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To improve the potency of anti–human cytomegalovirus (HCMV) immunoglobulin preparations, we intended to �nd elite neutral-

izers among 9000 HCMV-seropositive blood donors. We identi�ed the top 2.6% neutralizers by use of high-throughput screening 

and further analyzed the 80 neutralizers with the most e�ective plasma for strain-independent activity. Of those, 58 had broad 

neutralizing activity against various HCMV strains and hence were regarded as elite neutralizers. All elite neutralizers were then 

analyzed to determine their e�ect on individual virus particles during entry. Most had plasma specimens that preferentially inhib-

ited viral penetration, whereas 2 had exceptional plasma specimens that prevented adsorption of virus to cells. Furthermore, the 

neutralizing capacity of plasma samples from 3 randomly chosen elite neutralizers was up to 10-fold higher than that for commercial 

immunoglobulins. In a retrospective analysis of 6 selected donors, anti-HCMV neutralization titers in repeated donations were con-

stantly high over 5 years. In conclusion, plasma samples from elite-neutralizing donors can be considered to improve antibody-based 

treatment of HCMV infections.
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Human cytomegalovirus (HCMV) is a ubiquitously distributed 

herpesvirus. A�er primary infection, it causes lifelong latency, 

and reactivation can result in episodes of viral replication. 

Primary infection of immunocompetent individuals can cause 

mild symptoms or mononucleosis-like disease. Reactivations 

and reinfections are usually asymptomatic. In contrast, immu-

nocompromised individuals, such as patients with AIDS and 

transplant recipients, can experience severe complications due 

to primary or reactivated infection. �e risk for HCMV infec-

tion a�er transplantation of solid organs or hematopoietic stem 

cells is about 50%, and adverse outcomes may include gra� fail-

ure, gra�-versus-host disease, and increased susceptibility to 

other infections [1–4]. Intrauterine HCMV infection occurs at 

a prevalence of 0.3%–1.5% and is a leading cause of congenital 

disabilities [5, 6], including hearing loss and other neurological 

impairments [7, 8]. It was generally assumed that primary infec-

tion during pregnancy is more hazardous than reactivation or 

reinfection, owing to protective e�ects of preexisting maternal 

antibodies, but this assumption has been questioned recently 

a�er synopsis of the available information [9].

It is obvious that high levels of HCMV-speci�c antibodies 

in diagnostic assays are not su�cient for protective immunity 

[9–11]. In line with this, reports on the impact of HCMV hyper-

immunoglobulins in pregnant women with primary HCMV 

infection [12–14] and in recipients of transplants [1, 15–17] are 

controversial. In principle, anti-HCMV immunoglobulins were 

found to be bene�cial in transplant recipients, but the e�ects 

on morbidity and mortality were only moderate. Direct-acting 

antivirals such as ganciclovir or foscarnet are e�ective by target-

ing the viral polymerase, but their use may be complicated by 

myelotoxic or nephrotoxic side e�ects. �e recently approved 

terminase inhibitor letermovir is apparently less toxic but may 

also be limited by the development of resistance [18]. �erefore, 

a potent passive immunization strategy is still a desirable alter-

native. In a recent clinical trial, a combination of 2 neutralizing 

anti-HCMV antibodies reduced the frequency of HCMV vire-

mia [19, 20]. Interestingly, these antibodies were shown to act 

mainly via neutralization but not via antibody-dependent cellu-

lar cytotoxicity or complement.
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As an approach to improve the quality and e�cacy of anti-

HCMV immunoglobulin preparations, we screened a large pop-

ulation of blood donors for their neutralizing capacities [21].  

On the basis of our �ndings, we identi�ed elite neutralizers, 

de�ned as individuals whose plasma is more potently neutral-

izing than currently available HCMV hyperimmunoglobulins. 

�e concept of elite neutralization was developed in the �eld 

of human immunode�ciency virus (HIV) research, where it 

describes a small subset of HIV-1–infected individuals who 

generate high titers of broadly neutralizing antibodies [22, 23]. 

Elite neutralizers are not identical with elite controllers, who 

limit viral replication, o�en in the absence of broadly neutraliz-

ing antibodies [24].

Broad and potent antibodies were cloned from elite neutraliz-

ers to improve passive immunization strategies against HIV [25],  

and the same concept was applied to other viruses [26]. Regarding 

HCMV, the breadth of neutralizing antibodies concerns not 

only the inhibition of various HCMV strains but also the e�-

cacy against cell type–speci�c entry routes mediated by di�erent 

viral glycoprotein complexes. While antibodies of seropositive 

individuals usually have a high neutralization capacity against 

infection of endothelial and epithelial cells via the pentamer 

gH/gL/pUL128/pUL130/pUL131A, infection of �broblasts 

via the trimer gH/gL/gO is less e�ciently neutralized [21, 27].  

�is may also be relevant in the context of intrauterine infec-

tion, as trophoblast progenitor cells were protected against 

HCMV infection by antibodies against gB but not by antipen-

tamer antibodies [28].

We therefore investigated plasma specimens from blood 

donors to identify elite neutralizers with exceptional strain-in-

dependent neutralizing activity against infection of both cell 

types. �is could provide the basis for an improved passive 

immunization strategy for patients endangered by HCMV, 

including both direct use of plasma preparations and the isola-

tion of monoclonal antibodies from such donors.

MATERIALS AND METHODS

Cells, Viruses, Plasma Samples, and Antibodies

Human foreskin �broblasts (HFFs) were grown in mini-

mal essential medium with 5% fetal bovine serum (MEM5; 

GlutaMAX, Life Technologies) and 100 μg/mL gentamicin sup-

plemented with 0.5 ng/mL basic �broblast growth factor (Life 

Technologies). Conditionally immortalized human endothelial 

cells (HEC-LTTs) [29, 30] were cultured in vessels and micro-

plates coated with 0.1% gelatin (Sigma-Aldrich) in endothelial 

growth medium (EGM BulletKit, Lonza), supplemented with 

2  µg/ml doxycycline. During experiments, HFFs and HEC-

LTTs were both kept in MEM5.

HCMV strains AD169 [31], Towne [32], Toledo [33], Merlin 

[34], VR1814 [35], VHL/E [36], and TB40/E [37] and deriva-

tives thereof [38] were used in this study. �is panel was chosen 

as it covers almost all of the established genotypes of HCMV 

envelope glycoproteins [21]. Viral stocks were generated by cen-

trifuging supernatants of infected cell cultures at 3220 ×g for 10 

minutes to remove cell debris.

Plasma samples from HCMV-seropositive blood donors 

were provided by the German Red Cross Blood-Transfusion 

Service, Baden-Württemberg and Hessen, with informed con-

sent according to human experimentation guidelines (Ethical 

Board of Ulm University vote number 53/14). Remnant clotting 

factors were removed by recalci�cation prior to use in neutral-

ization tests [21].

�e immunoglobulin G (IgG) concentration in plasma, in 

grams/liter, was determined by a turbidimetric assay (Cobas 

8000 c502; Roche). Anti-HCMV IgG concentrations were deter-

mined as arbitrary units (AU) per milliliter (CMV IgG enzyme-

linked immunosorbent assay [ELISA] with a pipetting-control 

system; Medac, Hamburg).

Antibodies (IgGs) were puri�ed from plasma samples by 

using protein A  chromatography and were dialyzed against 

phosphate-bu�ered saline (PBS) as previously described [39].

Gaussia Luciferase-Based Screening for High Neutralizers of Fibroblast 

Infection

HFFs were seeded on 96-well plates at 1.5  ×  104 cells/well. 

Plasma samples were mixed with the Gaussia luciferase-express-

ing reporter virus TB40-BAC4-IE-GLuc to obtain a �nal plasma 

dilution of 1:400 and a multiplicity of infection (MOI) of 1. �e 

mixture was preincubated for 2 hours at 37°C and added to cells 

to initiate infection. A�er cells were incubated for 2 hours at 

37°C, the mixture was replaced by MEM5. Cell cultures were 

then incubated overnight, 20 µL of supernatant of each infected 

cell culture was mixed with coelenterazine (0.2 μg/mL in PBS 

supplemented with 5  mmol/L NaCl; PJK), and luminescence 

signals (measured as relative light units [RLU]) were measured 

with a microplate reader (Chameleon; Hidex). �e neutralizing 

performance was determined as the ratio of the RLU for refer-

ence plasma to the RLU for test plasma.

Determination of Half-Maximal Neutralization Titer (NT
50

) by 

an ELISA-Based Neutralization Assay

HFFs or HEC-LTTs were seeded in 96-well plates at 1.5 × 104 

cells/well. Plasma samples were serially diluted in duplicates, 

mixed with TB40/E (MOI = 1), and preincubated for 2 hours 

at 37°C. �e virus-plasma mixtures were incubated with cells 

overnight at 37°C. �e cells were then �xed with 80% ace-

tone (Sigma Aldrich) and stained with a monoclonal antibody 

against HCMV immediate-early antigen (E13; Argene Bioso�) 

[40] and a secondary antibody (goat anti-mouse IgG) conjuga-

ted with horseradish peroxidase (Santa Cruz Biotechnology). 

Substrate (ortho-phenylenediamine; �ermo Fisher Scienti�c) 

was added for 30 minutes, the reaction was stopped with 1 M 

sulfuric acid, and the OD
492

 was measured. Mock values (ie, 
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signals for plasma without virus) were subtracted from mean 

values of duplicates, and the background-corrected values (ie, 

the signal for virus plus plasma) were divided by the maximal 

signal (ie, signal for virus only) to determine the relative infec-

tion rates. Neutralization rates were calculated as 1 − [(signal 

for virus plus plasma)/(signal for virus only)], and the corre-

sponding dose-response curves were analyzed by nonlinear 

regression. �e plasma concentration at which the neutraliza-

tion rate equals 0.5 is given as the half-maximal neutralization 

concentration, and the reciprocal value is the NT
50

.

Analysis of the Mode of Action of Neutralizing Antibodies

To screen plasma samples from elite neutralizers for their 

mode of action, their e�ect on adsorption or penetration of 

virions was discriminated using the dual-�uorescent HCMV 

strain TB40-BAC
KL7

-UL32EGFP-UL100mCherry [41], includ-

ing HCMV-negative plasma as a negative control. HFFs were 

seeded at 7.5 × 103 cells/well on a 96-well plate (µClear [black]; 

Greiner Bio-One). Freshly produced virus was preincubated 

with plasma samples at 10 times the NT
50

 for 2 hours at 37°C 

and added to HFFs for 2 hours. Cultures were then �xed with 

4% paraformaldehyde in PHEM bu�er (25  mmol/L HEPES, 

10 mmol/L EGTA, 60 mmol/L PIPES, and 2 mmol/L MgCl
2
) 

and permeabilized with ice cold methanol and permeabilization 

solution (10% sucrose, 1% fetal calf serum in PHEM bu�er, and 

0.5% Nonidet P40). Subsequently, the cells were stained with 

anti–α-tubulin monoclonal mouse antibody (Life Technologies) 

and AlexaFluor350-conjugated goat anti-mouse IgG F(ab’)
2
 

(Life Technologies), each diluted in PHEM bu�er. Five pictures 

of each condition were taken at 640-fold magni�cation with a 

�uorescence microscope (Axioobserver D1; Zeiss) and evalu-

ated for green and red dot–like �uorescence signals indicative 

of virions. Virions with green and red �uorescence represent 

intact enveloped virions attached to cells, whereas virions with-

out the red signal have penetrated cells.

Puri�ed IgGs were analyzed by the same assay with the 

following modi�cations: HFFs were seeded at 1  ×  104 cells/

well. �e mCherry signal was enhanced by immuno�uores-

cence staining with rabbit anti-DsRed polyclonal antibodies 

(Clontech) and Cy3-conjugated goat anti-rabbit IgG F(ab’)
2
 

(Jackson ImmunoResearch). Instead of tubulin staining, nuclei 

were counterstained with DAPI (Sigma-Aldrich). In each of 3 

experiments, 6–10 pictures were randomly taken for each con-

dition, and the numbers of particles with green and red �uores-

cence or green without red �uorescence were counted.

Statistical Analysis

Datasets were analyzed by Kruskal-Wallis 1-way analysis of 

variance on ranks with the Dunn post hoc test, using the 

build-in data analyses function of Sigmaplot. If analysis of vari-

ance indicated signi�cant di�erences between groups, P values 

were determined using unpaired 2-sided t tests. Di�erences 

were considered marginally signi�cant when P values were 

<.05, signi�cant when P values were <.01, and highly signi�cant 

when P values were <.001.

RESULTS

Identification of Top Neutralizers Among HCMV-Seropositive 

Blood Donors

To identify routine blood donors with exceptionally high 

neutralizing capacities, retained plasma samples from 9000 

HCMV-seropositive donors were screened for e�cient inhibi-

tion of HCMV strain TB40/E infection in �broblast cultures. 

Using a recently developed Gaussia luciferase–based neutral-

ization assay, plasma samples were tested at a 1:400 dilution in 

comparison with a highly neutralizing preselected reference 

plasma to discriminate the 2.5% top-neutralizing samples [21]. 

If the neutralizing e�ect exceeded that of the reference (ie, if 

the ratio of the RLU for reference plasma to the RLU for test 

plasma was ≥1.1), the respective plasma sample was regarded as 

a top-neutralizing specimen (Figure 1A). A total of 236 samples 

(2.6%) ful�lled this criterion, indicating that the strategy of the 

screening approach worked as intended.

�e 80 plasma samples with the highest score were then selected 

for a subsequent quantitative analysis. Serial dilutions of each 

plasma specimen were tested in an ELISA-based assay for their 

e�ect against strain TB40/E in �broblasts, and the NT
50

 for HFFs 

was calculated. �e NT
50

 values ranged between 250 and 2950. �e 

majority of samples (64 of 80) had an NT
50

 of >500, and 33 of 80 

had an NT
50

 of >1000 (Figure 1B). When a plasma unit (300 mL) 

is administered to a patient, it will be diluted about 100-fold in the 

interstitial �uid compartment [42]. Hence, plasma units from these 

top neutralizers are expected to achieve titers in vivo that are e�ec-

tive against HCMV, based on our in vitro assays. In summary, we 

successfully identi�ed top-neutralizing plasma samples for further 

characterization of the breadth of their neutralizing e�ect in di�er-

ent cell types and against a panel of HCMV strains.

Identification of Elite Neutralizers With Broad Reactivity

Our previous work suggested that plasma with a high neutral-

ization capacity against �broblast infection usually has at least 

an equally high neutralization capacity against endothelial cell 

infection [21]. To test whether this assumption holds true for 

our 80 top neutralizers, we determined the neutralization titers 

of their plasma specimens against endothelial cell infection. �e 

ratio of the NT
50

 for HECs to that for HFFs was calculated as a 

readout for the relative e�ciency in HECs versus HFFs, and the 

log of this ratio was plotted in the order of size for all plasma 

samples (Figure 2A). A ratio of the log NT
50

 for HECs to the 

log NT
50

 for HFFs of 0 indicates equal neutralization capacity 

in both cell types, whereas a log value >0 indicates higher e�-

ciency against infection of endothelial cells. As expected, almost 

all plasma samples (77 of 80) were more potent against endo-

thelial cell infection. �is con�rmed our strategy to screen with 
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a simpli�ed assay only in �broblasts and then validate the top 

scorers also on endothelial cells.

�e next step was to identify neutralizers with broad activ-

ity against 7 HCMV strains covering most genotypes of HCMV 

envelope glycoproteins [21]. Plasma samples with NT
50

 values 

of >100 against all strains were considered broadly neutralizing 

(Figure 2B). �is cuto� was chosen because clinical application of 

a plasma unit will result in a dilution of about 1/100 in the inter-

stitial �uid, and the same value has been used to de�ne broadly 

neutralizing plasma in the HIV �eld [23]. According to this de�-

nition, 58 of the 80 tested top neutralizers (71%) showed broadly 

neutralizing activity against all strains (Supplementary Materials).

In summary, 58 plasma specimens (0.6%) had exceptionally 

high and broad e�ective neutralizing ability and were hence 

designated as elite-neutralizing samples.

Plasma Specimens From Elite Neutralizers Are More Potent Than 

Currently Available Anti-HCMV Immunoglobulins

Next we tested whether plasma specimens from elite neutraliz-

ers are more e�ective at neutralizing HCMV than commercial 

hyperimmunoglobulins generated from sera from donors who 

were selected on the basis of HCMV antibody titers determined 

by ELISA. �erefore, the neutralizing capacity of 3 elite-neu-

tralizing plasma samples were compared to that of a commer-

cially available HCMV hyperimmunoglobulin and standard 

immunoglobulin. �e latter was included as a baseline control.

�e neutralizing capacity of all preparations was measured 

by the ELISA-based neutralization assay and plotted against 

the total IgG concentration or the CMV-speci�c antibody con-

centration. Comparison of the total IgG concentration re�ects 

the overall neutralizing capacity of the antibodies (Figure 3A), 

whereas comparison regarding the virus-speci�c anti-HCMV 

IgG re�ects the speci�c neutralizing quality of the HCMV-

speci�c antibodies in the sample (Figure  3B). When stan-

dardized to the total IgG content, standard immunoglobulin 

showed the lowest neutralizing capacity, followed by hyperim-

munoglobulin, and all 3 elite-neutralizing plasma specimens 

had higher neutralizing capacities. When standardized to anti-

HCMV IgG, it became apparent that the anti-CMV antibodies 

of standard immunoglobulins and hyperimmunoglobulins had 

similar neutralizing abilities. In contrast, the preselection of 

elite-neutralizing donors for exceptionally high neutralization 

titers was re�ected in an approximately 10-fold higher speci�c 

quality of their anti-CMV antibodies.

Blocking of HCMV Adsorption and Penetration by Elite-Neutralizing 

Plasma Specimens

Blocking of various steps of viral entry into the host cell is the 

most likely mechanism used by antibodies to neutralize viral 

infection. �erefore, we investigated the mode of action of 

HCMV-neutralizing antibodies in elite-neutralizing plasma 

specimens with regard to inhibition of HCMV adsorption and 

penetration into the host cell. To investigate more precisely 

which of these entry steps is blocked by plasma specimens 

from elite neutralizers, we used a dual �uorescent HCMV assay 

(HCMV-TB40-BAC
KL7

-UL32EGFP-UL100mCherry), in which 
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Figure 1. Identification of top-neutralizing plasma samples. A, A total of 9000 human cytomegalovirus (HCMV)–seropositive plasma samples were screened for exception-

ally high neutralization on human foreskin fibroblasts (HFFs) with a high-throughput assay, using a TB40-BAC4–derived luciferase reporter virus. Their neutralizing activity 

was compared to reference plasma representing the 97.5th percentile as determined previously [21]. Plasma samples that outperformed the reference (indicated by the black 

line) were regarded as top-neutralizing samples. B, Of these, the 80 with the highest performance scores were quantitatively analyzed by an enzyme-linked immunosorbent 

assay–based neutralization assay for their half-maximal neutralization titers (NT
50

 values) against HCMV-TB40E on HFFs. The histogram shows that the majority of these 

selected plasma samples had NT
50

 values of ≥500.
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capsid-associated and envelope-associated proteins are labeled 

with green and red �uorescent tags [41]. �is allowed to dis-

tinguish complete virus particles that have attached to the cell 

from virus particles that have successfully penetrated into the 

cytoplasm and thereby lost their envelope.

Each of the 58 elite-neutralizing plasma samples was adjusted 

to 10 times the NT
50

 for HFFs  and preincubated with the dual 

�uorescent HCMV for 2 h. �e mixtures were then added to 

�broblasts for 2 hours to allow adsorption and penetration of 

the virus. Subsequently, the plasma-treated cultures were �xed 

and analyzed for green and red �uorescent signals among indi-

vidual virus particles and compared to cultures treated with 

HCMV-negative plasma. Enveloped particles displayed �uores-

cence in both the green and the red channels, whereas naked 

particles (ie, virions without an envelope) were �uorescent 

only in the green channel. Naked particles were assumed to 

have penetrated into the cytoplasm. �ree di�erent e�ects on 

HCMV particle entry could be discriminated (Figure 4). First, 

42 of 58 plasma specimens showed inhibition of penetration 

(ie, the total particle number was una�ected, but most particles 

retained their envelope). Second, 2 of 58 specimens inhibited 

the adsorption (ie, the total number of particles was greatly 

reduced, but most of them succeeded to penetrate). �ird, 6 of 

58 specimens caused an aggregation of particles (ie, enlarge-

ment and increased intensity of �uorescence signals indicating 

aggregation of individual particles, which resulted in reduced 

infection e�ciency in the immediate early antigen control 

staining). A combined e�ect was observed in 8 of 58 samples.

To con�rm that these e�ects were actually due to the antibod-

ies within the plasma samples, the respective blood donors were 

revisited, additional plasma samples were obtained, and IgGs 

were isolated and analyzed with the same assay. Puri�ed IgGs 

from 4 donors with penetration-inhibiting specimens had a sig-

ni�cantly reduced number of penetrated particles, as compared 

to IgG from an HCMV-seronegative donor (Figure 4B), whereas 

the IgG preparations from 2 donors with adsorption-inhibiting 
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Figure 2. Breadth of neutralization as determined in different cell types and against different human cytomegalovirus (HCMV) strains. A, All 80 plasma samples that were 

previously selected for their prevention of human foreskin fibroblast (HFF) infection were additionally analyzed by an enzyme-linked immunosorbent assay–based neutral-

ization assay for their half-maximal neutralization titers (NT
50

 values) against HCMV-TB40E in human endothelial cells (HECs), and the neutralization capacities in both cell 

types were compared. The vast majority (96%) of these plasma specimens were at least equally effective against endothelial cell infection, as demonstrated by a log ratio 

of the NT
50

 for HECs to that for HFFs of ≥0. B, The 80 top-neutralizing plasma specimens were then tested for their activity against 7 different HCMV strains. Three different 

categories were distinguished. The majority (70%; represented by plasma specimens 223-C8 and 127-E1) achieved NT
50

 values of ≥100 (red line) against all strains and were 

therefore regarded as broadly neutralizing. Of these, 2 (represented by plasma specimen 223-C8) were exceptionally potent because they neutralized all strains at a NT
50

 of 

≥1000. A minority (30%; represented by plasma specimen 66-E4) failed to reach an NT
50

 of ≥100 against all strains and were therefore not regarded as broadly neutralizing .
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specimens signi�cantly reduced the total number of attached 

particles (Figure  4C). In all cases, the mode of action of the 

complete plasma was re�ected in the activity of puri�ed IgGs 

from the respective donor.

Taken together, antibodies from the elite neutralizers with 

the greatest neutralization capacity primarily blocked penetra-

tion of virus particles, but 2 elite neutralizers with an excep-

tional neutralization capacity produced antibodies that blocked 

HCMV at the level of virus attachment.

Neutralizing Capacities of Elite Neutralizers Remain Stable Over 

Several Years

Finally, we tested whether neutralization titers of elite neutral-

izers are stable over time. �erefore, retained plasma samples 

from 6 donors who had donated repeatedly for 5  years were 

investigated to determine neutralizing capacities against both 

cell types, and total anti-HCMV-IgG levels were also deter-

mined (Figure 5).

In concordance with data shown in Figure 2A, the NT
50

 val-

ues for HECs exceeded those for HFFs almost 10-fold, with the 

exception of donor 2, who had similar neutralization capaci-

ties for both cell types. �is donor was also remarkable because 

he displayed a high NT
50

 for HFFs despite a low anti-HCMV 

IgG level, indicating a particularly high functionality of these 

antibodies. In contrast to the clear interdonor di�erences, 

there was remarkably little intradonor variation over time. �e 

overall anti-HCMV levels and the NT
50

 values for both cell 

types remained stable over 5 years, with only occasional devi-

ation (<3-fold). �is indicates that stable production of highly 

neutralizing plasma can be expected from donors who are iden-

ti�ed as elite neutralizers.

DISCUSSION

Using a systematic screening approach, we identi�ed blood 

donors with exceptionally potent and broadly neutralizing anti-

bodies against HCMV. Several lines of evidence suggest that anti-

HCMV antibodies can in principle reduce the risk of vertical 

HCMV transmission during pregnancy and the extent of vire-

mia and HCMV-associated morbidity in immunocompromised 

patients [13, 14, 43, 44]. At present, however, neither natural 

humoral immune responses nor active or passive immunization 

are su�cient to provide a reliable protection [9, 12, 45], and the 

extent to which neutralization or more-indirect mechanisms, 

such as antibody-dependent cellular cytotoxicity or complement 

activation, contribute to protection by antibodies is unclear. It 

was suggested that the e�cacy of passive immunization could be 

increased by improving the quantity and/or quality of the neu-

tralizing antibodies as compared to that of currently available 

immunoglobulin preparations [46–48]. A combination of 2 neu-

tralizing monoclonal antibodies recently yielded encouraging 

results in kidney transplant recipients [20]. �erefore, we aimed 

to identify elite-neutralizing blood donors with exceptionally 

broad and potent antibody responses against HCMV.

�e concept of elite neutralization was developed in the HIV 

�eld: although most HIV-infected individuals produce neutral-

izing antibodies, escape mutants o�en develop, and the humoral 

immune response hence fails to control virus replication. 

A minority of HIV-infected individuals, however, will develop 
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Figure 3. Comparison of 3 elite-neutralizing plasma samples to commercially available immunoglobulin preparations. A, All immunoglobulin preparations were standard-

ized to their total immunoglobulin G (IgG) concentration and compared regarding their neutralizing capacity against TB40E, as measured by an enzyme-linked immunosorbent 

assay–based neutralization assay, on fibroblasts. The elite-neutralizing plasma specimens showed higher neutralizing capacities than standard immunoglobulin and hyperim-

munoglobulins. B, When the immunoglobulin preparations were standardized to their anti–human cytomegalovirus (HCMV) IgG concentration, the elite-neutralizing plasma 

specimens were also superior to the commercially available immunoglobulin preparations. Note that hyperimmunoglobulin has a neutralization capacity similar to that of 

standard immunoglobulin when normalized to anti-HCMV IgG levels, reflecting that the respective donors were not specifically selected for high neutralizing performance. 

The dashed lines represent 50% neutralization.
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glycoprotein gM is tagged with mCherry and the capsid-associated tegument protein pp150 is tagged with enhanced green fluorescent protein. Dual-labeled virus was 

preincubated for 2 hours with each plasma sample at a concentration reflecting 10 times the half-maximal neutralization titer. The mixture was then added to fibroblast 

cultures and, after 2 hours of infection, the effects of the respective plasma on adsorption and penetration were analyzed. Yellow dot-like signals represent enveloped (ie, 

nonpenetrated) viral particles (indicated by arrows), whereas green dot-like signals represent penetrated particles (capsids) that have already lost their envelope (indicated 

by open arrows). Red dots represent viral defective particles (dense bodies). Red patchy signals in the perinuclear region of the control represent gM accumulations occurring 

after capsid penetration. Exceptionally, larger signals were found that represent aggregation of several particles (indicated by white asterisks). Cells were counterstained 

for α-tubulin, which is displayed in white. Events falling in the different categories were counted and compared to values obtained with cultures infected in the absence of 

antibodies (control). The pie chart shows that 42 plasma samples inhibited penetration, whereas only 2 plasma samples specifically inhibited adsorption, 6 plasma samples 

caused aggregation, and 8 plasma samples had combined effects. B, To test whether the effects on penetration were actually due to antibodies, purified immunoglobulin 

G (IgG) from 4 donors with penetration-inhibiting plasma were retested with the dual fluorescent virus. IgG from an HCMV-seronegative donor was used as reference, and 

the particle numbers were separately normalized to the reference values for each experiment. Each bar represents one donor, indicated as numbers on the x-axis. All 4 

preparations significantly reduced the number of penetrated particles. C, To test whether the effects on adsorption were actually due to antibodies, purified IgG from the 2 

adsorption-inhibiting plasma samples were retested with the dual fluorescent virus. IgG from an HCMV-seronegative donor was used as a reference, and the particle numbers 

were separately normalized to the reference values for each experiment. Each bar represents 1 donor, indicated as numbers on the x-axis. Error bars represent standard errors 

of the mean. neg, negative. ***P < .001.
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exceptional antibodies that are highly potent and broadly active 

against most genetic variants of HIV [23]. Such antibodies 

are now evaluated in clinical trials to improve antibody-based 

interventions for the treatment of HIV infection [49]. �e situ-

ation with HCMV is similar, since most HCMV-infected indi-

viduals develop a neutralizing antibody response that does not 

reliably limit viral replication or transmission [9]. It is tempting 

to assume that—like in the HIV �eld—elite HCMV neutralizers 

with exceptionally potent and broad antibodies exist and may 

serve as a source to improve passive immunization.

Ideally, plasma with an elite capacity for HCMV neutraliza-

tion should be highly e�cient against a variety of virus strains 

and against both the pentamer-dependent and the trimer-de-

pendent HCMV entry pathway. Fi�y-eight of 9000 HCMV-

seropositive blood donors (0.6%) had plasma specimens that 

ful�lled these criteria, which resembles the frequency of donors 

(1.7%) demonstrating elite anti-HIV neutralization capac-

ity when similar criteria were used (ie, neutralization titers 

of >100 against various virus strains). �ese elite-neutraliz-

ing donors had remarkable qualitative features. First, their 

antibodies exhibit more-balanced activity against the 2 entry 

routes. With elite-neutralizing donors, the ratio of the NT
50

 

for HECs to that for HFFs was about 2, whereas it is usually 

about 10. �is could indicate that their antibodies are partic-

ularly active against the trimer-dependent route. Second, the 

neutralizing capacity of their anti-HCMV antibodies appears to 

be up to 10-fold higher than that of normal immunoglobulin 

and HCMV hyperimmunoglobulin. �ird, 2 elite neutralizers 

inhibited HCMV infection at the level of virus attachment. B 

cells producing anti-HCMV antibodies have been successfully 

cloned from seropositive individuals [50], and it is therefore 

tempting to speculate that cloning B cells from elite neutraliz-

ers could yield particularly potent anti-HCMV antibodies. In 

particular, a targeted combination of penetration inhibitors and 

attachment inhibitors directed against gB, trimer, and pentamer 

may be bene�cial due to additive e�ects.

Regarding clinical applications of plasma from elite-neutral-

izing donors, it is relevant that their neutralization capacities 

were stable over long periods. �ey can therefore be revisited 

repeatedly, either for collection of plasma specimens for direct 

therapeutic use or for isolation of B cells that produce antibod-

ies with particular qualities.

In conclusion, screening of HCMV-seropositive blood 

donors with a 2-step selection procedure helped identify elite 

HCMV-neutralizers with broad and potent anti-HCMV capaci-

ties. Plasma specimens of such donors might serve as a basis for 

improved passive immunization strategies.
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