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Abstract 

Background: Identification of splice sites is essential for annotation of genes. Though existing approaches 

have achieved an acceptable level of accuracy, still there is a need for further improvement. Besides, most of the 

approaches are species-specific and hence it is required to develop approaches compatible across species.

Results: Each splice site sequence was transformed into a numeric vector of length 49, out of which four were posi-

tional, four were dependency and 41 were compositional features. Using the transformed vectors as input, predic-

tion was made through support vector machine. Using balanced training set, the proposed approach achieved area 

under ROC curve (AUC-ROC) of 96.05, 96.96, 96.95, 96.24 % and area under PR curve (AUC-PR) of 97.64, 97.89, 97.91, 

97.90 %, while tested on human, cattle, fish and worm datasets respectively. On the other hand, AUC-ROC of 97.21, 

97.45, 97.41, 98.06 % and AUC-PR of 93.24, 93.34, 93.38, 92.29 % were obtained, while imbalanced training datasets 

were used. The proposed approach was found comparable with state-of-art splice site prediction approaches, while 

compared using the bench mark NN269 dataset and other datasets.

Conclusions: The proposed approach achieved consistent accuracy across different species as well as found com-

parable with the existing approaches. Thus, we believe that the proposed approach can be used as a complementary 

method to the existing methods for the prediction of splice sites. A web server named as ‘HSplice’ has also been 

developed based on the proposed approach for easy prediction of 5′ splice sites by the users and is freely available at 

http://cabgrid.res.in:8080/HSplice.
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Background
Exon–intron and intron–exon boundaries in genes are 

called splice sites, where the former one is donor splice 

site and the latter one is acceptor splice site [1]. In major-

ity, the donor and acceptor splice sites are conserved 

with dimer GT and AG at the beginning and at the end 

of introns respectively [2]. Prediction of splice sites is 

vital for genome annotation because the accuracy of gene 

finding programs depend upon the correct identification 

of true splice sites [1, 3, 4]. However, the conserved GT/

AG is not sufficient to locate the true splicing signal, due 

to the presence of large number of GT/AG di-nucleotides 

(false positive cases) in genes [1, 5].

Several computational methods have been proposed 

for the prediction of splice sites, and those can be broadly 

categorized into two classes, namely, probabilistic 

approach and machine learning based approach [6]. As 

far as prediction accuracy is concerned, machine learn-

ing approaches are more successful as compared to the 

probabilistic approaches [1]. In machine learning based 

approaches, splice site sequences are first transformed 

into numeric vectors before being used as input in the 

Open Access

Algorithms for
Molecular Biology

*Correspondence:  rao.cshl.work@gmail.com
2 Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics 

Research Institute, New Delhi 110012, India

Full list of author information is available at the end of the article

http://cabgrid.res.in:8080/HSplice
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0078-4&domain=pdf


Page 2 of 12Meher et al. Algorithms Mol Biol  (2016) 11:16 

classifiers [5]. Further, in the class of machine learning 

approaches, support vector machine (SVM) has been 

used more successfully for the prediction of splice sites 

[4]. Baten et al. [7] generated the features based on first 

order Markov model and used them as input in SVM 

for splice site prediction by applying polynomial kernel. 

�e difference in the di-nucleotide frequencies between 

true and false splice sites are also used as features for 

the prediction of splice sites using SVM with RBF kernel 

[8]. In another study, the weighted degree (WD) [9] and 

weighted degree shift (WDS) [10] kernels are successfully 

used for splice site prediction through support vector 

machines [3]. Recently, Golam Bari et  al. [1] employed 

SVM with polynomial and RBF kernels for splice site pre-

diction using nucleotide density features. Besides SVM, 

the Naïve Baye’s classifier has also been successfully used 

by Kamath et  al. [2] for the prediction of splice sites in 

which an automated feature generation program has 

been developed.

Feature generation and selection of informative fea-

tures play a pivotal role as far as the classification perfor-

mance of machine learning approach is concerned [4]. 

In most of the feature generation procedures, like MM1 

encoding [7], FDTF encoding [8], Baye’s feature mapping 

[11], nucleotide density based encoding [1], the num-

ber of features increases with increase in the length of 

sequence. On the other hand, features generated by using 

suboptimal sequence length may provide less discrimina-

tory information for classification of true and false splice 

sites using kernel based method [3]. �us, development 

of an approach that could provide consistent accuracy 

across different species by using short sequence motifs 

became the motivation.

Keeping above in mind, an attempt has been made 

to develop a new computational approach for donor 

splice site prediction. Initially, positional, composi-

tional and dependency features were extracted for the 

true and false splice sites. Positional and dependency 

features were similar to the scores of earlier proba-

bilistic approaches i.e., WMM [12], WAM [13], Sha-

piro-Senapathy [14] scores and SAE scores [6]. �e 

compositional features were nothing but the composi-

tion of di-nucleotides, triplets and tetramers. Out of all 

generated features, only informative features selected 

through F-score [15] were retained and used them as 

input in SVM for classification. By using sequence 

motif of 15  nt long, the proposed approach achieved 

consistent accuracy in four species viz, human, cat-

tle, fish and worm. Also, the developed approach was 

found to be comparable with the existing splice site 

prediction methods, while compared using an inde-

pendent test dataset.

Methods
Collection and processing of splice site data

Splice site datasets of Homo sapiens (HS), Bos taurus 

(BT), Danio rario (DR) and Caenorhabditis elegans (CE) 

were considered to evaluate the performance of the pro-

posed approach. Besides, the bench mark NN269 splice 

site dataset was used to compare the performance of the 

proposed approach with the other splice site prediction 

approaches.

Both true and false HS splice sites were collected from 

HS3D [16] available at http://www.sci.unisannio.it/

docenti/rampone/. �e true and false sets contain 2796 

and 90,923 sequences respectively. Each sequence in the 

dataset is of 140 nt long having conserved di-nucleotide 

G and T at 71st and 72nd positions respectively. �is 

dataset has also been used in recent study by Wei et al. 

[5].

�e true and false CE splice sites were collected from 

http://www.cs.gmu.edu/~ashehu/sites/default/files/

tools/EFFECT_2013/UdayProjectDataFiles/SPLICE-

SITE/WORM/DonorData.dat. In case of CE, true set 

contains 1000 sequences and false set contains 19,000 

sequences, where each sequence is of 141 nt long having 

conserved di-nucleotide G and T at 63rd and 64th posi-

tions respectively. �is dataset has also been used earlier 

by Kamath et al. [2] for the prediction of splice sites.

In case of BT and DR, exon and intron sequences were 

collected from UCSC genome browser (https://genome.

ucsc.edu/). Using the co-ordinates of exons, true splice 

sites of length 38 nt (8 nt on exon-end and 30 nt at intron-

start) were extracted keeping conserved di-nucleotide G 

and T at 9th and 10th positions respectively. Further, the 

false splice site sequences of length 38 nt were randomly 

extracted from exonic and intronic regions keeping G 

and T at 9th and 10th positions respectively. In both BT 

and DR, 10,000 sequences of true and 10,000 sequences 

of false sites were extracted.

NN269 dataset [17] is a bench mark splice site dataset, 

which has been extracted from 269 human genes. It con-

sists of 1324 confirmed donor splice site sequences and 

4922 false splice site sequences, where each sequence is of 

15 nt length having GT at 9th and 10th positions respec-

tively. �is dataset has been partitioned into training and 

test sets consisting of 5256 (1116 true + 4140 false) and 

990 (208 true  +  782 false) sequences respectively. �e 

dataset is available at http://www.cs.gmu.edu/~ashehu/

sites/default/files/tools/EFFECT_2013/data.html. �is 

dataset has also been used in several studies [2, 3, 6] for 

comparative analysis of splice site prediction methods.

Similar to NN269 dataset, the length of splice site 

sequences in other species were also restricted to 15 nt. 

One of the advantages of using shorter length sequence 

http://www.sci.unisannio.it/docenti/rampone/
http://www.sci.unisannio.it/docenti/rampone/
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http://www.cs.gmu.edu/%7eashehu/sites/default/files/tools/EFFECT_2013/UdayProjectDataFiles/SPLICE-SITE/WORM/DonorData.dat
https://genome.ucsc.edu/
https://genome.ucsc.edu/
http://www.cs.gmu.edu/%7eashehu/sites/default/files/tools/EFFECT_2013/data.html
http://www.cs.gmu.edu/%7eashehu/sites/default/files/tools/EFFECT_2013/data.html
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is that the short reads generated from NGS technologies 

can also be used for determining the splicing junction 

that helps in improving the alignment quality of short 

reads [18].

Feature extraction

Splice site sequences are in the form of strings but 

machine learning classifier takes numerical features as 

input. �us it is required to transform the sequences into 

numerical feature vectors before using them as input in 

machine learning classifiers [11]. In this study five dif-

ferent categories of features were used. �e five different 

categories of features are explained as follows:

1. Positional features (P) extracted by using only true 

splice sites (T): P×T.

2. Positional features (P) extracted by using both true 

and false splice sites (TF): P×TF.

3. Dependency features (D) extracted by using only true 

splice sites (T): D×T.

4. Dependency features (D) extracted by using both 

true and false splice sites (TF): D×TF.

5. Compositional features (C) extracted for each 

sequence independently (I): C×I.

Positional features

Let pt(αi) and pf (αi) be the frequencies of nucleotide α 

at ith position in true and false splice site datasets respec-

tively, where α ∈ {A,C ,G , T } and i = 1, 2, . . . , L(length 

of the sequence). �e frequencies of nucleotides can be 

obtained from the frequency matrix of nucleotides [15]. 

�en, the positional features (f) for any sequence are 

defined as follows:

where M is the sum of highest frequencies of nucleotides 

at position 1 to L and N is the sum of lowest frequencies 

of nucleotides at position 1 to L of splice site motif. �e 

feature f P×T
1

 is similar to the WMM score [12], f P×TF
2

 

is the difference between such scores obtained by using 

f P×T
1 =

L∑

i=1

log2 p
t(αi) ; α ∈ {A,C ,G,T },

f P×TF
2 =

L∑

i=1

log2 p
t(αi) −

L∑

i=1

log2 p
f (αi) ; α ∈ {A,C ,G,T }

f P×T
3

= 100 ×

∑L
i=1 p

t(αi) − Mt

Mt − N t
; α ∈ {A,C ,G,T },

f P×TF
4

= 100 ×

[

∑L
i=1 p

t(αi) − Mt

Mt − N t
−

∑L
i=1 p

f (αi) − Mf

Mf − N f

]

;

α ∈ {A,C ,G,T },

true and false splice sites, f P×T
3

 is Shapiro-Senapathy 

score [14] obtained using true splice sites only and f P×TF
4

 

is the difference in Shapiro-Senapathy score obtained 

from true and false splice sites.

Dependency features

Let pt(αi

∣

∣βj ) and pf (αi

∣

∣βj ) be the frequencies of the 

nucleotide α at ith position given that the nucleotide 

β occurs at jth position for the true and false splice site 

datasets respectively. �en, the dependency features for 

any sequence are defined as follows:

�e feature f D×T
5

 is similar to the WAM score [12], 

f D×TF
6

 is the difference between such scores obtained 

by using true and false splice sites, f D×T
7

 is SAE score 

[6] obtained from true splice sites only and f D×TF
8

 is the 

difference in SAE score obtained by using true and false 

splice sites.

Compositional features

�ree different types of compositional features i.e., 

composition of di-nucleotides, triplets and tetram-

ers were used. For a given splice site sequence of length 

L, let n(α1α2α3 . . .) be the number of times the string 

α1α2α3 . . . occurs in the sequence, by shifting one nucleo-

tide position at a time. �e three different compositional 

features are then computed as follows:

f D×T
5 =

L
∑

i=1

L
∑

j=1(�=i)

log2 p
t(αi

∣

∣βj ) ; α, β ∈ {A,C ,G,T },

f D×TF
6 =

L
∑

i=1

L
∑

j=1( �=i)

log2 p
t(αi

∣

∣βj )

−

L
∑

i=1

L
∑

j=1( �=i)

log2 p
f (αi

∣

∣βj ) ; α, β ∈ {A,C ,G,T }

f D×T
7 = 2L(L − 1) − 2

L
∑

i=1

L
∑

j=1(�=i)

pt(αi

∣

∣βj ),

f D×TF
8

= 2

L
∑

i=1

L
∑

j=1(�=i)

pf (αi

∣

∣βj ) − 2

L
∑

i=1

L
∑

j=1(�=i)

pt(αi

∣

∣βj )

f C×I
9

(α1α2) =
n(α1α2)

L − 1
; α1,α2 ∈ {A,C ,G,T };

f C×I
10

(α1α2α3) =
n(α1α2α3)

L − 2
; α1,α2,α3 ∈ {A,C ,G,T }

f C×I
11

(α1α2α3α4) =
n(α1α2α3α4)

L − 3
; α1,α2,α3,α4 ∈ {A,C ,G,T }
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�ere are 16 di-nucleotides, 64 triplets and 256 tetram-

ers compositions possible. �us, in total 344 features (4 

Positional + 4 Dependency + 336 Compositional) were 

generated for each splice site sequence.

Feature selection

From a set of large number of features, selecting a subset 

of non-redundant features that can potentially discrimi-

nate the true and false classes is a preprocessing step in 

every classification techniques [19]. It helps to reduce (1) 

the dimensionality of features, (2) memory allocation, 

and (3) computational time [20]. In this study, F-score 

[21] was used for selecting important features out of 344 

number of features. Feature selection was done in HS3D 

dataset and same set of selected features were retained in 

other species also. �e F-score for any feature was com-

puted as follows:

Let x̄+

j (s̄+j ) and x̄−

j (s̄−j ) be the mean (standard deviation) 

values of the jth feature for the true and false splice sites 

respectively. �en, the F-score for the jth feature was 

computed as

�is approach has also been used in earlier study [15] 

for feature selection in the area of splice site prediction.

SVM classi�cation

SVM [22] was employed for prediction purpose because 

it is non-parametric and most widely used supervised 

learning technique in bioinformatics, attributed to its 

sound statistical background [23]. It has been successfully 

applied for the prediction of several functional elements 

like translation initiation sites [24], transcription factor-

binding sites [25] etc. �e predictive ability of SVM is 

largely dependent upon the type of kernel function that 

maps the input data to a high-dimensional feature space, 

where the observations belong to different classes are 

linearly separable by the optimal separating hyperplane 

(OSH). To implement the SVM classification, the svm 

function of e1071 package of R-software [26] was used.

Cross validation

Cross-validation procedure has been widely accepted 

for assessing the performance of classifiers on test data 

set [27]. �us, a fivefold cross-validation was applied for 

evaluating the performance of the classifier. To do this, 

true and false splice site datasets were randomly parti-

tioned into five subsets, and then five sets were created 

with each set containing a randomly selected subset from 

both the classes. In each fold of the cross validation, four 

out of five sets were used for training and the remaining 

F(j) =

∣

∣

∣

∣

∣

x̄+

j − x̄−

j

s̄+j − s̄−j

∣

∣

∣

∣

∣

.

one set was used for testing. �is process was repeated 

five times in such a way that each set was used once for 

testing.

Performance measure

Area under receiving operating characteristic curve (AUC-

ROC) has been widely used to evaluate the performance 

of the classifiers [7]. �us, it was used to measure the 

prediction accuracy of the proposed approach. �e false 

positive rate (α) and true positive rate (1 − β) were com-

puted across a range of threshold values lying between 0 

and 1. �en the values of AUC-ROC was estimated using 

the formula 
∑

i

{

(1 − βi.�α) +
1
2 [�(1 − β).�α]

}

 [28], 

where �(1 − β)  = (1 − βi) − (1 − βi−1), �α = αi − αi−1 

and i = 1,2,…, N (number of test instances). For the imbal-

anced class distribution, area under precision-recall curve 

(AUC-PR) provides a better measure for assessing the 

performance of the classifiers as compared to AUC-ROC 

[3]. �erefore, the value of AUC-PR was also computed to 

evaluate the performance of the SVM classifier. �e AUC-

PR was computed as per Davis-Goadrich approach [29]. 

A subroutine in R programming language was written to 

compute AUC-ROC and AUC-PR.

Kernel selection and parameter setting

Initially, best fitted kernel was chosen out of four different 

kernels i.e., linear, polynomial, sigmoid and radial basis 

function (RBF), with default parameter setting. �en, the 

parameter of the best fitted kernel was optimized. �e 

best fitted kernel was chosen on the basis of ROC curves. 

�e optimum value of parameter for the best fitted kernel 

was chosen on the basis of highest value of AUC-ROC. 

For selecting the kernel and optimizing the parameter of 

the selected kernel, a sample dataset consists of 1000 true 

and 1000 false sites (randomly selected from HS3D data-

set) was used.

Balanced training and testing datasets

For balanced case, the number of true and false splice 

sites was kept in the ratio of 1:1 and the datasets for dif-

ferent species were prepared as follows:

Human: Ten sets were created with each set contain-

ing all the 2796 true splice sites and a subset of 2796 false 

splice sites. �e subsets of false splice sites were ran-

domly drawn from the available false splice sites.

Cattle: Ten sets were created with each set containing 

5000 true and 5000 false splice sites, randomly selected 

from the available true and false splice sites.

Fish: �e datasets were prepared similar to Cattle as 

explained above.

Worm: Ten sets were created with each set containing 

all the 1000 true splice sites and a subset of 1000 false 
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splice sites. �e subsets of false splice sites were ran-

domly selected from the available false sites.

Imbalanced training and testing datasets

For imbalanced case, the number of true and false splice 

sites was kept in the ratio of 1:5 for human, cattle and 

fish, which is similar to the proportion of true and false 

sites present in NN269 dataset. For worm dataset, the 

ratio was kept at 1:19 as followed in earlier studies [2, 3]. 

�e datasets were prepared in the following ways:

Human: Ten sets were created with each set contain-

ing all the 2796 true splice sites and a subset of 13,980 

(5 × 2796) false sites. �e subsets of the false splice sites 

were randomly selected from the available false splice sites.

Cattle: Ten sets were created with each set containing 

a subset of 1000 true and 5000 false sites, where the sub-

sets were randomly selected from the available true and 

false sites respectively.

Fish: �e datasets were prepared similar to Cattle.

Worm: Ten sets were created with each set contain-

ing a subset of 500 true sites and 9500 false splice sites 

randomly selected from the available true and false sites 

respectively.

In both balanced and imbalanced situation, the perfor-

mance of the SVM classifier was measured in terms of 

AUC-ROC and AUC-PR averaged over 50 sets (10 sets 

with fivefold in each set), in each species.

Comparison with other prediction methods

�e proposed approach was compared with the state-of-

art splice site prediction methods by using an independ-

ent test dataset i.e., NN269 [17]. �is dataset has been 

used in several earlier studies on splice site prediction 

[1–4, 6]. �e performance of the proposed approach was 

compared with that of SVM with MM1 encoding (MM1-

SVM) [7], SVM with weighted degree kernel(WD-SVM) 

[3], SVM with locally improved kernel (LIK-SVM) [3], 

SVM with weighted degree shift kernel (WDS-SVM) [3] 

and EFFECT [2]. In MM1-SVM, features are generated 

based on first order dependency and then used as input 

in SVM for classification of true and false splice sites. In 

locally improved kernel, correlations among local subse-

quences within a small window around a fixed nucleotide 

position are taken into account. �e scores of each such 

window are summed up to give a weight to that sequence. 

�is weighting scheme emphasizes on important regions 

of the sequence. �e weighted kernel emphasizes on 

the position dependent information and the weight-

ing decreases the influence for higher order matches 

between the sequences. In case of weighted degree shift 

kernel, weights are assigned on shifting of the sequence 

in either direction. EFFECT uses a two-stage process, 

where a set of candidate sequence-based features are 

constructed in the first stage and then the most effec-

tive subset is selected for the classification. Both stages 

make heavy use of evolutionary algorithms to efficiently 

guide the search towards informative features capable of 

discriminating true and false splice site sequences. �e 

comparison among the methods was made in terms of 

AUC-ROC and AUC-PR.

Results
Feature selection analysis

Out of 344 features (described under feature selection 

section), 49 features were obtained with F-value  ≥1.25 

and rest of the features were having almost similar F-val-

ues (i.e., ≪1.25). �erefore, these 49 features were only 

considered for further analysis. �e list of selected fea-

tures is provided in Table 1. Out of 49 selected features, 

four were positional, four were dependency and 41 were 

compositional features. Further, among 41 composi-

tional features, 14 were composition of di-nucleotides, 

15 were composition of tri-nucleotides (triplets) and 

12 were composition of tetramers. �e positional and 

dependency features were found to have higher F-values 

as compared to the compositional features. Further, the 

positional and dependency features computed from both 

true and false sites were found to have higher F-values 

than that of computed from true sites only.

Kernel and parameter analysis

ROC curves for four kernels across fivefold of cross vali-

dations are shown in Fig. 1a. It is observed that the per-

formances of polynomial and RBF kernels are almost 

same and are superior to that of linear and sigmoid ker-

nels in all the fivefold. Between polynomial and RBF, RBF 

kernel was selected because in most of the cases RBF 

required less number of hyperpameters and offered good 

generalization performance as compared to other kernels 

[4]. In case of RBF kernel, it is further seen that the val-

ues of AUC-ROC are increased with increase in the value 

of gamma from 0.006 to 0.2 and got stabilized thereafter 

(Fig. 1b) in all the fivefold. �us, the value of gamma as 

0.2 was considered as optimum and the final classifica-

tion (training and testing) was performed using RBF ker-

nel with this value of gamma in all the four species.

Performance analysis of the proposed approach

�e AUC-ROC and AUC-PR computed over fivefold 

cross validation are shown in Fig.  2a (balanced case) 

and Fig.  2b (imbalanced case) for all the ten sets. It is 

observed that in case of balanced datasets the values of 

AUC-PR are respectively higher than that of AUC-ROC 

in all the four species. On the contrary, the values of 

AUC-PR are observed to be lower as compared to the 

respective AUC-ROC, while imbalanced datasets are 
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used. In balanced case, it is seen that the values of AUC-

PR are ~98 % and AUC-ROC are between 96 and 98 % 

in all the species, with exception in some sets of worm 

(Fig.  2a). In imbalanced situation, the values of AUC-

ROC are found to be ~97 %, whereas the values of AUC-

PR are found between 90 and 94 % (Fig. 2b). Besides, it 

seen that the values of AUC-ROC and AUC-PR are more 

consistent in case of human, fish and cattle as compared 

to worm. Furthermore, it is observed that the differences 

between the values of AUC-ROC and AUC-PR are higher 

in case of imbalanced situation as compared to the bal-

anced case.

�e values of AUC-ROC and AUC-PR averaged over 

fivefold and 10 sets are provided in Table 2. From Table 2 

it can be seen that the values of AUC-ROC are  >96 

and >97 % for balanced and imbalanced datasets respec-

tively in all the four species. It is further seen that the val-

ues of AUC-PR for the balanced dataset is >97 %, where 

as it is >93 % in case of imbalanced dataset, with excep-

tion in worm (<93  %). Besides, it is analyzed that the 

accuracies are consistent over the species.

Comparative analysis based on NN269 dataset

�e performances of the existing and the proposed 

approaches are given in Table  3. From Table  3 it is 

observed that the value of AUC-PR is lowest in MM1-

SVM (89.58 % AUC-PR). SVM with WD kernel achieved 

the highest AUC-ROC (98.50 %), whereas the AUC-PR is 

highest for the proposed approach (93.54 %). �e AUC-

ROC of the proposed approach (96.53  %) is observed 

to be 1.51, 1.97, 1.60 and 1.67 % lower than that of LIK-

SVM, WD-SVM, WDS-SVM and EFFECT approaches 

respectively. On the other hand, the AUC-PR of the 

proposed approach is observed to be 0.89, 0.68, 1.07 

and 0.73  % higher than that of LIK-SVM, WD-SVM, 

WDS-SVM and EFFECT approaches respectively. Since 

NN269 dataset is an imbalanced dataset, higher values of 

AUC-ROC of different approaches may not indicate their 

superiority over the proposed approach.

Comparative analysis based on other datasets

Besides NN269 dataset, the performance of the pro-

posed approach was also compared with that of other 

approaches using human, bovine, fish and worm data-

sets as mentioned in collection and processing of splice 

site data. �e AUC-ROC and AUC-PR computed over 

fivefold cross validation are given in Table  4 (balanced 

case) and Table 5 (imbalanced case) respectively. In bal-

anced dataset, the AUC-ROC of the proposed approach 

is seen ~1 % less than that of others (Table 4), whereas in 

imbalanced dataset the AUC-ROC of proposed approach 

is observed to be at par with that of other approaches 

(Table 5), in all the four species. Further, the AUC-PR of 

the proposed approach is observed to be approximately 

same with that of LIK-SVM, WD-SVM, WDS-SVM and 

EFFECT and  ~1  % higher than that of MM1-SVM, for 

balanced dataset (Table 4). Whereas in imbalanced data-

set, the AUC-PR of proposed approach is seen to be ~3 % 

higher than that of MM1-SVM and ~1 % higher than that 

of LIK-SVM, WD-SVM, WDS-SVM, EFFECT (Table 5), 

in all the four species. 

Prediction server

Based on the proposed approach, we have developed an 

online prediction server “Hsplice” that can readily be 

used. �is server has been trained with splice site data-

sets of H. sapiens, B. taurus, D. rario, and can be used 

for prediction of donor splice sites for these species. Due 

to lesser number of true splice sites (1000), the server 

is not trained for prediction of splice sites in C. elegans. 

Table 1 List of selected features using F-score

Out of 344 generated features, 49 features are selected among which four are positional, four are dependency and 41 are compositional features

Feature type #Features Features

Positional 4 f
P×T

1 , f
P×TF

2 , f
P×T

3 , f
P×TF

4

Dependency 4 f
D×T

5 , f
D×TF

6 , f
D×T

7 , f
D×TF

8

Compositional 41 f
C×I

10 (AA), f
C×I

10 (AC), f
C×I

10 (AG), f
C×I

10 (CA), f
C×I

10 (CC), f
C×I

10 (CT ), f
C×I

10 (GA)

f
C×I

10 (GC), f
C×I

10 (GG), f
C×I

10 (GT ), f
C×I

10 (TA), f
C×I

10 (TC), f
C×I

10 (TG), f
C×I

10 (TT )

f
C×I

11 (AAG), f
C×I

11 (AGG), f
C×I

11 (AGT ), f
C×I

11 (CAG), f
C×I

11 (GAG),

f
C×I

11 (GGG), f
C×I

11 (GGT ), f
C×I

11 (GTA), f
C×I

11 (GTC), f
C×I

11 (GTG),

f
C×I

11 (TAA), f
C×I

11 (TGA), f
C×I

11 (TGC), f
C×I

11 (TGG), f
C×I

11 (TGT )

f
C×I

12 (AAGG), f
C×I

12 (AGGT ), f
C×I

12 (CAGG), f
C×I

12 (GAGG),

f
C×I

12 (GGGT ), f
C×I

12 (GGTA), f
C×I

12 (GGTG), f
C×I

12 (GTAA),

f
C×I

12 (GTGA), f
C×I

12 (GTGG), f
C×I

12 (TAAG), f
C×I

12 (TGAG),
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�e provision for both uploading the FASTA file as well 

as pasting the sequences in FASTA format is given. �e 

server has been designed using HTML and PHP. Snap-

shots of the front page of the server and result page after 

executing a sample dataset are shown in Fig.  3a and b 

respectively. �e results are displayed in three different 

columns i.e., 1st column: names of the respective FASTA 

sequences, 2nd: candidate splice site sequences of 15 nt 

and 3rd: probabilities with which the candidate splice site 

sequences are predicted as true (real) donor splice sites. 

Fig. 1 a ROC curves of SVM with linear, polynomial, sigmoid and RBF kernels in fivefold of the cross validation b Bar plots of AUC-ROC values for 

SVM with RBF kernel for different values of gamma (shown over each bar) in fivefold of the cross validation. SVM with polynomial and RBF kernels 

performed almost equally. Further, it can be seen that the AUC-ROC value of SVM with RBF kernel almost stabilized after 0.2 (value of gamma) in all 

the fivefold of the cross validation
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Since the value of probability lies between 0 and 1, the 

value 0.5 can be considered as a threshold value and the 

candidate sequence predicted with probability  >0.5 can 

be considered as real splice site. Higher is the probability 

more is the likelihood of a sequence to be predicted as 

true splice site. �e HSplice is freely available at http://

cabgrid.res.in:8080/hsplice.

Discussion
In this investigation, we proposed an approach for the 

prediction of donor splice sites in four different species by 

using 15 nt long sequence motifs. �e proposed approach 

was executed in two phases. In the first phase, a new 

set of features were generated and informative features 

were screened by using F-score. In the second phase, the 

informative features were used as input in SVM classifier 

for predicting true and false donor splice sites.

�ree different types of features i.e., positional, 

dependency and compositional features were used in 

this study. �e positional features were similar to the 

scores of WMM and Shapiro-Senapathy score, whereas 

the dependency features were similar to the scores of 

earlier developed probabilistic approaches i.e., WAM 

and SAE. WMM and Shapiro-Senapathy scores did 

not take into account the positional dependencies. In 

WAM, the dependencies among the adjacent posi-

tions are taken into account, whereas in SAE all pos-

sible di-nucleotide dependencies are considered [6]. In 

compositional features, the compositions of di-, tri- and 

tetra- nucleotides were considered because they have 

been found useful in discriminating the true splice sites 

from false ones [3, 4, 30]. Among the three types of fea-

tures, the F-score was found to be higher in positional 

and dependency features as compared to the compo-

sitional features (Table not reported here), and this is 

probably due to the partial conserved-ness of nucleo-

tides surrounding the splicing junctions. In probabil-

istic approaches viz., WMM, WAM, MEM, MDD, the 

true splice sites have only been used for computing the 

scores of candidate splice site sequences. Also, in MM1-

SVM, only the true sites are used for generating the 

Fig. 2 Estimates of AUC-ROC and AUC-PR for the proposed approach 

under balanced (a) and imbalanced (b) situations. Ten different bars 

represent ten different subsets, where each subset was drawn at 

random from the original data and AUC-ROC/AUC-PR was computed 

over fivefold of the cross validation

Table 2 Performance accuracy of the proposed approach

The performance of the proposed approach is measured in terms of AUC-ROC and AUC-PR in all the four species under both balanced and imbalanced situations. It 

can be seen that the values of AUC-ROC is almost similar in all the four species under both situations, whereas the values of AUC-PR are higher in balanced case as 

compared to the imbalanced situation

Measure Balanced Imbalanced

Human Cattle Fish Worm Human Cattle Fish Worm

AUC-ROC 96.05 96.94 96.95 96.24 97.21 97.45 97.41 98.06

AUC-PR 97.64 97.89 97.91 97.90 93.24 93.34 93.38 92.29

Table 3 Performance accuracies of  di�erent methods 

in predicting donor splice sites using NN269 dataset

It can be seen that WD-SVM achieved higher value of AUC-ROC as compared to 

the others, whereas the AUC-PR is highest for the proposed approach. MM1-SVM 

achieved lowest accuracies both in terms of AUC-ROC and AUC-PR

Approaches AUC-ROC AUC-PR Type of kernel used

MM1-SVM 97.62 89.58 Polynomial

LIK-SVM 98.04 92.65 Locally improved kernel

WD-SVM 98.50 92.86 Weighted degree kernel

WDS-SVM 98.13 92.47 Weighted degree shift kernel

EFFECT 98.20 92.81 –

Proposed 96.53 93.54 Radial basis function

http://cabgrid.res.in:8080/hsplice
http://cabgrid.res.in:8080/hsplice
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feature vectors. However, both true and false splice sites 

sequences need to be trained for the prediction of splice 

sites [8]. �erefore, positional and dependency features 

were computed in two different ways i.e., by using only 

true sites ( f P×T
1

, f P×T
3

, f D×T
5

, f D×T
7 ) and by using both 

true and false splice sites ( f P×TF
2

, f P×TF
4

, f D×TF
6

, f D×TF
8

). 

It was found that the F-scores of the features computed 

by taking both true and false splice sites were higher as 

compared to that of features extracted solely based on 

the true splice sites. �e motivation behind using these 

probabilistic scores as the features are (1) difficulty in 

determining the threshold values in case of probabilistic 

approaches [1], and (2) easy in determining the threshold 

values in machine learning based classifiers (i.e., 0.5, in 

terms of probability).

Out of 344 features, only 49 features were selected 

through F-score and subsequently used as input in 

the classifier. �e classification task was performed 

through SVM by using RBF as kernel. Both balanced and 

imbalanced datasets were used to assess the performance 

of the proposed approach, which was measured in terms 

of AUC-ROC and AUC-PR averaged over five-fold cross 

validation. In balanced case, the AUC-ROC and AUC-PR 

were found to be ~96 and 97 % respectively, whereas in 

imbalanced situation these values were  ~97  and  ~93  % 

respectively (Table  2). Further, it was analyzed that the 

values of AUC-ROC were similar both in balanced and 

imbalanced situation. Besides the difference between the 

values AUC-ROC and AUC-PR was higher in imbalanced 

datasets. �is may be due to that the AUC-ROC is inde-

pendent of class ratio, whereas the AUC-PR is influenced 

by the presence of class-imbalance in the datasets [3]. �e 

values of AUC-ROC and AUC-PR were also observed to 

be consistent over the fivefold of cross validation with 

some exceptions in case of worm dataset.

�e proposed approach was further compared with 

the state of art splice site prediction methods i.e., MM1-

SVM, LIK-SVM, WD-SVM, WDS-SVM and EFFECT. 

�e comparison was made by using an independent 

Table 4 Estimates of  AUC-ROC and  AUC-PR of  di�erent methods for  balanced dataset in  predicting donor splice sites 

using human, bovine, �sh and worm species

It can be seen that the values of AUC-ROC of the proposed approach are less as compared to that of others, whereas the values of AUC-PR for the proposed approach 

are at par with that of other approaches (except MM1-SVM), in all the four species

Species Approaches

MM1-SVM LIK-SVM WD-SVM WDS-SVM EFFECT Proposed

AUC-ROC Human 97.07 97.13 97.25 97.06 97.15 96.05

Bovine 96.98 97.63 97.83 97.59 97.70 96.94

Fish 97.24 97.34 97.68 97.53 97.59 96.95

Worm 97.49 98.02 98.23 98.12 98.15 96.24

AUC-PR Human 96.78 97.52 97.67 97.38 97.58 97.64

Bovine 96.66 97.48 97.59 97.26 97.51 97.89

Fish 96.85 97.42 97.67 97.39 97.49 97.91

Worm 96.92 97.51 97.78 97.63 97.71 97.90

Table 5 Estimates of AUC-ROC and AUC-PR of di�erent methods for imbalanced dataset in predicting donor splice sites 

using human, bovine, �sh and worm species

It can be seen that the values of AUC-ROC of proposed approach are at par with that of others, whereas the values of AUC-PR for the proposed approach are little 

higher than that of other approaches, in all the four species

Species Approaches

MM1-SVM LIK-SVM WD-SVM WDS-SVM EFFECT Proposed

AUC-ROC Human 97.32 97.61 97.73 97.30 97.42 97.21

Bovine 97.57 97.89 97.93 97.65 97.70 97.45

Fish 97.71 97.85 97.92 97.77 97.57 97.41

Worm 97.99 98.26 98.51 98.30 98.45 98.06

AUC-PR Human 89.95 92.23 92.36 92.17 92.41 93.24

Bovine 90.02 92.13 92.39 92.16 92.42 93.34

Fish 90.10 92.18 92.43 92.26 92.47 93.38

Worm 89.10 90.27 90.89 91.53 91.67 92.29
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dataset i.e., NN269 dataset. In terms of AUC-ROC, WD-

SVM achieved higher accuracy as compared to the others 

and the accuracy was ~2 % higher than that of proposed 

approach. On the other hand, proposed approach 

achieved 93.54 % AUC-PR, which was ~1 % higher than 

that of WD-SVM. Further, WD-SVM achieved higher 

AUC-PR as compared to other approaches barring pro-

posed approach. Besides proposed approach, all oth-

ers achieved AUC-ROC  ~98  % and AUC-PR of  ~93  % 

(except MM1-SVM). Since, AUC-PR is thought to be a 

better measure than AUC-ROC in case of imbalanced 

dataset, it can be said that the proposed approach can be 

used as a complementary method to the other methods 

for the prediction of donor splice sites.

Besides NN269, the AUC-ROC of the proposed 

approach was also found to be  ~1  % less than that of 

MM1-SVM, LIK-SVM, WD-SVM, WDS-SVM and 

EFFECT, while comparison was made using balanced 

datasets of human, bovine, fish and worm. On the other 

hand, the AUC-PR of the proposed approach was found 

to be  ~3  % higher than that of MM1-SVM and  ~1  % 

higher than that of LIK-SVM, WD-SVM, WDS-SVM and 

EFFECT, while imbalanced datasets of human, bovine, 

fish and worm were used. �us, the proposed approach is 

believed to supplement the existing splice site prediction 

approaches.

�e number of features used in the proposed approach 

is invariant to the length of the sequence, whereas in the 

Fig. 3 Snapshots of the server page (a) and result page after executing an example dataset (b) of the developed prediction server HSplice. The 

server has been trained with human, cattle and fish splice site datasets. The user has to supply only the test sequence for prediction of donor splice 

site for the species of his/her interest
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existing approaches like MM1-SVM, Bayes-SVM [11], 

FDTF [8], DS-SVM [1] the number of features increases 

with the increase in the length of sequence. �e proposed 

approach showed consistent performance by using a 

shorter window size of 15 nt long, and therefore it may be 

suitable for detecting splice variants in short reads gener-

ated from sequencing technologies. Since the accuracies 

were found to be consistent over human, cattle and fish 

similar accuracies can be expected in other vertebrates. 

�e developed web server HSplice (http://cabgrid.res.

in:8080/HSplice) can be used by the researcher commu-

nity for prediction of donor splice sites easily.

Conclusions
�is paper presents a computational approach for the 

prediction of donor splice sites using SVM with a dif-

ferent set of features that have not been used in earlier 

studies. �e proposed approach was tested on human, 

cattle, fish, worm datasets and found to achieve an 

acceptable level of accuracy in all the species. �e pro-

posed approach was also found to be comparable with 

the existing state-of-art prediction methods, and thus 

can complement to the existing methods. �e HSplice 

will help enable the user for easy prediction of donor 

splice sites.
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