
where JSE is defined by
T o= [ 2L =2 . (A.h)
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Let E§ denote the wvalue of gﬂwhich minimizes Js(é). Since the extremum

of JS occurs when (A;S) is set equal to Zero, ES is given by
~ S5 . - |
A% — .
£s Pskilt VelBy , | (.5)
where és is defined by thé equation. |
- s . )
= 22l 4 Hov H :
s-1 "s'S's : (A7)

The estimate at stage S can be expressed in terms of the estimate )

of stage S~1. This is done by first noting equation (A,5) can be

expressed

~ S<1 . . A A
g =p [ 3 HVg +HIV g, ]
-5 S k=1 k=k S 5%6

The first term in the brackets is now multlplled by PS ' S 1 = I, with

I denoting the identity matrix, to get

-~ -~ l ~ S":l -~ -~ a ~
* = P H” v
ef = Fslr 5-1 751, K, Pk * HgVsss]

Finally substituting for P from equation (A.7) and théxn making use of

S-1

equation (A.5) yields the least squares estimator

. - 5-1
- A-.l ~ "~ -~ -~ -~ ~
% = - - s} - -
e = Pgl(Pg™ - HgVH)Pe kil HoVely + HgVago]
= 13 [ﬁ'lc* - 'A'vﬁ e® _ 4 H'V; ]
575 251 ~ Ag¥s¥s%e.1 * Aglsls
- % -~ A’ . A' _ -~ * . . - .
s1 * FellsVslgs - Heel ) - | ; (4.8)
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The cdnvergence ofAthe least squares estimator is now considered.
Substituting for ék in equation (A.5) from eqguation (3.i3) results ‘in
the expression
c¥ = ;
' (4.9)
Replacing ¢ in equation (A.9) with equation (3.20) and recalling the

S

definition of P, one gets

S
-~ S -~ -~
% = -y
e = Pg El Hk.ka(£ + Ac, )
- s
=c+ P Z A q AC
Hk (A.10)
When equation (3.22) is substituted for be,
-~ 5 .
a8 P o +n(g )] - [olH) + .
=Lt g kzlﬁklk {IO(gk) n(gk)] [O(Hk) n(Hk)]gj (A,11)

If the finite difference expressions used to approximate the elements
of H_ snd g have no common points, n(Hk) and‘n(gk) are statistically

independent. When the transducer -noise has zero mean, the technigues

of subsection 3,2.6 can be used to show

s ~ S

L BV, [o(g,) +nlg)] =0 , - (Aa12)
k=1 .

s . : .
Ehelde =2 ' | ) - (4.13)
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and

S . .8 . .

T H°V.n(H )J)e = 3 n(H ) V.n(4 e (A.1k)
oy KK K kel ' ke . .

with O being defined as an Nx1 null vector. Based upon the results of
approximations (A.12), (A.13) and (A.14):, equation (A.11) can be

spproximated by the expression

of ¥ & - PyAgc (A.15)
where

y S : - . o
0g = kiln(Hk) an(Hk) o (A.16)

When QS is avoroximated, its elements are functions of the transducer
variance, This is illustrated by the example 3.L4,3.1, By letting QS

denote the approximated value of Q the following modified least

8
squares estimator is obtained -
F¥= o¥. 4 50 el )
5™ S5+ FelsSly . (A.17)
where
cf* =0 - (A.a8)

When the transducer means are not zero an examination of equatién
(A.11) shows that all the terms containing n(Hk) and n(gk) contribute
to the error ﬁerm. However, when the means are known, the léast
squares estimator may be rewritten as followg to compensate for the

‘nonzero mean,




Tet
[ Bla(n, )] . Bla(s,)]
Bla(h,,)]
T = )
_E[n(th) ] cee
= Ela(g)]
and
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.o E[n(th)] (

E[n(hNN)]

§,=[E[n(gl)] E[n(gg)] .es E[n(gN)] 1°

= Eln(g,))

. Next define the performance measure by the equation’

' S - -
5g(8) = = |(g, - _r)g- (g, -&II2

k=1

k

(A.29)

(A.20)

(A.21)

This index of performance can be minimized with respect to £ with the

‘ ]
sane steps used vpreviously for JS(_E_). If 9-§ denctes the value of §

- which minimizes 'Jg(f;_)', then

o . S0
& = g

[ e W92

k=1 (B - 1) (g - )

with
2 5=1

S -~
r ("
k=1

g
o
e

'."TA_.
o = D)V (E _ r)

(A,22)

(A.23)
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[
il

The recursive estimator for E; is given by

0 o o0 4 PO - - o o (r ) . ,
B = B + B - M)l &) - (B - T)eg 4] (a.21)

When the error term for c°

Cq is approximated, the expression is identical

to that obtained for gé when the transducers have zero mean.

A,2 ALTERNATE RECURSIVE FORM OF THE LEAST SQUARES ESTIMATOR

When the least squares estimate is actually computed, a recursive

form of the estimator is normally used. This makes it possible to have’

an updated estimate at each stage which utilizes all the past infor-
~mation, Furthermore, a reqord of the estimate from stage to stage
indicates tfends in the data, such as the rate at which the estimate
is reaching a steady-state value,

The-recursiVe form of the estimator presented by most authors is
givén by equation (A.8). ﬁcwevér, the author of'this thesis prgpéses
another recursive estimator which.requires fewer compﬁtatibns than does
quuafion (A.8).

-This estimator is. obtained b& first defining és to be

-~

s . . ~
LAV : . (A.25)

L, = * H
B k=

-~ -~

St TIchs—ws : : ‘ (A.26)

When . is substituted into equation (A.5) the recursive estimator
is given by

-~

* ~
e = Pty (4.27)




‘13L%
|
Number of Times Operation is Performed

Matrix Operation Equation (A,8) ~ Equation (A.27)
Invert NxN 1 g 1
Transpose NxH ‘ . 1 1

Mult. two NxW 3 i 2

Mult, Nx¥ & Nx1 2 2

Add two NxN 1 ' S

Add two Nx1 2 , 1

Figure A.l Comparison of number of operations required fo calculate
" equation (A.8) and (A.27).

Figure A.,1 provides a comparison of the number of operations

required to calculate Eg using equations (A.8) and (A.2T), This

~

comparison is based upon the assumption that gt stage S, H V., and -

. 3®* '3
A -] ’ ~

s . s s
8 ore read - into the computer while PS-&?ES-l and 58-1 are stored
from the previous calculation, The disadvantage of using equation

(A.27) is the requirement thét the Nx1 column yector ES—l be stored .
‘for use in the next calculstion. However, the number of calculations
required with this;estimator are less than those required for eqﬁation
(A.8)., Figure A,1 shows the savings is the multiplication of an NXN-

matrix with another NxN matrix and the addition of two Nx1 matrices.,

A3 -SELECTION'OF'“OPTIMAL TRANSDUCER SPACING .AND SAMPLING RATE

A method is presented to select optimal Ax and At for the scalar

problem in section 3.3. This result is easily extended to the deter-

mination of optimal transducer spacing and sampling rate when the system
F : T pLling 1 )
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dynamics gre described by the matrix differential equation

He= g : k=1,2, ..., 8 (A.28)

Wben the elements of Hk and g, are linear partial differentials,
the addition 'of finite difference errors.aﬁd measurement noise is
described by equations (3.13) through (3.18). The afguments of section
3.3 leading to fhe.seleétion of the performance index of equation (3.95)
are appiicgble in the matrix problem. The matrix equatién equivalent

to the scalar index of performance is given by

I, = E[{:[{l(Hk)g - n(_g_k)] + [O(Hk)g - O(gk)]}’.

* {ln(H)e - n(g, )] + [o(H )e - olg, ) 1}] (A.29)

The minimization of I, is carried out with respect to Ax, Ay, Az and

A

At. In the special case where n(Hk) and n(gk) are statistically

independent and have zero mean, I, in equation (A.29) can be simplified,

A

Since the following relationships are true

E[n(5,)] = 0

Eln(g )l =0

Eln(H;)"4(g, )] = O ,
Eln(g,) n(8,)] = 0"

equation (A.29) may be written as

I,=¢’ E[n(Hk_) n(H,)]e + Elnlg) nlg)]

+ [o(H)e - olg,)]” To(H)e - olg )] - (4.30)

As was nécessany in the scalar problem, the variance of the transducer
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noise must be known apriori and an initial estimate of ¢ made.

application of equation (A.29) is given in example 3.4.3.1.

An
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The problem of identification of coefficients in a partial differ~
ential equation‘with one state variable was consideredkin_thehbody of
this thesis. However, certain distributed parameter systems are best
described by partial differentisl equations with two or mére'state'
variables. For example, the state variables in a‘sjstem might be
temperature, pressure, and velocity. Though systems déscriﬁed by
several state variables are inherently more difficult to identify; the
technigues used in the single variable case may readily be applied.

Let the state variables describing a distributed parameter system
be denoted py Uy gy eee uA where the uv's are functions of time and
the three spatisl variables. The set of egquations describing the system

has the form

Gafyy * CoPin foeee Py o1 ,

. = " o (B.1)
+ )

pry1 * CypPup T et Gy | oy |

where the h, 's in equation (B.,l) may contain u's, t, x, v, and 2z and

sd

derivatives of the u's with respect to time and space.
Consider the identification of the' coefficients in the ith row of

equation (B,1). This equation may be written

= , : (B.2)

h CivPinw T 84

+

C33P47 * Cypllyp e

where the Ciqs Cips sses Cyy are the constants which must be identified

and g; contains f

21

and the terms with the known constants Cige1? *°° 9
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c. Since equation (B.1) is of the same form as eguation (2.3), the

iM*
identification procedure developed for a single state variable applies.

The unknown constanté may be found by evaiuating equation (B.2) at
N different points in time an&/or space. The derivatives of the state
variables in the :;esul‘tiné equations can be approximated by finite
differences. The data required in the differenée equations is ob£ained'
by making measuremenfs of the state variable, such as tgmperature,
pressure ar velocity, at the desired points in space and time.

The reguirement for measurements of different state varisbles at
the same point in space possesses physical difficulties. The necessarf
transducers.cannof ail be placed exactly at the desired point. Some
sort o? cluster of transducers must be placed at the desired location.
The errors introduced by this arrangement depend primarily on the number
of state variaﬁles and the méasurement intervél selected. If only two
‘transducer are required and the'separation between the sets of
transducers is large, . little error will be introduced. However, severél
transducers with little spacing between the clusters of transducé}s could
resuit in considersable error,

- There is an additional.source of error when two or more types of
transducers are located.at the same point. The measurements taken by
a transducer may be sdversely affected by the physical presence of other
transducers, TFor example, let one of the state variables be the velocity
of a fluid., The presence of_sevefal transducers at the point in question
would alter the fiuia flow and introduce error. It should be.‘noteds

however, that reduction or elimination of errors of this type might be
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écéomplished by clever transducer design.

The two types of errors Just présented contribute to the measure-
.ment noise. There are various other sources of measurement noise such
as imperfections in the transducers, external noise and interactions
betweén the system and transducer. The least squares estimator presented
in this thesis can be used to estimate the system parameters of the
vector partial differential eguation. This is true ﬁecause ﬁk and.ék
are obtained directly by performing measurements on the system with
more than one type of transducer., The fact that tﬁe different types of
transducers may very well have fery different statistical properties is

of no concern, for, unlike the other classical estimators, a knowledge

of the noise vector (discussed in subsection 3.2.4) is not required.
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Occasionally the exact form of the partial differential equation

describing a distributed parameter system is not known apriori. Under
these circumstances the assumed .model of the sy;stem may include terms
which are extraneousy that is, these terms are ﬁo_t necessary to
describe.the dynamiecs,

Coﬁsider equation (2.6) when the comstant c

N

an extraneous term. When the inverse of H exists, °y

is the coefficient of
can be found by
appl,‘:ring Cramer's rule,

hll see b

-1 &1

ey = |hyg -or By BNl | T (ea)
b4

where lHl denoctes the determinant of H, Since the.term containing cy

extraneous, the actual equation describing the system is given by '

c.h + ¢, h +

1741 7 S22 g

es e + cN-lhiN-l =. 'oi ) (C.E)
When (C.2) is evaluated at N different points, the following vector

equation is obtained

— — . - =

clhll + 02h12 + o + ?N-lhm—l A gl

, \ -
° . = ° ’ (Co 3)
Cyhyy * Cobyo *oeee Oy &y

is
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Substituting this result into equation (C.1)
h h c, h +

11 +e Byyoaleghyy * ephyp % eee + ey by o)

O = Byy eee By g(eghyy +oeohs +ais o (B 0y

=]

(c.b)

Since the NP colum in the numerator of equation (C.k4) is a
linear combination of the preceding (N-1) colums, the determinant of

the numerator is zero, Thus, the value of c

N is identified as zero,

When the elements of H are approximated with finite differences
and measurement noise is added, the wvalue of Sy will be nonzero.

However, when the process is well-conditioned and the errors due to

approximation and measurement noise are not too large, the value of cN'

will usually turn out to be negligible compared to the coefficients of
the nonextraneous terms included in the model, This is demonstrated

by the results in example 2.3.3.3.
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A high acc-uracy forzm}la for the identification of o in the diffusién
equation was p;‘ésented‘ in subsection 2,3.1l., The identification must be
performed in the absence of measurement noise, but under these conditions
the results are quite good. The disadvantage of the procedure is the
necessity of solving a guartic eguation in o and selecting the correct
root ffom the resulting set of foar possible solutions. This‘section is
devoted-to the derivation of another high accuracy formula whic@, though
not as accurate as the guartic, reguires the solution of only a quadratic
in @, The derivation is sugzested by Mitchell and Pearce [17] and:will
utilize their notation.

. Tﬁe hiéh accuracy formula presented in this section is made
possibié by -a unique recgrsive yelatioﬁship possessed by the diffusion
equation, When equation (2.13) is differentiated with respect to tinme

there results

82u._ EL_ [ Bzu]‘
3t~ 3t b T3
_ c“az [ 8211]
= 5x7 957
3t
= 0‘-2 -a—}?-; (D..l)

Successive differentiation of equation (D.l) with respect to time yields

the general result

R = B 32#u . . _
o .2n ' = cen D.2
510 3520 . m 1, 2, - (p.2)
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Now consider the Taylorfs series expamsion of u about the point

i,5+1
ui,J’ that is
_ Ju At2 32y At3 93y
Usoge1 = Ui,y YO STy st BT ez, 55304,5 * oee (D.3)

Vhen the relationship of equation (D.2) is substituted into equation (D.3)

= 3%y (aAt)2 3'u
TSI TP IR L o FUI R - B TS (D.1)
Define p by the relationship
- OAt
= - (D.5)

Then equation (D.4) may be expressed by

W q = ut 9B+ (1/2)07D + (1/6)p7F + ... - (D.6)

where u, B, D, ¥, ... are the values of

32y 3% 364
2 = LI 6 2 %
Yi,30 Ax alei,j’ Ax axuli,é’ Ax” 536 ige e

By making use of substitutions similar to those used abowve, the  following

additional Taylor's series expansions are obtained.

w = u-p+ (1/2)%D - (1/6)p%F + (1/2p"E - ... (.7)
sd™ .

ui+1,j + ui-l,j = 2u+ B+ (1/12)D + (1/360)F +~(l/20,160)H + e (p.8)

Uieg,ge1 * Bion,gen T 20 (1% 20)B
+ (1/12¢p1p7)D + [1/360 * (1/12)p + (1/2)p2* (1/3)p31  (D.9)
+ [1/20,160 * (1/360)p +'(l/2h)p21 (1/6)_p3 + (l/l2)ph]H + e
Aliinear relationship of the values of u about the point i,] is

selected such that the maximum possible number of u, B, Dy ceoy Hy oo

are eliminated. For the case where three spatial measurements and
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three samples in time are used, the aim is to select the polynomials in
p, denoted by a, b, ¢, d, e and f, to eliminate terms containing u, B,

D, ... from the expression

gt gt oyt A0 gty )
+ e(u )+ f(

141,541 7 ia1,541 Uip1,4e1 F Wy ,3e1) SO0 (D20)
When the coefficients of the u's in equation (D.10) are guartic in D
Mitchell and Pearce are able to eliminate terms containing u, B, D, F
and H, The results are giveﬁ in equations (2.20) and (2.21)., By
assuming the coefficients are quadratic in p it is possible to eliminate
only u, B, D, and 7.

This is done by first substituting équations (D.6) through (D.9)
into (D.10). Since it is necessary to pick a, b, c, d, e and T in
such a way that the terms containing_u, B,'D, F and H are identically

zero, the following relationships must hold.

{(a+Db+c+2d+ 2 +2f)u=20 : : (D.11)
[bp - cp + d + e(1+2p) + f(l-ep)]ﬁ =0 ‘ (p.12)
[bp2/2 + cp2/2 + d/12 +e(1/12 + p + p2) + f(l/l2-p+p2)]D =0 (D.13)
@33/6‘ cp3/6 +d/360 + e(1/360 + p/12 + p2]12+p3/3)

+ £(1/360 - p/i2 + p°/2 - p3/3)JF =0 A (D.1k)

In general, u, B, D and F are nonzero, Therefore, the quantities
within ‘the brackets in equations (D,11) through (D.14) must be identi- -
cally zero.

The coefficients are assumed to be quadratic in v. As & result let

- 2
R CO SO (D.15)
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B o . _
b = b,p° + bp + by | (D.16)
¢ = C 'D2 + c + fod .
1t 2P 7 3 : (D.17)
d=4d 2 + dp+ d i
LET P T 6P T G , (D.18)
e = e p2 +ep+e .
1 2 3 : (D.19)
f= 24 fpat |
= 1P oP ¥ I3 (D.20)

Substituting equations (D.15) through (D.20) into equations (D.11)
through (D.1L4) results in four equations which are quartic in p. In
each equation 815 85 Bgy eees f3 must be selected such that'coefficien'ts

of p vanish, Hence

al+b\l+ cl+2dl+2el+2fl=0
a2+b2+c2+2d2+2e2+gf2=0
a. + b, 4+ c, +2d. +2e_ + 2f_ =0

3 3 3 3 3 3

]
o

b, + ¢, + 2e +2f1

b2+c2+2el+2e2‘-2fl+2f2=0

6b3+6c3+dl+ei+fl+l_2(e2+e3—f2+f3)=O

d2+e2+f2+12(e3-—f3)=0
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b, - ¢

4 - =
5 e, + 2e, + 3fl 21 0

2 1 2 2

.2b3 - 2c3 +e + 6e2 + he3 - fi + 6f2 - hf3 = 0

dl +oey 30e2 + 180:__33 f fl - 30fé + 180f3 =0

d2 + e, + 3Oe3 + f2 - 30f3 =0

The above fifteen equations: contain eighteen unknown. Therefore, three

unknowns may be picked arbitrarily., The values of e3 = 1, fl = 2 an§

fb = 8 were picked to avoid fractions for the remaining ccefficients.

The results are summarized by the equations

a = 200p2 - 90p ~ 35 : (p.21)
b = 1ohp2 + 127p + 17.5 - | (p.22)
¢’= <bp® - 37p + 1T.5 | ~ (p.23)
d= -10092 -9p -2 o (D.2k)
e ='-52p2 +p+ 1 o (D.25)
f =‘2p2 +8p+ 1 | (D.26)

' Since p = %%%, substituting (D.21) through (D.26) into (D.10) gives a

guadratic in o.
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