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Abstract. The analysis of palaeoclimate time series is usu-

ally affected by severe methodological problems, resulting

primarily from non-equidistant sampling and uncertain age

models. As an alternative to existing methods of time series

analysis, in this paper we argue that the statistical proper-

ties of recurrence networks – a recently developed approach

– are promising candidates for characterising the system’s

nonlinear dynamics and quantifying structural changes in its

reconstructed phase space as time evolves. In a first order

approximation, the results of recurrence network analysis are

invariant to changes in the age model and are not directly af-

fected by non-equidistant sampling of the data. Specifically,

we investigate the behaviour of recurrence network measures

for both paradigmatic model systems with non-stationary pa-

rameters and four marine records of long-term palaeoclimate

variations. We show that the obtained results are qualita-

tively robust under changes of the relevant parameters of our

method, including detrending, size of the running window

used for analysis, and embedding delay. We demonstrate that

recurrence network analysis is able to detect relevant regime

shifts in synthetic data as well as in problematic geoscien-

tific time series. This suggests its application as a general

exploratory tool of time series analysis complementing ex-

isting methods.

1 Introduction

Palaeoclimate proxy data representing past variations of en-

vironmental conditions can be obtained from various types of

geological archives distributed over the Earth’s surface. The

study of time series of such proxies, i.e. data that encode the
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temporal variability of physical, chemical, biological or sedi-

mentological properties, is a major source of information fos-

tering our understanding of the functioning of the complex

Earth system in the past, present, and future. However, non-

equidistant sampling, uncertain age models, multi-scale, and

multi-stable state variability as well as relatively high noise

levels render the study of these proxy records a challenging

problem for time series analysis.

Methods used for time series analysis can be roughly clas-

sified as linear or nonlinear. On the one hand, linear meth-

ods are based on the evaluation of certain classical statis-

tical characteristics and assume the presence of an under-

lying linear stochastic process with eventually some super-

imposed deterministic (e.g. periodic) components (Brock-

well and Davis, 1991, 2002; Hamilton, 1994). Prominent

examples that are frequently used for the analysis of real-

world time series, including such obtained from geological

archives (Schulz and Stattegger, 1997; Schulz and Mudelsee,

2002; Mudelsee et al., 2009; Rehfeld et al., 2011), are corre-

lation functions and power spectra. On the other hand, non-

linear methods follow a dynamical systems point of view,

implicitly assuming the presence of certain types of deter-

ministic behaviour (Abarbanel, 1996; Kantz and Schreiber,

1997; Donner and Barbosa, 2008).

The vast majority of existing linear or nonlinear methods

of time series analysis relies on the quantification of patterns

of temporal dependences between observations x(t) made at

different times t , i.e. aims to quantify functional relationships

of the form

x(t)=
∑

τ>0

f (x(t −τ),τ,t)+η(t), (1)

where f (x,τ,t) is a general deterministic function, and

{η(t)} is a stochastic process (often assumed to be fully un-

correlated, i.e. δ-correlated, in time). For a stationary sys-

tem, the functional dependence f does not explicitly depend
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on time t . In standard linear methods of time series analysis,

f is often assumed to be a linear function; in this case, the

parameters of f encode linear temporal correlations. More

generally, one may consider arbitrary (i.e. not explicitly spec-

ified) deterministic relationships f , which may be character-

ized using concepts such as mutual information (Kantz and

Schreiber, 1997).

In the following, we will refer to methods of time series

analysis that are based on the quantification of temporal in-

terrelationships between observations, e.g. correlation and

mutual information functions or power spectra, as correla-

tive methods. These clearly depend on how well the obser-

vation points are specified. In particular, in case of a non-

uniform sampling of the considered time series, estimates

of even simple linear characteristics can often not be ex-

pressed in a straightforward analytical way. For example,

if one wishes to avoid interpolation (which leads to addi-

tional uncertainties), power spectra can be estimated using

harmonic regression of the data (e.g. by means of the Lomb-

Scargle periodogram; Lomb, 1976; Scargle, 1982), projec-

tion methods (Foster, 1996a,b), or a variety of alternative

approaches (Babu and Stoica, 2010; Rehfeld et al., 2011).

However, in the specific case of palaeoclimate data where

typically not even the exact timing of the individual observa-

tions is sufficiently well known (Telford et al., 2004), correl-

ative methods can have strong conceptual disadvantages.

In contrast to this large class of methods (which char-

acterise time series from a more or less rigorous statistical

point of view), alternative concepts such as fractal dimen-

sions and generalisations thereof have been first developed

in different mathematical disciplines and later applied to the

characterisation of the properties of certain dynamical sys-

tems (Sprott, 2003). Statistical estimates of such measures

can be obtained by a variety of different approaches, most of

which take into account the spatial arrangement of observa-

tions in the (possibly reconstructed) phase space. From this

perspective, the mentioned methods do not directly require

knowledge about the timing of observations, i.e. can be con-

sidered as non-correlative or geometric methods, since they

rely on geometric attractor properties in phase space rather

than on dynamical information. In the case of palaeoclimate

data with uncertain age models, geometric methods may pro-

vide a considerable alternative for statistical analysis. How-

ever, as a particular disadvantage, we note that the proper

estimation of fractal dimensions usually requires a consider-

ably larger amount of data than necessary for most correla-

tive methods (Sprott, 2003), which are typically not available

in palaeoclimatology.

Some fundamental relationships between the geometric

properties of attractors in phase space (e.g. Hausdorff and

box dimensions) and important invariants of the associ-

ated dynamics (e.g. Lyapunov exponents) are known to ex-

ist (Chlouverakis and Sprott, 2005). Note that certain mea-

sures of dimensionality include both geometric and dynam-

ical information, i.e. all Rényi dimensions Dq for q > 1

including the information dimension D1 (Sprott, 2003).

However, besides fractal dimension estimates based on at-

tractor topology there are only very few suitable and purely

geometric methods available. Recently, it has been suggested

to characterise the mutual proximity relationships of all pairs

of state vectors from the sampled attractor in phase space

by means of complex network methods (Zhang and Small,

2006; Yang and Yang, 2008; Xu et al., 2008; Marwan et al.,

2009; Donner et al., 2010a). Among others, the concept

of recurrence networks (RNs) (Marwan et al., 2009; Don-

ner et al., 2010a,b) has been proven particularly useful for

this purpose. Since such complex network representations of

time series take only spatial information into account, they

can be considered as important examples of geometric meth-

ods of time series analysis. RNs provide a set of nonlinear

measures characterising the complexity of dynamical sys-

tems (Donner et al., 2010a, 2011a), e.g. allowing to distin-

guish periodic from chaotic dynamics. While recent find-

ings demonstrate close interrelationships between certain RN

properties and fractal dimensions (Donner et al., 2011b), the

graph-theoretical measures can often be estimated with high

confidence from much shorter time series than fractal dimen-

sions. This warrants their application as a tool for window-

based analysis of non-stationary data (Marwan et al., 2009;

Donner et al., 2011a). In contrast to the aforementioned ap-

proaches, transition networks (Nicolis et al., 2005) and visi-

bility graphs (Lacasa et al., 2008) are correlative methods in

the sense that they depend explicitly on the temporal ordering

of observations.

When considering network-based methods of time series

analysis, only RNs (Marwan et al., 2009; Donner et al.,

2011a; Hirata et al., 2011) and visibility graphs (Elsner et al.,

2009) have been used to analyse geoscientific data. So far

RN analysis is the only network-based technique that has

been applied to investigate palaeoclimate proxy records. In

this work, we discuss the application of RNs to studies of

palaeoclimate records, with a special focus on the identifica-

tion of structural changes in the dynamics that are not easily

found when relying on simple linear statistics. As a bench-

mark example, we will mainly utilise three marine records of

aeolian dust flux from Northern Africa during the last 5 Myr

(million years) (Trauth et al., 2009; Marwan et al., 2009;

Donner et al., 2011a; Donges et al., 2011). In Sect. 2, we

present a detailed description of the considered data sets, the

necessary preprocessing steps, and the general idea of RNs

and their quantitative analysis. Application to typical non-

linear model systems with a systematic drift of the control

parameters in Sect. 3 suggests that network statistics are well

suited for identifying dynamical transitions from finite time

series. Finally, in Sect. 4, we describe the results of our inves-

tigations obtained for the different palaeoclimate time series

and discuss their robustness with respect to the fundamental

parameters of our method.
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Fig. 1. Map displaying the locations of the three ODP drilling sites

considered in this study (Tiedemann et al., 1994; deMenocal, 1995,

2004; Larrasoaña et al., 2003).

2 Data and methods

2.1 Description of the data

Marine records of terrigenous dust flux from North Africa are

an important source of information on the long-term aridifi-

cation of the continent during the Plio-Pleistocene (Trauth

et al., 2009). Continuous time series {xi = x(ti)}Ni=1 sam-

pled at times {ti}, where i is an index variable and N

the number of samples, are available from three sediment

cores: ODP 659 (Atlantic Ocean offshore subtropical West

Africa) (Tiedemann et al., 1994), ODP 721/722 (Arabian

Sea) (deMenocal, 1995, 2004), and ODP 967 (Eastern

Mediterranean Sea) (Larrasoaña et al., 2003) (Fig. 1). In ad-

dition, the benthic oxygen isotope (δ18O) record from ODP

site 659 (Tiedemann et al., 1994) will be studied as a proxy

for variations in global ice volume, which can be assumed

to have a considerable impact on the continental aridifica-

tion via a southward displacement of climate and vegetation

zones. All time series are shown in Fig. 2.

2.2 Detrending

All considered time series {xi} show a nonlinear trend of in-

creasing amplitude and variance towards the present. This

trend reflects the successive aridification of North and East

Africa and the intensification of Northern hemisphere glacial

cycles during the Plio-Pleistocene (Trauth et al., 2009). To

prevent corruption of the results of our analysis and signifi-

cance test due to this nonlinear trend, we attempt to remove

it to first order by subtracting from xi the mean of a sliding

window of size WD(ti) centered at ti for all time points ti , i.e.

x̂i = xi −
1

2⌊WD(ti)/2⌋+1

⌊WD(ti )/2⌋
∑

j=−⌊WD(ti )/2⌋
xi+j , (2)

where for a chosen detrending window size WD,

Fig. 2. Plio-Pleistocene variability of (A) δ18O at ODP site 659

(Tiedemann et al., 1994), and of terrigenous dust flux from North

Africa at ODP sites (B) 659 (Tiedemann et al., 1994), (C) 721/722

(deMenocal, 1995, 2004), and (D) 967 (Larrasoaña et al., 2003).

The horizontal red bars in panel (A) indicate two consecutive recur-

rence windows of length W∗ = 410 kyr and mutual offset 1W∗ =
41 kyr as used in the analysis of Sect. 4 and in Figs. 9–12.

WD(ti) =







2(i −1) for i <WD,

WD for WD ≤ i ≤ N −WD,

2(N − i) for i >N −WD.

(3)

That is, the effective detrending window size decreases to-

wards the time series’ boundaries, resulting in x̂1 = x̂N = 0.

This simple approach avoids the complication of locally or

globally fitting higher-order polynomials or performing high-

pass filtering given irregular sampling and uncertain dating of

measurements to remove the nonlinear trend. Since RN anal-

ysis as our method of choice is a non-correlative technique

and its results are permutation invariant (Sect. 2.6), spuri-

ous autocorrelations which may be introduced by the sliding

window detrending do not pose a serious problem here. We

will show in Sect. 4.2 that our results are robust with respect

to a large range of reasonable choices of WD. Except of the

detrending, no further preprocessing was applied to the data.

Particularly, we do not resample the time series to obtain an

evenly spaced record in the time domain, since the necessary

interpolation would corrupt the results of the further analysis

to be performed below (see, e.g. Rehfeld et al., 2011).

2.3 Embedding

Univariate time series often reflect the dynamics of a higher-

dimensional complex system as viewed through some ob-

servation function. In typical situations it is possible to
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reconstruct the phase space trajectory using time-delay em-

bedding, i.e. considering state vectors

y
(m,τ)
i =

(

x̂i,x̂i+τ ,...,x̂i+(m−1)τ

)

(4)

instead of the univariate observations x̂i themselves (Packard

et al., 1980; Takens, 1981). Due to the finite length of the

available time series, the index i is now restricted to the range

i = 1,...,N − (m−1)τ . The embedding parameters embed-

ding dimension m and delay τ have to be appropriately de-

termined from the available data, e.g. using approaches such

as the false nearest-neighbours (Kennel et al., 1992) and av-

erage mutual information (Fraser and Swinney, 1986) meth-

ods, respectively. Although there are good reasons for ap-

plying embedding techniques, it is known that this approach

also has conceptual disadvantages and may induce spurious

structures in recurrence plots and corresponding misleading

results of recurrence quantification analysis (RQA) (Thiel

et al., 2006). In contrast, many important dynamical in-

variants can be estimated from non-embedded time series as

well, especially using recurrence plot-based methods (Thiel

et al., 2004a). From here on we will use the simplified nota-

tion yi for reconstructed state vectors and assign to them the

ages ti , respectively.

While the standard approaches for determining the opti-

mum embedding parameters typically provide feasible re-

sults in the case of many applications, the situation is con-

siderably more challenging for palaeoclimate records: on

the one hand, traditional embedding methods require equally

spaced observations, so that interpolation of the available

data might become necessary with all corresponding concep-

tual disadvantages. On the other hand, in the presence of dat-

ing uncertainties, even such interpolation is hardly possible

and would lead to an enormous enhancement of uncertainty

in the embedded record.

Given these methodological difficulties we attempt a com-

promise: (i) the embedding dimension m = 3 is a trade-

off given the relatively short time series forbidding larger

embedding dimensions (Eckmann et al., 1992; Kantz and

Schreiber, 1997) and the underlying high-dimensional dy-

namics as estimated by the false nearest-neighbours crite-

rion (Kennel et al., 1992; Marwan et al., 2009). (ii) Us-

ing a Gaussian kernel-based estimator of the autocorrelation

function adapted to irregularly sampled time series (Rehfeld

et al., 2011), we find that the autocorrelation of all four time

series has decayed markedly after 10 kyr (Fig. 3). Hence,

we choose the delay τ to cover approximately the same time

scale τ ∗ = 10 kyr for all considered records, i.e.

τ = ⌊τ ∗/〈1T 〉⌋, (5)

where 〈1T 〉 is the average sampling time (Table 1) and ⌊x⌋
denotes the integer part of x. This yields τ1 = 2 for ODP

site 659, τ2 = 5 for site 721/722, and τ3 = 27 for site 967. A

promising technique for consistent embedding of irregularly

sampled time series is based on Legendre polynomials (Gib-

son et al., 1992) and should be explored in future studies.

Fig. 3. Linear autocorrelation functions C(τ) for (A) the δ18O

record at ODP site 659 and the dust flux records from ODP sites

(B) 659, (C) 721/722, and (D) 967. The autocorrelation functions

were estimated using a Gaussian kernel-based estimator (Rehfeld

et al., 2011) adapted to irregularly sampled data (solid line) and di-

rectly from time series linearly interpolated to a regular sampling

with sampling time 〈1T 〉 (dash-dotted line). For the Gaussian

kernel-based estimator we used the recommended optimum band-

width h = 〈1T 〉/4 (Rehfeld et al., 2011), where h is the standard

deviation of the Gaussian kernel.

2.4 Windowed analysis

For detecting structural changes in the dynamics encoded by

the time series, we slide a window over the embedded record

{yi} and perform the subsequent analysis for the data con-

tained in each window separately. However, the records un-

der study are quite heterogeneous with respect to their basic

sampling properties (Table 1). The average sampling time

〈1T 〉 differs widely across the records. In order to assure

comparability of our results uncovered from the different

time series, the most natural approach is to choose windows

of a fixed size W ∗ in units of time. However, this approach

has two disadvantages: The exact timing ti of the available

observations is not known as is the case for most geological

proxy records, and due to the non-uniform sampling rates,

different windows would contain different amounts of data.

While the latter is not problematic for statistical tests against

homogeneity of the distribution of values in different win-

dows, a quantitative comparison of statistical characteristics

of the associated RNs (see Sect. 2.5) is not possible. There-

fore, in the following, we will proceed in a different way by

prescribing both the window size W and step size 1W for

RN analysis measured in units of sampling points. In order

to derive W and 1W from the desired quantities in units of

time, W ∗ and 1W ∗, we divide by the average sampling time,

W = ⌊W ∗/〈1T 〉⌋, (6)

1W = ⌊1W ∗/〈1T 〉⌋. (7)

In turn, the actual window size W ∗(ti) is determined by the

average sampling time in the size-W window centred around

Nonlin. Processes Geophys., 18, 545–562, 2011 www.nonlin-processes-geophys.net/18/545/2011/
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ti . For a particular choice of W ∗ and the associated step size

1W ∗ in units of time, the resulting values of W and 1W ,

the mean window widths, and step sizes as well as the corre-

sponding standard deviations are given in Table 1.

The simple approach for determining the window size de-

scribed above guarantees that the windows cover approx-

imately the same time span for all records and positions

within the time series. While most sampling intervals take

values close to the mean, there are distinct outliers, which

most likely correspond to missing data due to incomplete

core recovery, hiata or disturbances of the sediment such as

turbidites (Fig. 4). Nevertheless, the standard deviation of

window size σ(W ∗) is still small in comparison to the aver-

age window size 〈W ∗〉 (Table 1), which suggests that statis-

tical characteristics computed for different windows can still

be quantitatively compared in a reasonable way.

Formally, the data series {yµ
i } within the µ-th window,

µ = 1,2,...,⌊N−W
1W

⌋, is given by

{yµ
i } = {y(µ−1)1W+i}, (8)

where from here on i = 1,...,W . We use the window’s mid-

point’s timing

tµ = t(µ−1)1W+⌊W/2⌋ (9)

to attach an age to the scalar network measures gµ calculated

from the data within the µ-th window.

2.5 Recurrence network analysis

Recurrence in phase space is a basic property of complex dy-

namical systems. Since the seminal work of Poincaré (1890),

it is known that under rather general conditions, dynamical

systems tend to return arbitrarily close to their previous states

in the long-term limit. In the last decades, the recurrence

property has attracted considerable interest, since it has been

shown that essential information about the main dynamical

properties is contained in the temporal pattern of mutual re-

currences of a state (Thiel et al., 2004b; Robinson and Thiel,

2009). Particularly, the visual representations of recurrence

plots (Eckmann et al., 1987; Marwan et al., 2007) have found

wide use, which are most commonly expressed by a binary

recurrence matrix

R
µ
ij (ε) = 2(ε−‖yµ

i −y
µ
j ‖), (10)

where for the µ-th window, ε is the recurrence threshold and

2(·) denotes the Heaviside function. In the following we

use the supremum norm ‖ ·‖ to measure distances in the re-

constructed phase space of the considered observable y (see

Fig. 5 for examples). The appropriate choice of the important

parameter ε is discussed below.

It turned out that recurrence plots show distinct line struc-

tures, whose length distribution can be used for defining

suitable measures of complexity in terms of RQA, or for

Fig. 4. (A) Probability distribution (PDF) p(1T ) of the sampling

intervals of the three dust flux records according to their established

age models (ODP sites 659: solid line, 721/722: dash-dotted, 967:

dashed). The distribution for the δ18O record at ODP site 659 is vi-

sually almost indistinguishable from that of the corresponding dust

flux record and therefore not shown. The PDFs were estimated us-

ing a Gaussian kernel with bandwidth h = σ(1T )(N −1)−1/5 (Ta-

ble 1) following Scott’s rule (Scott, 1982). (B, C, D) Temporal

variation of the sampling times for the three dust flux records.

estimating dynamical invariants such as correlation dimen-

sion, 2nd-order Rényi entropy, or generalised mutual infor-

mation (Marwan et al., 2007). In the context of palaeoclimate

research, recurrence plots and RQA have been successfully

applied for tracing dynamical changes (Trauth et al., 2003;

Marwan et al., 2003) and aligning records with different age-

depth models (Marwan et al., 2002). RQA is a correlative

method of time series analysis, as it explicitly relies on tem-

poral structures in the form of diagonal and vertical lines.

Recently, it has been suggested to approach recurrence

matrices from a complex network perspective by identifying

A
µ
ij (ε) = R

µ
ij (ε)−δij (11)

(δij denoting Kronecker’s delta) with the adjacency matrix

of a complex network associated to the underlying time se-

ries (Marwan et al., 2009; Donner et al., 2010a)1. This

1Note that similar approaches can also be found in other

www.nonlin-processes-geophys.net/18/545/2011/ Nonlin. Processes Geophys., 18, 545–562, 2011
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Table 1. Basic properties of the analysed palaeoclimate time series. N is the number of samples contained in the time series, 〈1T 〉
the mean sampling interval, and σ(1T ) the standard deviation of sampling intervals. For a desired window size W∗ = 410 kyr and step

size 1W∗ = 41 kyr (as chosen in Sect. 4.1 for RN analysis), W and 1W give the corresponding window and step size (in numbers of

observations),
〈

W∗〉

and
〈

1W∗〉

the average effective window and step size, and σ(W∗) and σ(1W∗) the associated standard deviations (in

units of time).

N 〈1T 〉 σ(1T ) W 1W
〈

W∗〉

σ(W∗)
〈

1W∗〉

σ(1W∗)

(kyr) (kyr) (kyr) (kyr) (kyr) (kyr)

ODP 659 δ18O 1170 4.28 2.88 95 9 400.37 46.58 38.37 4.36

ODP 659 dust 1221 4.10 2.69 100 10 408.16 33.09 41.25 3.22

ODP 721/722 dust 2757 1.81 1.52 226 22 401.97 62.66 39.29 6.09

ODP 967 dust 8417 0.36 0.31 1139 113 409.10 78.04 40.67 7.51
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Fig. 5. Recurrence plots (equivalently adjacency matrices of the RNs shown in Fig. 6) obtained from the dust flux record at ODP site 659,

centred around (A) 1.2, (B) 2.2, and (C) 3.2 Myr BP, using window size W∗ = 410 kyr, step size 1W∗ = 41 kyr, and embedding parameters

m = 3, τ∗ = 10 kyr. ε was chosen in a data-adaptive way to yield a fixed edge density ρ(ε) = 0.05 for each window.

analogy implies that each sampled state vector is assigned a

vertex in the RN, where two vertices are linked if the cor-

responding state vectors are recurrent, i.e. mutually close,

in phase space (Fig. 6). According to the conventions of

Sect. 2.3, each vertex i in the µ-th window has an age

t
µ
i = t(µ−1)1W+i attached to it. To simplify the notation

when defining network measures, we will drop the window

index µ in the following.

The edge density

ρ(ε) = 1

W(W −1)

∑

i,j

Aij (ε) (12)

measures which fraction of the maximum theoretically pos-

sible number W(W −1)/2 of undirected edges is present in

the RN, where the number of vertices W is determined by

the chosen recurrence window size. ρ(ε) is equivalent to the

recurrence rate in traditional RQA.

geoscientifically relevant applications of data analysis, such as den-

drograms in agglomerative cluster analysis, or nonlinear decompo-

sition of multivariate data using isometric feature mapping (Gámez

et al., 2004).

The properties of the resulting RNs (parameterised by

the single parameter ε) have been shown to trace structures

in phase space corresponding to dynamically invariant ob-

jects (Donner et al., 2010a, 2011b) as well as changes in the

dynamical behaviour of arbitrary time series (Marwan et al.,

2009; Donner et al., 2011a). For detecting bifurcations in

time series, global-scale network characteristics of complex

network theory are of main interest (Newman, 2003; Boc-

caletti et al., 2006; Costa et al., 2007). Here we will focus on

the following four measures:

i. Transitivity T : the transitivity

T =
∑

i,j,kAijAjkAki
∑

i,j,kAkiAkj

(13)

of an unweighted and undirected network characterises

the overall probability that two randomly chosen neigh-

bours of an also randomly chosen vertex are connected

(Newman, 2003). In case of RNs, T serves as a mea-

sure for the regularity of the dynamics as encoded in

the RN’s mesoscopic structure (Donner et al., 2010a).
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A B C

Fig. 6. Recurrence networks obtained from the dust flux record at ODP site 659, centred around (A) 1.2, (B) 2.2, and (C) 3.2 Myr BP and

corresponding to the recurrence plots of Fig. 5. Vertex color indicates the age t
µ
i

associated to single state vectors µ (from blue [= old]

to red [= young]). The two-dimensional graph visualisation has been obtained with the software package GUESS using a force-directed

placement algorithm (http://graphexploration.cond.org). It is important to note that in this visualisation, node positions are determined by the

aforementioned algorithm and do not correspond to a projection of the node coordinates in the reconstructed three-dimensional phase space.

Specifically, regular dynamics (e.g. on a periodic orbit)

is typically characterised by higher values of the tran-

sitivity T than chaotic dynamics. T can furthermore

be interpreted as a global measure of the underlying at-

tractive set’s effective dimensionality d (Donner et al.,

2011b), i.e. the theoretical result is T = (3/4)d when us-

ing the supremum norm in phase space. For continuous-

time systems, this implies T = 3/4 for a periodic orbit

and T < 3/4 for chaotic dynamics. However, for small

numbers of vertices (state vectors) W as used in this

work the estimated values of T will deviate from these

theoretical expectations (Donner et al., 2011b).

When dealing with short time series (segments) as it

is the case in this work, transitivity is a more robust

measure than the related global clustering coefficient

C (Watts and Strogatz, 1998; Newman, 2003), since

the latter gives relatively more weight to sparsely sam-

pled regions in phase space (vertices with low degree

k) (Donner et al., 2010a, 2011a).

ii. Average path length L: the average path length

L=
〈

lij
〉

i,j
(14)

is defined as the mean value of the shortest path lengths

lij between all mutually reachable pairs of vertices (i,j)

(measured in terms of geodesic graph distance, i.e. the

minimum number of edges that have to be traversed on

any path connecting the vertices i and j ) (Watts and

Strogatz, 1998; Newman, 2003). A pair of vertices (i,j)

is called mutually reachable if there exists at least one

path connecting i and j . Since for comparable values of

ε, the average distances along different types of orbits

typically differ significantly, changes in L can be used

as sensitive indicators of dynamical transitions (Mar-

wan et al., 2009; Donner et al., 2010a).

iii. Assortativity R: a complex network is called assortative

if vertices tend to connect preferentially to vertices with

a similar number of connections (degree ki =
∑

j Aij ).

On the other hand, it is called disassortative if vertices of

high degree prefer to link to vertices of low degree, and

vice versa (Newman, 2002). This assortativity property

can be quantified by the Pearson correlation coefficient

R=
1
L

∑

j>i kikjAij −
〈

1
2
(ki +kj )

〉2

i,j

1
L

∑

j>i
1
2
(k2

i +k2
j )Aij −

〈

1
2
(ki +kj )

〉2

i,j

(15)

between the degrees ki,kj of the vertices on both ends

of all L =
∑

j>i Aij edges (i,j), where

〈

1

2
(ki +kj )

〉

i,j

= 1

L

∑

j>i

1

2
(ki +kj )Aij (16)

is the mean of the average edge end-point degree (ki +
kj )/2 (Costa et al., 2007). In the RN context, R can

be considered as a measure for the local continuity of
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the phase space density of state vectors (Donner et al.,

2010a).

iv. Network diameter D: the network diameter

D= max
i,j

(

lij
)

(17)

is the maximum geodesic (shortest-path) distance be-

tween all mutually reachable pairs of vertices in the net-

work (Newman, 2003). From this definition, there are

obvious relationships with the average path length L,

which are expected to lead to strong correlations be-

tween both measures (Donner et al., 2010a).

In order to apply RNs in a sliding window analysis, a ref-

erence framework is necessary. Here, we consider a data-

adaptive choice of ε that guarantees for a fixed edge density

ρ of 5 %, which has been found a reasonable choice in pre-

vious studies (Donner et al., 2010b). One should note, how-

ever, that even with this choice the characteristics of RNs

can only be compared in a meaningful way if the network

size W is kept fixed (see Sect. 2.1). Among the considered

complex network measures, T and R are mainly affected by

finite-sample problems otherwise, whereas L and D explic-

itly depend on ε and W (Donner et al., 2010a).

2.6 Significance test

We perform a relatively simple statistical test of whether the

network characteristics in a certain time interval differ sig-

nificantly from the general network characteristics expected

given the phase space distribution of state vectors yi from

the whole detrended and embedded record and a certain re-

currence window size W . The corresponding null hypothesis

is that the network measures observed for a certain window

are consistent with being calculated from a random draw of

W state vectors from the prescribed phase space distribution

induced by the complete detrended time series. We can justly

assume a thus randomised embedded time series without

losing essential information, because all network measures

g(·) considered here are permutation-invariant when consid-

ering a fixed subset of state vectors y1,...,yW . More for-

mally, g(y1,...,yW ) = g(yπ(1),...,yπ(W)) for arbitrary per-

mutations π . A similar test for RQA measures requires a

more advanced method (Schinkel et al., 2009). In order to

create an appropriate null-model, we use the following ap-

proach: (i) draw randomly W state vectors from the embed-

ded time series (corresponding to the window size chosen for

the original data), (ii) construct a RN from this set of state

vectors, and (iii) calculate the network measures of interest.

Repeating this procedure sufficiently many times, we obtain

a test distribution for each of the network measures and es-

timate its 0.05 and 0.95 quantiles that can be interpreted as

90 % confidence bounds. The proposed significance test can

be viewed as a test against stationarity of the higher-order ge-

ometrical properties of the time series that are quantified by

qualitatively different RN measures.

2.7 Implementation

We implemented the above described methods using the

programming language Python (van Rossum and Drake,

2006), the packages NumPy (Oliphant, 2006) and SciPy

(Jones et al., 2011) as well as embedded C++ code. Com-

plex network measures have been calculated employing the

Python package igraph (Csárdi and Nepusz, 2006).

3 Dynamical transitions in model systems

To validate the proposed methodology for detecting transi-

tions in time series based on RNs, we apply it to the logistic

map and the Lorenz system with drifting bifurcation parame-

ter as paradigmatic examples of discrete and continuous-time

dynamical systems, respectively. While step-like changes of

bifurcation parameters have already been studied for discrete

(Marwan et al., 2009) and continuous-time dynamical sys-

tems (Zou et al., 2010; Donner et al., 2011a), here we are

particularly interested in the effect of transients, which are

expected to be present in real-world systems and, hence, data

extracted from them. We will check whether the global net-

work quantifiers described above are able to detect transi-

tions in the system’s dynamics induced by bifurcations due

to a slowly changing control parameter. For this purpose

we are specifically looking for time intervals (or equivalently

values of the bifurcation parameter) where one or more of

the considered network quantifiers undergo sudden changes.

This requires taking into account the measures’ interpreta-

tion in terms of dynamical systems theory (Sect. 2.5). Fur-

thermore, we will study how their performance and the level

of resolved detail depend on the window size W . This anal-

ysis particularly shows that the window sizes W chosen for

the RN analysis of terrigenous dust flux records (Table 1) are

indeed appropriate for detecting bifurcations.

3.1 Logistic map

We iterate the logistic map

xi+1 = rixi(1−xi)

ri+1 = ri +1r (18)

while varying the bifurcation parameter linearly from r1 =
3.8 to rM = 3.9 in M = 10 000 equidistant steps setting

1r = 1×10−5 (Fig. 7), similar to Trulla et al. (1996). We

analyse the resulting time series {xi} without embedding or

detrending. The transition from chaotic to 3-periodic dynam-

ics after an interior crisis at r = 1+
√

8 ≈ 3.8284 (Wacker-

bauer et al., 1994) is clearly displayed by all four measures.

As expected from theoretical considerations for discrete-time
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Transitivity Average path length

Assortativity Diameter

Fig. 7. (A) Transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D for varying recurrence window size W for

the logistic map (Eq. 18) with drifting bifurcation parameter r (see text) and initial condition x1 = 0.7. W was varied linearly in the interval

[100,600], the recurrence window step size was fixed to 1W = 10 time steps. No embedding was used and the threshold set to ε = 0.05σ

(Marwan et al., 2009), where σ denotes the standard deviation of the time series segment within the recurrence window. Vertical dashed

lines indicate the critial values of r discussed in the main text.

systems (Marwan et al., 2009; Donner et al., 2010a, 2011b),

T and R abruptly increase to their maximum value of 1 fol-

lowing this transition, whereas at the same time L and D

sharply decrease to their minimum value of 1. Among all

the four measures, T and R most clearly detect the termi-

nation of the period-doubling cascade following the period-3

behaviour at the accumulation point r ≈ 3.849, while T , L

and D highlight the merger of the subsequently formed three

chaotic bands at the interior crisis at r ≈ 3.857 (Wackerbauer

et al., 1994). The latter transition is only weakly visible in

R. Additionally, much fine-structure is resolved by the net-

work measures, e.g. a narrow period-4 window at r . 3.89

that is most clearly indicated by an increased transitivity T

across all W . Generally, the transitions appear more and

more blurred as W increases, which is due to the growing

number of samples from both periodic and chaotic dynamical

regimes contained in the recurrence windows when sliding

over the bifurcation point. In consequence, some of the nar-

row periodic windows appearing for r < 3.83 and r > 3.86

are only visible for small recurrence window sizes W . As a

rule of thumb, we can expect a periodic/chaotic window of

width wr embedded within a chaotic/periodic background to

be detectable if wr &W1r .

Another notable feature is that both L and D show a clear

tendency to increase with growing W in the chaotic param-

eter ranges (Fig. 7b and d). This is theoretically expected,

since both measures are extensive, i.e. they depend explic-

itly and nonlinearly on the number of vertices W in the RN

for a general phase space distribution of state vectors as in-

duced by chaotic dynamics (Donner et al., 2010a). In con-

trast, L and D do not change with W in the periodic windows,

most notably in the large period-3 window of the logistic map

(Fig. 7b and d). We can explain this behaviour by recalling

that for discrete-time systems in a p-periodic regime, the RN

reduces to a set of p fully connected components (Donner

et al., 2010a). Following the definitions in Sect. 2.5, this in

turn leads to L=D= 1 in any periodic regime and indepen-

dent of W .

3.2 Lorenz system

To illustrate the performance of windowed RN analysis for

detecting transitions in continuous-time dynamical systems,

we consider the Lorenz system with a time-dependent bifur-

cation parameter r = r(t),
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Transitivity Average path length

Assortativity Diameter

Fig. 8. (A) Transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D for varying recurrence window size W for

the Lorenz system (Eq. 19) with drifting bifurcation parameter r (see text) and initial condition (x0,y0,z0) = (10,10,10). Because we are

interested in the performance of our method for scalar time series, we chose the x-component of the trajectory sampled with sampling time

1t = 0.05 and embed it with embedding dimension m = 3 and delay τ = 15. W was varied linearly in the interval [100,600], the recurrence

window step size was fixed to 1W = 10 samples. We varied the recurrence threshold ε to yield a fixed edge density ρ = 0.05 (Donner et al.,

2010b). Vertical dashed lines indicate the critial values of r discussed in the main text.

d

dt
(x,y,z) =

(

10(y −x),x(r −z)−y,xy − 8

3
z

)

. (19)

While the system is evolving, r increases linearly from r0 =
160 at time t0 = 0 to rf = 170 at time tf = 500, i.e.

r(t) = r0 + rf −r0

tf − t0
(t − t0). (20)

For consistency with the analysis of scalar palaeoclimate

time series to be performed below, we use an embedding of

the x-component time series for RN analysis without prior

detrending (see caption of Fig. 8 for details). The RN mea-

sures indicate two major transitions towards increasingly ir-

regular dynamics at r ≈ 161 and r ≈ 166.5 (Fig. 8). The for-

mer possibly reflects an initial transient due to the chosen

initial condition. The latter agrees well with the major shift

from periodic (large T , large L and D for continuous-time

systems; Donner et al., 2010a, 2011b; Zou et al., 2010) to

chaotic (small T , small L and D) behaviour which is present

in the Lorenz system’s non-transient bifurcation scenario at

r ≈ 166 (Barrio and Serrano, 2007; Donner et al., 2011a). On

a shorter time scale, the path-based measures L and D among

others detect weaker transitions at r ≈ 163.5, r ≈ 164.5 and

r ≈ 166. Note that one has to be careful when comparing

these results to bifurcation studies where distinct realisations

of the Lorenz system with fixed parameter r (not varying in

time) are studied (e.g. Donner et al., 2011a), since transients

influence the results and cannot be excluded by construc-

tion when r is continuously varied in time. However, our

results are consistent with the work of Trulla et al. (1996)

who observed that in transient scenarios bifurcations may

appear for larger bifurcation parameters than in their non-

transient equivalents. The dependence of the results on the

recurrence window size W is more pronounced than that de-

scribed above for the logistic map. This is likely due to the

fact that transients play a larger role in continuous-time sys-

tems like the Lorenz model than in discrete-time systems.

4 Dynamical transitions in palaeoclimate records

Our studies in the previous section demonstrated that RN

analysis can be meaningfully applied for detecting dynam-

ical transitions in non-stationary time series from different
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model systems by applying this kind of analysis to running

windows. This is a necessary, but not sufficient condition for

ensuring the feasibility of RN analysis for detecting regime

shifts in palaeoclimate records as well. However, the appli-

cation of our simple significance test (Sect. 2.6) diminishes

the danger of confusing statistical fluctuations with proper

dynamical changes substantially. Time series from geolog-

ical archives are typically characterised by a variety of dif-

ferent types of nonstationarities, including (i) changes in the

long-term mean or variance of the recorded proxies, (ii) vari-

ations in the amplitudes of almost periodic variability com-

ponents (e.g. such attributed to Milankovich-type variations

caused by periodic changes in the Earth’s orbit), or (iii) even

multimodal behaviour (e.g. transitions between glacial and

interglacial periods). All these three types of nonstationari-

ties are contained in our data (Fig. 2 and Trauth et al., 2009).

While these different phenomena can be analysed using more

specific methodological approaches, we propose RN analy-

sis as a general exploratory tool for detecting time intervals

containing changes in the dominating type of dynamical be-

haviour. In the following, we will illustrate the robustness

of this approach for the four marine records introduced in

Sect. 2.1 and briefly discuss the possible climatological back-

ground of the observed dynamical changes.

4.1 Time-dependence of network properties

We consider the four marine palaeoclimate records embed-

ded in a three-dimensional reconstructed phase space with

a time delay of approximately τ ∗ = 10 kyr, resulting in the

embedding parameters described in Sect. 2.3. For an initial

inspection, we use recurrence windows of size W ∗ = 410 kyr

with a mutual offset of subsequent windows of 1W ∗ =
41 kyr. Note that the latter two parameter choices corre-

spond to those used in previous work on the ODP site 659

dust flux record (Marwan et al., 2009; Donner et al., 2011a).

The selection of both parameters results from a compromise

between high temporal resolution of the finally produced RN

measures (small W ∗, 1W ∗) and larger statistical confidence

in the results (large W ∗). The choice of W ∗ is more critical

than that of 1W ∗, because the former directly influences the

number of vertices W in the RNs via Eq. (6). Since a formal

criterion for determining an optimal choice of W ∗ and 1W ∗

is not available so far, we study the robustness of our results

with respect to variations in the more critical parameter W ∗

in Sect. 4.2.

We additionally apply local detrending by removing the

long-term average taken over windows of W ∗
D = 500 kyr,

where

WD = ⌊W ∗
D/〈1T 〉⌋, (21)

which has not been considered in the aforementioned stud-

ies. As we will show in the following, the main features re-

covered by our analysis are not qualitatively changed when

applying detrending. However, this step appears relevant in

Fig. 9. Evolution of RN transitivity T for (A) the δ18O record from

ODP site 659, and the dust flux records from ODP sites (B) 659,

(C) 721, and (D) 967. T reveals changes in the regularity of African

climate during the Plio-Pleistocene for the latter three records. Here

we used a detrending window size W∗
D = 500 kyr, recurrence win-

dow size W∗ = 410 kyr and step size 1W∗ = 41 kyr, embedding

dimension m = 3 and delay τ∗ = 10 kyr. The recurrence thresh-

old ε was chosen adaptively to yield a fixed edge density ρ = 0.05.

The grey bars represent the 5 % and 95 % quantiles with respect to

the test distribution obtained from 10 000 realisations of our null-

model for each record separately. Vertical dashed lines indicate the

detected epochs of transitions discussed in the main text.

other kinds of statistical analyses, e.g. for estimating spectro-

grams or time-dependent coefficients of autoregressive pro-

cesses, since the data show considerable long-term trends in

both mean and variance (Fig. 2).

Regarding the transitivity (Fig. 9), we find a synchronous

behaviour of the two geographically distinct records at ODP

sites 659 and 721/722 during the Pliocene (∼5.3–2.6 Myr

BP; before present) and Early Pleistocene (2.6–1.0 Myr

BP)2, including two periods of extraordinarily large values

of T at about 3.45–3.05 and 2.2–2.1 Myr BP, related to pro-

nounced clusters of vertices shown in Figs. 6b and c. The

first of these periods results from a time interval of strongly

suppressed and almost constant dust flux in the Mid Pliocene

(see Fig. 2), while the latter one coincides with a period of

almost periodic Milankovich-type variations (Trauth et al.,

2009). We note that it is known (and empirically under-

2Here “Early Pleistocene” does not refer to any of the archetyp-

ical stages (Upper, Middle and Lower Pleistocene). Its timing 2.6–

1.0 Myr BP is not motivated stratigraphically, but climatologically,

i.e. by the onset of the Mid-Pleistocene transition around 1.0 Myr

BP.
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Fig. 10. Evolution of RN average path length L for (A) the δ18O

record from ODP site 659, and the dust flux records from ODP sites

(B) 659, (C) 721, and (D) 967, indicating transitions in African

climate dynamics during the Plio-Pleistocene. Parameters, signifi-

cance test, and vertical lines are the same as in Fig. 9.

stood) that both types of dynamics typically lead to large

values of T (Marwan et al., 2009; Donner et al., 2010a,

2011b; Zou et al., 2010), so that this result is consistent

with theoretical expectations. During the Early Pleistocene,

the signatures at both sites decouple from each other, which

could be the result of an enhancement of the atmospheric

Walker circulation (Ravelo et al., 2004). For the last about

1.5 Myr, the variations of transitivity become more similar

between ODP sites 721/722 and 967, particularly highlight-

ing the Mid Pleistocene transition between 1.2 and 0.7 Myr

BP (Fig. 6a), which corresponds to a change in the dom-

inating Milankovich-type periodicity. The results obtained

for the average path length L (Fig. 10) are mostly consistent

with these findings, also highlighting the Mid Pliocene, Early

Pleistocene, and Mid Pleistocene as periods with changes in

the long-term dust flux variability. Specifically, L tends to

show significant peaks at abrupt change points between reg-

ular and more erratic climate variability, as indicated by T

(see Marwan et al. (2009) for a theoretical explanation of

this behaviour).

The oxygen isotope anomaly obtained from the analysis

of benthic foraminifera characterises a distinctively differ-

ent climatic parameter (i.e. global ice volume) than terrige-

nous dust flux, so that it can be expected that the variabil-

ity recorded by this proxy differs from that of the dust flux.

An inspection of the RN properties indeed confirms this ex-

pectation. Specifically, the transitivity T does not show any

systematic maxima at all (Fig. 9a), which is in clear contrast

Fig. 11. Evolution of RN assortativity R for (A) the δ18O record

from ODP site 659, and the dust flux records from ODP sites

(B) 659, (C) 721, and (D) 967 during the Plio-Pleistocene. Param-

eters, significance test, and vertical lines are the same as in Fig. 9.

to the aeolian dust flux. The average path length L shows

significant maxima around 2.9 Myr BP (possibly being re-

lated to the intensification of Northern hemisphere glaciation

at around this time), between 1.8 and 1.3 Myr BP (consis-

tent with the corresponding results for the dust flux records,

suggesting a high-latitude mechanism behind the large-scale

climatic changes during this time period), and after about

900 kyr BP (possibly resulting from the glacial terminations

and inceptions with a rather long – roughly 100 kyr – period-

icity) (Fig. 10a).

Figures 11 and 12 additionally show the time variability

of the two other RN properties assortativity R and diam-

eter D. Since the latter one is closely related to the av-

erage path length L (Donner et al., 2010a), the variability

of both measures is very similar. Moreover, we also find

some much weaker similarities between the temporal vari-

ability patterns of transitivity T and assortativity R, which

are less pronounced, since both properties characterise less

obviously related aspects of the network geometry in phase

space. Specifically, the time interval of suppressed dust flux

in ODP 659 and 721/722 during the Mid Pliocene results not

only in an increased transitivity, but also a high assortativity.

The latter feature can be explained by the fact that a relatively

large cluster of state vectors representing this laminar regime

emerges in the network, which is rather densely connected

(Fig. 6c).

We conclude that the RN measures are not statistically in-

dependent in their time evolution (Table 2). For the ODP

site 659 δ18O and dust flux records, the correlations between
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Fig. 12. Evolution of RN diameter D for (A) the δ18O record from

ODP site 659, and the dust flux records from ODP sites (B) 659,

(C) 721, and (D) 967 during the Plio-Pleistocene. Parameters, sig-

nificance test, and vertical lines are the same as in Fig. 9.

transitivity T and assortativity R as well as between aver-

age path length L and diameter D as measured by Spear-

man’s ρ are most pronounced, which is consistent with the-

oretical expectations (Donner et al., 2010a). Correlations are

more clearly developed between all four measures in case of

the more highly sampled dust flux records from ODP sites

721/722 and 967 (Table 1). However, for all records the four

measures can be considered sufficiently independent to jus-

tify including all of them for a broad and thorough nonlinear

time series analysis of oxygen isotope and terrigenous dust

flux variability.

4.2 Robustness of the results

To assure the reliability and robustness of our results, we

systematically study their dependence on the relevant algo-

rithmic parameters of our method, in particular, the widths

of the recurrence window (W ∗) and the detrending window

(W ∗
D) as well as the embedding delay (τ ∗). In Figs. 13–15,

the results of the significance test are presented as contours

at two prescribed significance levels obtained from the ob-

served measure’s quantiles with respect to the correspond-

ing test distribution. Green contours represent the lower

prescribed quantile (5 %), while black contours indicate the

upper one (95 %). This implies that values of the measure

under study enclosed by green contours can be considered

as exceptionally low, while those lying within black con-

tours are exceptionally large, recalling the interpretation of

the applied null-model given in Sect. 2.6. It is, however,

Table 2. Spearman’s ρ measuring rank-order correlations in the

time evolution of RN measures for (A) the ODP site 659 δ18O

record, and the dust flux records from ODP sites (B) 659, (C)

721/722, and (D) 967. Significant correlations having a p-value

smaller than 0.05 under the assumption of uncorrelated data of the

same length are marked in bold.

T L R D

T 1.00 −0.08 0.38 0.00

(A) L −0.08 1.00 −0.06 0.92

R 0.38 −0.06 1.00 0.03

D 0.00 0.92 0.03 1.00

T L R D

T 1.00 −0.05 0.12 0.03

(B) L −0.05 1.00 −0.08 0.77

R 0.12 −0.08 1.00 0.23

D 0.03 0.77 0.23 1.00

T L R D

T 1.00 0.50 0.40 0.37

(C) L 0.50 1.00 0.37 0.74

R 0.40 0.37 1.00 0.35

D 0.37 0.74 0.35 1.00

T L R D

T 1.00 0.65 0.61 0.23

(D) L 0.65 1.00 0.54 0.78

R 0.61 0.54 1.00 0.16

D 0.23 0.78 0.16 1.00

important to recognise that the null-hypothesis of station-

arity has been tested pointwise, while physical significance

requires the null-hypothesis to be rejected over a certain pe-

riod of time, i.e. for several subsequent time points (Maraun

et al., 2007). Therefore, certain line-like structures, particu-

larly those seen in Fig. 15, are likely to reflect statistical fluc-

tuations rather than physically significant dynamical transi-

tions. In the following, we will only present the results for

the ODP site 659 dust flux record.

i. Recurrence window size W ∗: as for the model systems

in Sect. 3, we first discuss the sensitivity of our results to

the changing width of the recurrence window W ∗. The

corresponding results for the four chosen RN measures

are shown in Fig. 13. We recognise that the most sig-

nificant features persist under varying W ∗, although the

relevant structures become broader and less significant

for larger windows. This is to be expected since more

and more data from time intervals not directly affected

by the origin of specific network properties (e.g. a lami-

nar phase in the dynamics) contribute to the longer win-

dows. As the window width is increased linearly, cone-

like structures emerge (which is especially well visible

for the Mid Pliocene transitivity maximum as the most
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Transitivity Average path length

Assortativity Diameter

Fig. 13. Dependence of (A) transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D on the recurrence window

size W∗ for the dust flux record from ODP site 659. The recurrence window step size is fixed to 1W∗ = 41 kyr, the detrending window

size to W∗
D = 500 kyr. Green and black contours correspond to the 5 % and 95 % quantiles with respect to the test distribution obtained from

10 000 realisations of our null-model. Other parameters were: embedding dimension m = 3 and delay τ∗ = 10 kyr, the threshold was chosen

to yield a fixed edge density ρ = 0.05. The white bands indicating “no value” at the left and right margins of each panel appear because we

plot the network measures gµ,W ∗
at the mid-points tµ of the windows µ used for RN analysis (Sect. 2.4). As the mid-points of the first (last)

window move further into the past (present) for increasing W∗, the white bands grow linearly for linearly increasing W∗.

relevant feature). In general, we observe that for our

example the transitivity is most robust with respect to

changes of W ∗, whereas the other network measures

may lose significance if this parameter of our analysis

method is varied. We note, however, that the periods

of interest identified in Sect. 4.1 are robust for a wide

range of recurrence window sizes, presenting a trade-off

between good localisation of identified features (small

windows) and reasonable statistical confidence of the

calculated network properties (large windows).

ii. Detrending window size W ∗
D: regarding the dependence

of our observations on the choice of the detrending win-

dow, Fig. 14 shows that the general temporal variabil-

ity pattern of the different network measures remains

unchanged as W ∗
D is altered, whereas the actual signif-

icance levels are more strongly influenced. In general,

we can conclude, however, that the most significant time

periods persist under variations of W ∗
D, which is par-

ticularly well expressed for the transitivity during the

Mid Pliocene. Together with the fact that RN analysis

of the three dust flux records without detrending pro-

duces consistent results (Donges et al., 2011) this sug-

gests that trends do not have a significant influence on

the outcomes of RN analysis as long as W ∗ ≪ N 〈1T 〉.
However, this should be checked in any particular appli-

cation by comparing the results for the time series data

before and after detrending. Note that the results for

undetrended time series are approximated by those dis-

played in Fig. 14 for W ∗
D ≈ N 〈1T 〉, since RN analysis

is invariant to nearly uniform translations of the data.

iii. Embedding delay τ ∗: our results are also seen to be

robust with respect to reasonable variations of the em-

bedding delay τ ∗ around the previously chosen de-

lay time τ ∗ = 10 kyr (Fig. 15). However, for the

Nonlin. Processes Geophys., 18, 545–562, 2011 www.nonlin-processes-geophys.net/18/545/2011/



J. F. Donges et al.: Identification of dynamical transitions in marine palaeoclimate records by RN analysis 559

Transitivity Average path length

Assortativity Diameter

Fig. 14. Dependence of (A) transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D on the detrending window

size W∗
D for the dust flux record from ODP site 659. The recurrence window size is fixed to W∗ = 410 kyr with a step size of 1W∗ = 41 kyr.

Green and black contours correspond to the 5 % and 95 % quantiles with respect to the test distribution obtained from 10 000 realisations

of our null-model. Other parameters were: embedding dimension m = 3 and delay τ∗ = 10 kyr, the threshold was chosen to yield a fixed

edge density ρ = 0.05. In regions outside the black dashed lines the results are influenced by boundary effects, since the effective detrending

window size WD(t) has to decrease towards the time series’ limits (Eq. 3). The white bands indicating “no value” at the left and right margins

of each panel appear because we plot the network measures gµ,W ∗
at the mid-points tµ of the windows µ used for RN analysis (Sect. 2.4).

In contrast to Fig. 13 their width does not change as W∗ is fixed here.

embedding delay exceeding τ ∗ = 20 kyr the results and

significance levels change considerably. This is ex-

pected as for delays larger than 20 kyr, autocorrela-

tions in the time series do not decrease significantly any-

more. In the case of the δ18O record from ODP site 659

they even increase again due to pronounced (obliquity-

driven) Milankovich cycles with a period around 41 kyr

(Fig. 3), so that the autocorrelation criterion for the

choice of τ ∗ does not apply here anymore.

5 Conclusions

We have demonstrated that RN analysis allows detecting

dynamical transitions in non-stationary model systems as

well as real-world palaeoclimate data. Transitivity and aver-

age path length have been previously discussed as appropri-

ate network properties indicating qualitative changes in the

dynamics of the underlying system. Here we have provided

examples that also other global network measures such as as-

sortativity and network diameter trace qualitative changes in

dynamical systems, which, however, do not have a similarly

straighforward interpretation in terms of basic system prop-

erties as the two other aforementioned quantities.

Our results show that the outcomes of RN analysis are

quite robust if the fundamental parameters of the method (de-

trending and recurrence window sizes, embedding delay) are

varied within a reasonable range. Unlike for other methods

of time series analysis, the consideration of embedding with

properly chosen parameters is necessary in order to obtain

feasible results.

In contrast to other techniques, RN analysis does not

characterise temporal interrelationships within the analysed

records (although time information enters indirectly through

embedding parameters, however, mostly on short time

scales as typically mτ ∗ ≪ N 〈1T 〉), but quantifies geometric
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Transitivity Average path length

Assortativity Diameter

Fig. 15. Dependence of (A) transitivity T , (B) average path length L, (C) assortativity R, and (D) diameter D on the embedding delay time

τ∗ for the dust flux record from ODP site 659. The recurrence window size is fixed to W∗ = 410 kyr with a step size of 1W∗ = 41 kyr,

the detrending window size to W∗
D = 500 kyr. Green and black contours correspond to the 5 % and 95 % quantiles with respect to the

test distribution obtained from 10 000 realisations of our null-model. Vertical line-shaped contours are likely to correspond to statistical

fluctuations rather than physically significant time intervals (see text). Other parameters were: embedding dimension m = 3, the threshold

was chosen to yield a fixed edge density ρ = 0.05.

properties of the sampled dynamical system in its (recon-

structed) phase space. The only implicit assumption is that

the available sample of observed state vectors {yµ
i } repre-

sents the spatial distribution of the true state vectors in the

(properly reconstructed) phase space of the underlying dy-

namical system sufficiently well.

In this respect, our approach is very generally applica-

ble and has comparably moderate requirements in terms of

the requested number of data (i.e. windows with O(100)

data points are sufficient for a reasonable analysis of non-

stationary systems). In case of palaeoclimate records, this

complementary way for characterising time series avoids

conceptual problems of other approaches due to uncertain

age models and non-uniform sampling. E.g. the results of RN

analysis {gµ} are invariant to changes in the age model {ti},
only the associated windows’ mid-points {tµ} change with

variations in {ti} (Eq. 9). However, the aforementioned prob-

lems indirectly persist in terms of the necessary embedding

of the data and have to be finally resolved in correspond-

ing future work. While the present work focussed on the

technical aspects of applying RN analysis to palaeoclimate

time series, an in-depth discussion of the results obtained for

the three dust flux records in the light of additional proxy

records and palaeontological evidence is given in Donges

et al. (2011).
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