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Epigenetic alterations during cellular
differentiation are a key molecular

mechanism which both instructs and
reinforces the process of lineage commit-
ment. Within the haematopoietic system,
progressive changes in the DNA methyl-
ome of haematopoietic stem cells (HSCs)
are essential for the effective production
of mature blood cells. Inhibition or loss
of function of the cellular DNA methyla-
tion machinery has been shown to lead to
a severe perturbation in blood produc-
tion and is also an important driver of
malignant transformation. HSCs consti-
tute a very rare cell population in the
bone marrow, capable of life-long self-
renewal and multi-lineage differentia-
tion. The low abundance of HSCs has
been a major technological barrier to the
global analysis of the CpG methylation
status within both HSCs and their imme-
diate progeny, the multipotent progeni-
tors (MPPs). Within this Extra View
article, we review the current understand-
ing of how the DNA methylome
regulates normal and malignant hemato-
poiesis. We also discuss the current
methodologies that are available for
interrogating the DNA methylation sta-
tus of HSCs and MPPs and describe a

new data set that was generated using
tagmentation-based whole genome bisul-
fite sequencing (TWGBS) in order to
comprehensively map methylated cyto-
sines using the limited amount of geno-
mic DNA that can be harvested from
rare cell populations. Extended analysis
of this data set clearly demonstrates the
added value of genome-wide sequencing
of methylated cytosines and identifies
novel important cis-acting regulatory
regions that are dynamically remodeled
during the first steps of haematopoietic
differentiation.

Introduction

Mature blood cells exert highly specific
functions in adaptive immunity, innate
immune response, wound healing, oxygen
supply and other physiological functions
that are driven by unique gene expression
profiles. Despite this diversity, all blood
cells originate from haematopoietic stem
cells (HSCs). Once HSCs start to differ-
entiate, they lose self-renewal capacity and
develop into multipotent progenitor cells
(MPPs), which differentiate further
toward lineage-restricted progenitors and
subsequently develop into mature blood
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cells. Murine HSCs are one of the most
extensively characterized mammalian
adult stem cell populations. Flow cytome-
try-based protocols allow the prospective
isolation of bone marrow HSCs and
MPPs based upon correlations between
immunophenotype and functional charac-
teristics following transplantation.1-4

MPPs are capable of differentiating into
all mature haematopoietic lineages but, in
contrast to quiescent HSCs, harbor only
restricted self-renewal capacity as reflected
by their transient reconstitution capacity
following transplantation. Sub-fractions
of the MPP compartment demonstrate
differences in proliferative status under
homeostatic conditions and also show
divergent functional behavior upon trans-
plantation.5-7

Gene expression studies have revealed
important insights into how biological
processes are regulated at the transcrip-
tional level in haematopoietic stem and
progenitor cells (HSPC).8-10 However,
the global molecular mechanisms acting
during physiological HSC commitment
remain elusive. In a recent resource study,
we investigated the global molecular
mechanisms acting during physiological
HSC commitment by performing an inte-
grative analysis of proteome, transcrip-
tome and DNA methylome, which
enabled a detailed characterization of the
regulatory networks active during early
HSC commitment.5

In this ‘Extra Views’, we will discuss
recent technological developments for
methylome profiling and summarize their
application to the HSC field. We will
extend the analysis of the molecular land-
scape of haematopoietic stem and multi-
potent progenitor cells provided in our
recent resource article,5 with a focus on
early changes in DNA-methylation to
gain further insight into the molecular
processes involved in the early commit-
ment steps. The data will be integrated
with existing published work and placed
into the context of epigenetic alterations
observed in leukemia.

DNA methylation changes during
differentiation

The epigenetic remodeling of both his-
tone modifications and DNA methylation
alters chromatin structure and has been

recognized as a molecular mechanism reg-
ulating differentiation during develop-
ment and in regenerating adult tissues
such as the haematopoietic system.11-13

DNA methylation represents a stable
modification of DNA which can either
restrict or enforce the differentiation
potential of a cell by permanently placing
certain genes in a chromatin conformation
that is either permissive or restrictive for
transcription.11,13 The identification of
discrete DNA methylation changes that
either gain or lose DNA methylation dur-
ing HSC differentiation and which are
highly enriched in cis-regulatory regions
for gene expression demonstrates the
power of this approach to discover novel
putative gene-regulatory regions.5,14 As
shown in mice with targeted deletions of
either DNA methyltransferase 1 or 3a
(Dnmt1 or Dnmt3a), DNA methylation
plays a major role in regulating the pro-
duction of mature haematopoietic cells
from HSC. Mice carrying knockouts of
either Dnmt1 or Dnmt3a show perturbed
multilineage differentiation and HSC self-
renewal capacity, while conditional
knock-out of both Dnmt3a and Dnmt3b
in HSCs resulted in loss of long-term
reconstitution potential.15-18

Epigenetic alterations in
hematological malignancies

The importance of epigenetics in
hematopoiesis is further highlighted by
studies on various hematological malig-
nancies. Multiple studies using single
genes, groups of genes or genome-wide
profiling technologies have demonstrated
massive changes in the promoters of genes
resulting in loss of expression.19-23 Early
estimates of the amount of CG-rich (or
CpG island) promoter methylation deter-
mined that 2000 - 3000 genes could be
targeted by promoter methylation in acute
myeloid leukemia19 or chronic lympho-
cytic leukemia.23 Recent genome-wide
methylation studies demonstrated that
DNA methylation changes not only occur
in the promoters of genes but also affect
intra- and intergenic regions.24-27 In mye-
loid malignancies, recent large scale
sequencing projects identified recurrent
mutations in enzymes involved in the
establishment of epigenetic patterns
including recurrent mutations in

DNMT3A, IDH1/2, or the TET
enzymes.28,29 This complements the
observation that several recurrent translo-
cations involve rearrangements of epige-
netic enzymes, for example, t(9;11) which
results in the expression of the MLL-AF9
fusion protein.30, 31 Many of these muta-
tions are associated with disease subgroups
carrying distinct methylomes,20,28,32,33

however the underlying molecular mecha-
nisms are currently unknown. Dnmt3a
loss of function has been identified as a
driver of hematologic malignancy, pre-
sumably due to the subsequent loss of epi-
genome integrity.16,34,35 Indeed, for acute
myeloid leukemia it was shown that
DNMT3A mutations occur early, possibly
in HSCs, and mutant cells represent a pre-
leukemic HSC.36 Taken together, the
occurrence of epigenetic alterations in
hematologic malignancies highlights the
importance of tightly regulated epigenetic
patterns that govern the cellular differenti-
ation process.

Epigenetic profiling technologies
Methodologies to study the DNA

methylome have advanced from technolo-
gies interrogating the methylation of single
or a few CpG-rich gene promoters,37-39 to
modern next-generation sequencing-based
approaches interrogating DNA methyla-
tion levels at single CpG resolution
(Fig. 1).40-42Restriction landmark genome
scanning (RLGS) was the first method to
measure quantitatively the methylation sta-
tus of a few thousand CpG-sites, mostly
located in CpG islands, within a single 2-
dimensional gel.43,44 RLGS was replaced
by array technologies measuring the meth-
ylation status of preselected sequences,
either CpG-islands or later non-CpG-
island promoters, intragenic or intergenic
regions.45-50 With the advent of next gen-
eration sequencing, whole genome bisulfite
sequencing (WGBS) and sequencing of
reduced representations of the genome
(e.g. reduced representation bisulfite
sequencing, RRBS) were introduced to the
scientific community for methylome anal-
ysis.40-42,51 In parallel, methods employing
enrichment of methylated DNA sequences
also took advantage of next-generation
sequencing read-out (Fig. 1A). While
these enrichment-based methodologies
represent a cost-efficient way to interrogate
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DNA-methylation in a genome-wide fash-
ion, they have the disadvantage of only
indirectly measuring DNA-methylation as
a function of relative enrichment levels as
compared to a control sample. In contrast,
bisulfite sequencing-based methods enable
a direct measurement of methylation on
the individual DNA molecules. Fig. 1B
gives a brief overview on the general work-
flow of the most relevant bisulfite sequenc-
ing methods that are currently used. Using

RRBS, genome-wide single-CpG resolu-
tion analysis of CpG-rich regions like pro-
moters and CpG-islands became possible
at relatively low costs. RRBS was also com-
patible with low-input DNA samples,
which enabled the study of methylomes
from rare cell populations.14 However,
RRBS covers only about 8–10% of all
CpGs within the mammalian genome and
is biased toward GC-rich sequences,52,53

while the different whole genome bisulfite

sequencing approaches cover a nearly com-
plete and rather unbiased representation of
CpGs throughout the genome.53 Recent
experimental data on a variety of human
tissues suggests that only a small propor-
tion of the methylome is actually prone to
changes during development, many of
which may not be covered by RRBS.54

Therefore, WGBS is still considered to be
the gold standard for methylome analysis,
but the high sequencing costs prohibit the

Figure 1. Comparison of sequencing-based methods for genome-wide methylation analysis. (A) Overview of major next-generation sequencing-based

methods for DNA methylation screening. Due to their practical relevance, we have also included quantitative array-based methylation screening meth-

ods. (B) General workflow for the most relevant bisulfite sequencing based methods RRBS, classic WGBS, PBAT and TWGBS. For methodological detail,

please refer to the original reports describing the respective methods.40-42,51,55-57 (C) Table showing advantages and disadvantages for bisulfite sequenc-

ing methods.
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evaluation of large sample numbers
(Fig. 1C). Furthermore, a requirement for
high levels of starting genomic DNA
restricts the use of classical WGBS to cell
culture models and tissues where sufficient
DNA is available. A breakthrough in the
use of WGBS was made with the develop-
ment of technologies enabling the use of
low nanogram to picogram amounts of
DNA.55,56 For example, tagmentation-
based whole-genome bisulfite sequencing
(TWGBS) requires only 5–30 ng of DNA
as starting material in order to prepare
high-complexity sequencing libraries and
is suitable for as few as 10,000 FACS-
sorted cells.5,55,57 Very recently it was
demonstrated, that WGBS libraries could
even be established from single cells (sin-
gle-cell WGBS, scWGBS).58 Genome-
wide, scWGBS covers between 18% and
48% of CpG-sites in individual cells. Sin-
gle-cell WGBS will enable methylome
studies on very rare cell populations as well
as to study epigenetic heterogeneity of
both normal and tumor tissues. Figure 1C
summarizes strengths and weaknesses of
bisulfite sequencing-based technologies for
DNA methylation analysis. With the dis-
covery of 5-hydroxymethylcytosine (5
hmC), 5-formylcytosine and 5-carboxylcy-
tosine as additional DNA modification,
there is now an increasing need for new
methods that enable the specific detection
of these modifications.59-63 Currently, 5
hmC is of special interest, as it appears to
be a stable epigenetic mark rather than just
an intermediate in the active DNA
demethylation process. As classic bisul-
phite sequencing cannot distinguish
between 5 mC and 5 hmC, several meth-
ods specific for one or the other modifica-
tion have been developed and are based on
modification of the 5 hmC followed by
enrichment and subsequent sequenicng.
Recent methodological advancements for
the detection of the new cytosine modifica-
tions have been reviewed elsewhere.64

Genome-wide DNA-methylation
maps in haematopoietic stem and
progenitor cells

Until recently, the DNA methylation
patterns of HSC and their dynamics dur-
ing differentiation had not been charac-
terized. The first study which investigated
the DNA methylation patterns of murine

HSCs and their progeny used the RRBS
technology.14 Numerous differentially
methylated regions (more hyper- than
hypomethylated regions) could be identi-
fied as HSCs differentiated into mature
progeny, supporting the importance of
DNA methylation during haematopoietic
commitment. Key observations from this
study included the identification of epige-
netic switches that are retained in termi-
nally differentiated cells and correlate
with expression of associated genes
including transcription factors regulating
hematopoiesis (e.g., Sfpi, or Lmo2), cell
surface antigens (Cd27, Cd93), or cyto-
kines (Il16). Nevertheless, at the global
level, the study by Bock and colleagues
did not find a general correlation between
DNA methylation changes and altera-
tions in gene-expression.14 This was in
line with other recently published data,
where the correlation of DNA methyla-
tion changes and gene-expression was
rather weak.65 Based on these data,
the importance of DNA-methylation
instructing gene-expression has been
questioned.

While RRBS favors the detection of
differentially methylated cytosines in GC-
rich promoter and CpG-island (CGI)
regions, recent studies in healthy tissues
employing WGBS have demonstrated
that the majority of dynamically methyl-
ated CpG-sites are located distal to tran-
scription start sites and CGIs.54,65-67

Jeong and colleagues provided the first
whole genome methylation map of
murine HSCs (LSK, SPC, CD150C).34

This study identified 1,104 large
(>3.5 kbp in length) conserved regions
displaying low DNA methylation levels,
so called undermethylated regions
(UMRs). These UMRs are maintained
by Dnmt3a, since HSCs from Dnmt3a
knockout mice showed erosion of
UMRs. Genes silenced in these regions
are under the control of repressive chro-
matin marks including H3K27me3,
whereas active gene regions in UMRs
are marked by H3K4me3.34 Together,
this study demonstrated the effects of
Dnmt3a on the epigenome integrity of
murine HSC using an optimized classi-
cal WGBS protocol, which enabled the
use of 300 ng of input DNA for library
preparation.

To date, the most comprehensive
molecular dataset on HSCs and their
immediate progeny was published by
Cabezas-Wallscheid and colleagues.5 In
this study, isolated HSCs (LSK, CD34-,
CD48-, CD150C), and 3 sub-popula-
tions of the multipotent progenitor
(MPP) compartment, namely MPP1
(LSK, CD34C, CD48-, CD150C),
MPP2 (LSK, CD34C, CD48C,
CD150C), and MPP3/4 (LSK, CD34C,
CD48C, CD150-) were analyzed by
TWGBS. Cabezas-Wallscheid and col-
leagues provided an integrated view on
genome-wide DNA methylation at the
single-CpG dinucleotide level, whole-
transcriptome including long non-coding
RNAs and mass-spectrometry-based pro-
teome data. The work described early
molecular changes, occurring during the
transition from HSC to MPPs. In total,
proteomic analysis of HSCs and MPP1
identified 6,389 proteins, and 56 of them
were found to be differentially expressed.
On the mRNA-level, 6,487 genes were
found to be significantly differentially
expressed across the haematopoietic stem
and progenitor cell (HSPC) compart-
ment, which included 492 transcription
factors. While the global DNA methyla-
tion levels were similar in all cell popula-
tions, 15,987 discrete differentially
methylated regions (DMRs) were identi-
fied across the individual HSPC popula-
tions. In stark contrast to previous reports,
the majority of DMRs occurred in intra-
genic regions (introns C exons), likely
reflecting the fact that this methodology
does not skew toward overrepresentation
of CpG dense regions of the
genome.5,65,68

Results

HSPCs exhibit progressive and cell
type-specific changes in DNA
methylation patterns

Further refinement of DNA methyla-
tion changes by unsupervised clustering
revealed 9 clusters that best described the
DNA methylation dynamics. The major-
ity of methylation changes were unidirec-
tional, either demonstrating a progressive
gain or loss of methylation marks
(Figs. 2A and 2B). Clusters 1 to 4
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Figure 2. For figure legend, see page 3481.
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exhibited a gradual decrease in levels of
DNA methylation with differentiation,
although the exact kinetics varied. Like-
wise, clusters 6 through 9 exhibited a
gradual gain in methylation with cluster-
specific kinetics. In contrast, the behavior
of cluster 5 seemed to be unique, in that
the DMRs demonstrated a progressive
loss in methylation from HSC through
MPP2 followed by a subsequent gain in
methylation to MPP3/4.

In a further analysis of this data, DMRs
were assigned to genes using the
“Genomic Regions Enrichment of Anno-
tations Tool” (GREAT), and a gene-
ontology (GO) analysis was performed.69

Individual clusters were found enriched
for distinct GO-terms that correlated to
specific steps of haematopoietic differenti-
ation (e.g. “regulation of myeloid differen-
tiation," “erythrocyte differentiation,"
“regulation of lymphocyte activation”),
suggesting that stage-specific methylation
changes in HSPCs regulate sequential
steps of haematopoietic commitment
(Fig. 2C).

In order to determine whether these
early methylation changes are maintained
in mature terminally differentiated hae-
matopoietic cell types, HSPC-specific
DMRs were compared with WGBS data
from 17 adult mouse tissues and murine
embryonic stem cell.66 This comparison
demonstrated that the methylation
changes observed in early commitment
steps between HSC and their immediate
progeny are maintained as a signature in
differentiated adult haematopoietic organs
(i.e. bone marrow, spleen and thymus;
Fig. 2D). Conversely, this signature is nei-
ther apparent in other adult tissues nor in
murine embryonic stem cell (Fig. 2D).

This data suggests that the DMRs identi-
fied between HSPCs represent haemato-
poietic -specific methylation events, which
remain in a naive status in undifferenti-
ated embryonic stem cells and non-hae-
matopoietic adult tissues.

Differentially methylated regions are
enriched in cis-regulatory regions that
instruct gene-expression

The DMRs identified frequently over-
lapped with cis-regulatory elements and it
was shown on the global level that methyl-
ation changes correlate inversely with gene
expression.5 In line with a previous report
on in vitro ES-cell differentiation,65 this
correlation was even more pronounced
when we considered associated gene
expression levels of more distant differen-
tiation states: genes associated with DMRs
detected between HSC and MPP1 showed
more pronounced anti-correlated expres-
sion levels in MPP4 as compared to
those in MPP1. Thus, this high-resolution
methylation data enables us to discern epi-
genetic changes that precede and predict
gene-expression changes at subsequent dif-
ferentiation levels. To further investigate
this observation, and to identify additional
genes regulated by DNA methylation,
gene-sets were generated based on the
DMRs between each of the HSPC popu-
lations. More specifically, we annotated all
DMRs for each pair-wise comparison to
the nearest RefSeq gene. If multiple
DMRs mapped to the same gene, only the
single DMR closest to a gene’s TSS was
kept for further analysis. These gene-sets
were then used to interrogate RNA-seq
data obtained from equivalent cell popula-
tions using Gene-Set Enrichment Analysis
(GSEA).5,70 In order to filter for

consistent direction of gene-expression
changes, this analysis was performed
under the assumption as if the expression
data-sets from all populations upstream or
downstream of the observation point were
biological replicates. A strong global asso-
ciation between differential methylation
and changes in gene-expression was
observed. Across all differentiation steps,
gene-sets comprised of loci that corre-
sponded to gain of methylation were
strongly enriched for transcripts that
showed decreased levels of expression dur-
ing differentiation (ES-score: 1.883 to
2.276, all P-values <0 .0001; Fig. 3A).
Likewise, transcripts that were up-regu-
lated during differentiation were enriched
by gene-sets consisting of loss of methyla-
tion loci (ES-score: ¡2.326 to ¡1.706, all
P-values <0 .0001; Fig. 3A). In line with
this, a unidirectional pattern of gene
expression along HSC differentiation was
observed when core-enriched genes (also
named “leading edge set”) were consid-
ered. For example, among the core-
enriched genes that become methylated
during the HSC to MPP1 transition and
which correspondingly show a decrease of
gene-expression, there were a number of
well-documented mediators of HSC func-
tion, such as Gata2, Mecom/Evi1,
Prdm11, Prdm16, Mycn, and a number of
Hoxa-, and Hoxb-family members
(Fig. 3A and 3B). Additionally, numerous
genes which have not been characterized
in the context of hematopoiesis and which
are likely to play a role in HSPC biology
given their progressive pattern of methyla-
tion and gene-expression were identified.
Indeed, a GeneMANIA analysis of the
core-enriched genes identified during the
HSC to MPP1 transition (59 genes with

Figure 2 (See previous page). Conserved haematopoietic tissue-specific DNA-methylation. (A) Heatmap of all DMRs (n D 15,987) detected between the

4 HSPC populations (HSC, MPP1, MPP2 and MPP3/4). Each horizontal dash represents the ratio of methylated/unmethylated CpGs in each cell population.

R1-R3: biological replicates. Nine distinct DNA methylation clusters were identified by unsupervised cluster analysis and can be grouped into 3 catego-

ries: Clusters 1–4 demonstrate a loss of methylation (blue) and clusters 6–9 a gain of methylation (red) from HSC to MPP3/4. Cluster 5 shows a loss of

methylation from HSC to MPP2 followed by a gain of methylation to MPP3/4 (purple). (B) Display of mean methylation differences (DMeth) §SD in

DMRs of each cluster. DMeth is defined as the mean difference in methylation levels in a given subpopulation relative to the mean methylation level of

all 4 subpopulations. Blue arrow downwards: loss of methylation; red arrow upwards: gain of methylation; purple arrows: bidirectional methylation

change. N indicates the number of DMRs in each cluster. (C) Gene-ontology (GO) analysis of DMRs from clusters 1–9 (seeFig. 2A) using GREAT with

default association rule settings and “whole genome” as background.69 Displayed are the enrichments of the 5 most significantly overrepresented GO-

terms (P-value) for each cluster. Colors represent standard scores of log2 P-values. Rows were normalized to have a mean of 0 and a standard deviation

of 1. (D) Analysis of DNA methylation changes across different tissues. Relative DNA methylation levels for all DMRs detected during early haematopoietic

differentiation are displayed as a heatmap for 24 different cell and tissue types. DNA methylation levels were normalized relative to the mean level of all

DMRs within each sample (blue and red indicate DNA methylation lower and higher than the mean methylation level, respectively). Samples analyzed

include HSC, MPP1, MPP2 and MPP3/4 (3 replicates each; (R1-R3)), mouse embryonic stem cell data from 3 different experiments (mESC_XT, mESC_E14,

and mESC_E14r) and WGBS data for 17 murine adult tissues.66,78 DMRs are sorted as in Figure 2A according to clusters 1–9.
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methylation gain and down-regulated
expression, 205 genes with methylation
loss and upregulated expression) demon-
strated that the genes associated with these
early occurring DMRs are functionally
linked (Fig. 3B & Figure S1).71 This
again underlines the non-random nature
of the DNA methylation changes observed
and suggests that changes in DNA methyl-
ation status act to coordinately regulate
the process of cellular differentiation.

Taken together, this data highlights the
global reciprocal relationship between
gene-expression and DNAmethylation sta-
tus during haematopoietic differentiation.

Differentiation stage specific
haematopoietic transcription factors
associate with DMRs

Within the list of differentially methyl-
ated and expressed genes, we observed a
number of transcription factors (TF) that

may comprise master regulators of gene
expression. Gene expression data from
2013 TFs were extracted (Panther data-
base, http://www.pantherdb.org/ and
were then ranked according to their P-
values for altered expression across all
HSPC populations (Fig. 4A).5,72 In total,
242 out of the 490 (49.4%, p D 2.2 £

10¡16, Fisher’s exact test) differentially
expressed TFs were associated with at least
one DMR, which is significantly more

Figure 3. DNA-methylation changes correlate with gene-expression. (A) Left panel: Gene set enrichment analysis (GSEA) of genes associated with DMRs

using the GSEA tool (Subramanian et al., 2005). GSEA is provided for DMRs identified between HSC¡MPP1, MPP1¡MPP2, MPP1¡MPP3/4 and split into

gain of methylation (red) or loss of methylation (blue) DMRs. NES: normalized enrichment score, FDR: false discovery rate. Right panel: Relative gene

expression levels of core enriched set of genes normalized per row (purple: upregulated; green: downregulated). (B) Protein-protein interaction network

based on GeneMANIA depicting the interactions of the “core enriched genes” for the HSC¡MPP1 transition correlating with gain of methylation and

decreased expression. The interaction network of the “core enriched genes” for the HSC¡MPP1 transition correlating with loss of methylation and

increased expression is depicted in Figure S1.
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than expected by chance. Most of the
DMRs are found within a 10 kb window
centered on the TSS (Fig. 4A). At every

commitment step, there was a significant
association of DMRs with differentially
expressed TFs (Fig. 4B). Detailed analysis

of regions surrounding the TSS of well-
characterized TFs that regulate haemato-
poietic differentiation identified stage-
specific DMRs that overlapped with previ-
ously defined cis-acting regulatory
regions.5 In addition, specific DMRs
associated with TFs such as Mecom
(Evi1/Mds1), Pbx1, Jun, Hoxa5, and
Gata1 were identified, which potentially
define novel cis-regulatory regions for
these genes (Fig. 4B). In summary, coor-
dinated analysis of TF expression and
characterization of DMRs in the proxim-
ity of their TSS allows the putative identi-
fication of genomic regions that may play
an important role in regulating TFs dur-
ing HSC maintenance and differentiation.

Transcription factor binding motifs
are enriched within stage-specific DMRs

Using canonical TF binding motifs
(TRANSFAC database), differential motif
enrichment across all DMR clusters was
calculated. Out of 981 TF motifs interro-
gated, 45 were found to be significantly
enriched, including 29 which have well
documented regulatory function within
the haematopoietic system (e.g., GATA1,
GATA2, RUNX1 (AML1), LMO2,
PBX1). Since some of these TF motifs
shared a high level of similarity, STAMP
motif clustering was used to reduce the 45

Figure 4. Correlation of DNA methylation and

expression of transcription factors. (A) DMR

frequency in 10 kb windows around the tran-

scription start site (TSS) of transcription factors

(TF) either differentially expressed (brown) or

not differentially expressed (beige). The bot-

tom part displays a heatmap of DMRs around

TSS of TFs sorted according to P-value for

overall differential expression within the HSPC

compartment. Red dashes represent DMRs.

Asterisks indicate statistical significance (Fish-

er’s exact test; *: P-value 0.01–0.001; **:

P-value<0 .001). (B) Left panel: Number of dif-

ferentially expressed TFs in the transitions

from HSC¡MPP1, MPP1¡MPP2 and

MPP1¡MPP3/4. Differentially expressed TFs

with a DMR annotated are depicted in red,

TFs without DMR are depicted in gray. Statisti-

cal enrichment of DMRs in differentially

expressed TFs was calculated using Chi-

squared test. Right panel: Mean expression

values based on RNA-seq data5 of 4 represen-

tative differentially expressed TFs associated

with DMRs are shown for each commitment

step.
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enriched motifs into 14 different “motif
classes” (Fig. 5A). TF motif enrichment
was not uniform across the DMR clusters.

For example, binding sites for GATA-
like TFs all correlated strongly to clus-
ters 5 and 6 and to a lesser extent to

clusters 8 and 9. In contrast, binding
sites for the AML-like TFs (RUNX-
family and core-binding factor) are
enriched in clusters 1, 2, 3, and 4. Of
interest, cluster 7 showed a distinct pat-
tern of enrichment for p53, PBX1-like,
MEF-like and OCT-like binding motifs
(Fig. 5A). Overall, it appears that TF
motif enrichment correlates with DNA
methylation dynamics, which indicates
that DNA methylation either passively
reflects or even actively regulates TF
binding patterns during early hemato-
poiesis. In either case, our data pin-
points toward regions occupied by spe-
cific TFs and possibly involves these
TFs in regulating early haematopoietic
commitment. To gain further insight
into the interplay between TF motif
methylation and TF expression, we
have extracted the expression data of a
total of 146 TFs that could be associ-
ated with the enriched motifs. This
analysis identified a number of TFs that
show dynamic expression during early
HSC commitment among them are
Pbx1, Gata1, Gata2, Ap1m1, Mecom,
Tcf25, Tcf4, Myo1c, Myo1f, Myo1g,
Runx2, and Runx3 some of which may
bind to similar sequence motifs
(Figure S2). Further studies employing
ChIP-seq are needed to establish
genome-wide TF binding patterns and
the impact of DNA methylation on TF
binding.

Co-occurrence of TF motifs was
tested after merging related motif matri-
ces to more general consensus matrices.
Strong co-occurrence was found among
TF-motifs for AP2, NFAT, ZNF219,
ZPF206, AML-like and p53 within our
DMRs, while the same regions are largely
depleted for PBX-like, MEF-like,
GATA-like, OCT-like, FREAC4, PAX_-
PITX2, and SPIB_ELK motifs. Con-
versely, a strong co-occurrence pattern
was observed among the latter group of
TF motifs. This observation suggests a
potential functional relatedness of the
TFs recognizing the respective sequence
motifs (Fig. 5B).

In summary, analysis of HSPC DMRs
shows that relevant TF binding sites are
methylated in a stage-specific manner and
further refines the characterization of cis-
acting regulatory regions that likely play

Figure 5. Motif enrichment in differentially methylated regions associated with transcription

factors. (A) Cluster analysis of row Z-scores for TF motif enrichments in DNA methylation clusters.

All DMRs were scored using 981 TRANSFAC position weight matrices and motifs showing a signifi-

cant enrichment (Z > 2) or depletion (Z < ¡2) in any of the DMR clusters are displayed. Green:

motif enrichment, blue: motif depletion. (B) Cluster analysis of Z-scores for pairwise TF-motif

co-occurrences in all DMRs (see Material and Methods for details). Green: enrichment of TF-motif

co-occurrence, blue: depletion of TF-motif co-occurrence.
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an important role in the process of haema-
topoietic differentiation.

Future perspectives and challenges
Cellular differentiation is regulated by

epigenetic mechanisms.73,74 However, the
detailed molecular mechanisms as well as
the genomic regions under epigenetic con-
trol are currently poorly characterized.
Recent advances in global epigenetic pro-
filing technologies allow the interrogation
of small cell numbers, which is a prerequi-
site to generate genome-wide high-resolu-
tion DNA methylation maps from the
early transition steps of rare stem cell pop-
ulations into more differentiated cell pop-
ulations.5,55-58

The data set by Cabezas-Wallscheid
and colleagues provides a wealth of
information for further analysis. While
early molecular changes in gene expres-
sion and their associated epigenetic
alterations have been uncovered, several
unanswered questions and/or validation
experiments remain. First, very few
detailed histone modifications maps
exist that could be integrated with the
DNA methylation and transcription
data. Second, functional validation of
altered genes will be necessary to deter-
mine the relevance of a particular gene
expression change. Finally, the question
which molecular mechanisms regulate
these dynamic changes in the DNA
methylome remains to be elucidated.
Two scenarios can be envisioned: either
the epigenetic changes seen as DMRs
occur secondary to the occupancy by
the transcription machinery. Alterna-
tively, one could envision a mechanism
that directs epigenetic changes to cer-
tain target regions and thereby enabling
the occupancy by the transcription
machinery. Known examples for such
mechanisms are mediated by long non-
coding RNAs that act as guide RNAs
to direct chromatin repressive or acti-
vating complexes to target genes.75-77

Regardless of these uncertainties, it is
clear that DNA methylation is an
important regulator of haematopoietic
differentiation and that sensitive meth-
odologies such as TWGBS allow one to
dissect regulatory epigenetic commit-
ment steps that occur during the very
early stages of HSC differentiation.

Data Access

Methylation data from murine
haematopoietic stem and progenitor cells

Published tagmentation-based whole-
genome bisulfite sequencing data from
murine haematopoietic stem and progeni-
tor cells can be accessed under Gene
Expression Omnibus (GEO; accession:
GSE52709).5

Methylation data from murine
embryonic stem cells

Published whole-genome bisulfite
sequencing data from murine embryonic
stem cells were downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo/):78

GEO-acc GEO Sample Name Short
Label

GSM1027571: DNA_Methylation_-
serum_LIF_E14 mESC_E14

GSM1127953: DNA_Methylatio-
n_E14_serum_LIF_replica mESC_E14_r

GSM1127955: DNA_Methylation_fe-
male_XT67E1_serum_LIF mESC_XT

Methylation data from 17 murine
adult tissues

Published whole-genome bisulfite
sequencing data for 17 murine adult tis-
sues were downloaded from GEO (http://
www.ncbi.nlm.nih.gov/geo/; GEO-acces-
sion number: GSE42836).66

RNA-seq data
RNA-seq data from murine haemato-

poietic stem and progenitor cells can be
accessed on ArrayExpress (http://www.
ebi.ac.uk/arrayexpress) under accession
number E-MTAB-2262.5

Experimental Procedures

Clustering of DMRs
The methylation level of each DMR

was estimated based on the unsmoothed
methylation data. For each DMR, the
methylation levels were normalized by
subtracting the median of all sample repli-
cates in the study. The R package kmeans
was used to cluster the DMRs based on
the normalized methylation levels. The
number of clusters was determined as the
minimal number of clusters whose sum of

within-cluster sum of squares is less than
10% of that of a single cluster.

Motif enrichment analysis
Sequences corresponding to all identi-

fied DMRs were scored using 981
TRANSFAC vertebrate matrices
(TRANSFAC Version 2011), using a total
binding affinity score. For a given motif,
all sequences were ranked according to
this score. Next, for a given set of sequen-
ces from one of the DMR clusters, an
enrichment Z-score was computed for this
set respective to all other DMR sequences.
Finally, motifs showing a significant
enrichment (Z > 2) or depletion (Z <
¡2) in any of the DMR clusters were rep-
resented as a heatmap. Given the similar-
ity between some of these motifs, they
were clustered using the STAMP method,
yielding 14 “motifs classes," which are
indicated by a colored bar on the
heatmap.

Motif co-occurrences
For each DMR, motif occurrences

were determined for all enriched
TF-motifs. For each pair of motifs, the
number of common DMRs (i.e., DMRs
in which both of these motifs are present
at least once) was divided by the size of
the union (i.e. the number of DMRs in
which at least one TF-motif is present).
To determine a random distribution,
motif occurrences were shuffled among
DMRs, and the previous ratio was com-
puted again. This shuffling was done
1000 times to evaluate dispersion. Finally,
a Z-score was computed for each pair of
motifs, indicating how significantly
enriched or depleted a specific pair of
motifs is.
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