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Clinical Research Article

Introduction

Falling represents a serious risk for older adults. Thirty per-

cent of community-dwelling older adults fall at least once 

per year, with a substantial number of these falls causing 

severe injuries and fear of falling.1 For effective fall inter-

ventions,2-4 reliable and valid identification of persons at 

risk is required. Monitoring daily activities, especially loco-

motion, may support this identification. On a group level, 

various gait characteristics have been found to be related to 

fall risk, including gait speed,5 different variability mea-

sures (see overview6), and dynamic measures, such as local 

dynamic stability7,8 and harmonic ratio.9 These relations, 

however, have been established with laboratory-based gait 

measurements. The applicability and predictive value of 

these measurements for daily life circumstances are, as of 

yet, unclear. Ambulatory recordings over multiple days 

enable the capturing of day-to-day variations in gait10 and 

so undercut the white-coat effect. In addition, they may be 

more time efficient than laboratory-based measurements.

Several authors have recently investigated the potential 

benefit of daily life measurements for the assessment of fall 

risk. Weiss et al11 revealed significant differences in spectral 

characteristics of trunk accelerations measured in daily life 

between older fallers and nonfallers, whereas Rantz et al12 

demonstrated the concurrent validity between clinical fall 
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Abstract

Background. Gait characteristics extracted from trunk accelerations during daily life locomotion are complementary to 
questionnaire- or laboratory-based gait and balance assessments and may help to improve fall risk prediction. Objective. The 
aim of this study was to identify gait characteristics that are associated with self-reported fall history and that can be reliably 
assessed based on ambulatory data collected during a single week. Methods. We analyzed 2 weeks of trunk acceleration 
data (DynaPort MoveMonitor, McRoberts) collected among 113 older adults (age range, 65-97 years). During episodes 
of locomotion, various gait characteristics were determined, including local dynamic stability, interstride variability, and 
several spectral features. For each characteristic, we performed a negative binomial regression analysis with the participants’ 
self-reported number of falls in the preceding year as outcome. Reliability of gait characteristics was assessed in terms of 
intraclass correlations between both measurement weeks. Results. The percentages of spectral power below 0.7 Hz along 
the vertical and anteroposterior axes and below 10 Hz along the mediolateral axis, as well as local dynamic stability, local 
dynamic stability per stride, gait smoothness, and the amplitude and slope of the dominant frequency along the vertical 
axis, were associated with the number of falls in the preceding year and could be reliably assessed (all P < .05, intraclass 
correlation > 0.75). Conclusions. Daily life gait characteristics are associated with fall history in older adults and can be 
reliably estimated from a week of ambulatory trunk acceleration measurements.
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risk assessment and in-home-estimated gait velocity and 

stride time.

Our aim was to investigate the potential of daily life 

trunk acceleration recordings to reliably estimate gait char-

acteristics and to predict fall risk in older adults. We focused 

in particular on the aforementioned characteristics because 

these have been shown to correlate with falling, mostly in 

controlled studies. We also considered stride time and stride 

frequency,13 the accelerations’ standard deviation and range 

as measures of movement intensity,13 and the index of har-

monicity as a measure of smoothness of movement,14 since 

these measures have been used to characterize quality of 

gait. Furthermore, we introduced a novel characteristic—

namely, the percentage of signal power up to a threshold 

frequency, here referred to as the percentage of low-fre-
quency power. The idea behind this novel characteristic is 

that power below the stride frequency might inform us 

about slowly occurring variations between strides, whereas 

power in high frequencies (ie, the remaining percentage of 

power) may indicate sudden movements or tremors, both of 

which may index fall risk.

Methods

Participants

The data used in this study were based on the available sam-

ple from a larger continuing study at the time of the start of 

the analysis. A total of 114 older adults were recruited 

among the community and various institutions. Participants 

were included in this study if their Mini Mental State 

Examination scores exceeded 18 (maximum, 30; mean, 

27.6 ± 2.1; range, 20-30) and they were able to walk at least 

20 m, if necessary with a walking aid. The protocol 

(2010/290) received approval from the medical ethical 

committee of the VU University medical center, Amsterdam, 

Netherlands. In a preliminary analysis, we found 50 epi-

sodes to be a minimum for obtaining reliable estimates. 

Data of 4 participants were excluded because fewer than 50 

episodes of 10 seconds or longer per week had been 

recorded; thus, data of 110 participants were included in the 

analysis (33 men; mean age, 78.4 ± 7.8 years; range, 65-97). 

Table 1 lists the demographics of our study population.

Data Acquisition

We invited participants to wear a portable triaxial acceler-

ometer (DynaPort MoveMonitor, McRoberts, The Hague, 

The Netherlands), sampling at 100 Hz with a range of −6 g 

to 6 g. It was attached with an elastic belt around the waist 

and set along the lumbar spine. Participants wore it for 2 

separate weeks to investigate reliability. The participants 

were instructed to wear the accelerometer at all times, 

except during water activities (eg, showering) to avoid 

damage to the instrument. The accelerometer recorded 

accelerations in 3 directions, which roughly coincided with 

the anatomic axial (vertical; V), mediolateral (ML), and 

anteroposterior (AP) directions.

The participants’ self-reported number of falls in the 12 

months preceding the measurements was used as indication 

of their fall histories. A fall was defined as an event that 

resulted in unintentionally coming to rest on the ground or 

other lower level.15

Data Selection

We discarded the first and last 6 hours of each measurement 

week, to exclude data containing sensor transfers from 

research team to participant and vice versa. Locomotion 

episodes were identified with an activity classification algo-

rithm (McRoberts, The Hague, Netherlands).16 Locomotion 

episodes lasting 10 seconds or longer were selected, and to 

avoid possible sample size-related bias,17 each episode was 

split into contiguous epochs of 10 seconds, with the remain-

ing unused time equally divided over the beginning and end 

of the episode.18 We used MATLAB (version 2011a, 

Mathworks, Natwick, MA) to further analyze these 10-second 

locomotion epochs.

Alignment Preprocessing

The raw data from each 10-second locomotion epoch were 

first aligned to correct for potential sensor misalignments. 

As proposed by Moe-Nilssen,19 the V axis was selected as 

the direction of the mean acceleration signal, since the 

expected mean acceleration in the other directions is negli-

gible compared to the gravitational acceleration. The AP 

and ML directions were selected by optimization of gait 

symmetry.20 In symmetric gait, left and right steps yield 

equal AP signals but opposite ML signals. Using this notion, 

we selected these axes as the 2 orthogonal axes in the plane 

perpendicular to the V axis that optimize the product of 

their harmonic ratios, considering that the harmonic ratio is 

a measure for gait symmetry.21

Table 1. Demographics of the Study Populationa.

Characteristic Mean ± SD (Range)

Age, y 78.4 ± 7.8 (65-97)
Height, m 1.674 ± 0.094 (1.52-1.92)
Weight, kg 73.1 ± 13.6 (45-110)
Body mass index, kg/m2 26.2 ± 4.3 (17.4-36.5)
Mini Mental Status Exam 27.6 ± 2.1 (20-30)
No. of falls previous 12 mo 1.2 ± 1.6 (0-8)

aParticipants, N = 110; women, 70.0%; community home situation, 
80.9%. For height, weight, and body mass index statistics, we did not 
include 3, 1, and 3 participants, respectively, due to missing data.
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Gait Characteristics

A total of 17 gait characteristics were estimated for every 

10-second locomotion epoch. Many characteristics capital-

ized on the power spectrum that we always estimated after 

applying a 10-second Hamming window.

Movement intensity was defined per direction as the 

standard deviation of the acceleration signals. Gait speed 

was estimated with the method introduced by Zijlstra and 

Hof.22 This method assumes a compass gait type with a cir-

cular trajectory of the sensor during each support phase and 

determines step lengths by trigonometry from the peak-to-

peak height differences obtained by double integration of 

high-pass filtered V accelerations. Leg length was estimated 

as 48% of the participant’s body height.23 For 3 participants, 

body height was unknown, which rendered the estimation 

of gait speed impossible.

Speed variability was given as the standard deviation of 

the stride speeds with exclusion of the highest and lowest 

10%. The time for individual strides was chosen as the time 

between one peak and the second-next peak, with the same 

sign in the height curve determined for the estimation of 

gait speed. We defined stride time variability as the standard 

deviation of stride times. The same times for individual 

strides as mentioned above for stride speed were used, 

except for the highest and lowest 10%. Stride time was 

determined as the lag time s between 0.4 and 4 seconds that 

maximizes the sum of autocovariances of the 3 directions.24 

We further defined stride regularity as the summed autoco-

variance for time-lag s normalized to the summed autoco-

variance with zero lag24 combining spatial and temporal 

gait variability.

Stride frequency was initially estimated as the median of 

the modal frequency for the ML and half the modal frequen-

cies for the V and AP directions as determined from the 

power spectrum. Then, if this median frequency did not fall 

within the expected range of 0.6 to 1.2 Hz, the stride fre-

quency estimate was replaced with the modal frequency for 

a direction that did, if available. Finally, if all modal fre-

quencies differed less than 10% from a harmonic of the cur-

rent stride frequency estimate, the estimate was replaced by 

the mean of the modal frequencies divided by their har-

monic number.

We determined stride frequency variability per direction 

via the relative fluctuations in phase progression that we 

averaged over the harmonics weighted by their power. 

Phases were calculated by Hilbert transform of a bandpass-

filtered signal, with a passband of two-thirds the stride fre-

quency wide around the harmonic.

Gait symmetry was given by the harmonic ratio,25,26 and 

gait smoothness was estimated as the index of harmonicity.14 

Amplitude, width, and slope of the dominant frequency 

within the frequency range from 0.5 to 3 Hz served as mea-

sures for consistency and variability of gait.11 Acceleration 

range11 was given as the difference between the minimum 

and maximum acceleration over an epoch.

The low-frequency percentage was defined as the 

summed power up to a threshold frequency divided by the 

total power. The threshold frequency was taken to be the 

one with the most significant association with fall history 

from the test frequencies of 0.3, 0.5, 0.7, 1, 1.5, 2, 3, 5, 7, 

and 10 Hz. Note that the remaining percentage represents 

the related high-frequency percentage for these thresh-

olds. In addition, note that the here-introduced low-fre-

quency percentage was treated different from the other 

characteristics, as we implemented it in an explorative 

fashion, meaning that we optimized the threshold fre-

quency to find the most significant association with fall 

history. In contrast to the other characteristics, which were 

derived with established parameter settings, no best prac-

tice exists for this measure, and the threshold frequency 

strongly determines the meaning of the characteristic, 

such as the aforementioned interstride variations or sud-

den movements and tremors.

Local dynamic stability was separately estimated for 

each direction, based on a 10-samples time-delay embed-

ding27 in 7 dimensions. Given its good assessment in recent 

gait studies with respect to sensitivity28 and to accuracy in 

simulated systems,29 we used the method introduced by 

Wolf et al30 to estimate the local dynamic stability (ie, largest 

Lyapunov exponent). Finally, we computed local dynamic 

stability per stride as the local dynamic stability divided by 

stride frequency. This characteristic was added to account 

for debates about normalization to stride frequency.31,32

Aggregate Values for All Locomotion Epochs in a 
Week

To obtain a single aggregate value per characteristic per week 

of data for each participant, we determined the median of 

each characteristic over the 10-second epochs. The median 

was employed because of its robustness against potential out-

liers. On average, more than a thousand epochs were avail-

able per participant per week (see Results section for details).

Statistical Analyses

For each aggregated value, we quantified reliability 

through the intraclass correlation (ICC) absolute agree-

ment33 between the first and second measurement week. As 

36 participants wore the accelerometer for only 1 week, their 

data were excluded in the reliability analysis. We further 

assessed validity—namely, the potential of each characteris-

tic with respect to fall risk prediction—by relating the char-

acteristic (averaged over 1 or, if available, 2 weeks) to the 

self-reported number of falls during the 12 months prior to 

recordings. This was done by means of a negative binomial 

regression because this technique accounts for overdispersed 
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count data when the between-participant variance in the 

number of falls is larger than expected for a Poisson distribu-

tion (where the expected values for mean and variance are 

equal). In our study, the variance was more than twice as 

high as the mean of the number of falls. To facilitate direct 

comparison with other studies, we also applied a logistic 

regression; see the appendix for details. Gait characteristics 

were considered a potential fall risk indicator if they were 

associated with fall history with a P value below .05 and if 

their ICCs exceeded 0.7.34 Note that our P values were not 

corrected for multiple comparisons; thus, an α level of .05 

would require a P value of .0013.

Results

We analyzed a total of 236 557 10-second locomotion 

epochs during 184 measurement weeks: on average, 1286 

locomotion epochs per participant per week (range, 62-5305; 

36 participants completed only 1 measurement week). The 

average self-reported number of falls in the 12 months pre-

ceding the measurements was 1.2 ± 1.6 and ranged from 0 to 

8, as shown in Figure 1. Table 2 shows the association of all 

aggregated gait characteristics with these self-reported num-

bers of falls, as well as their between-week reliability. All 

characteristics showed sufficient reliability, with ICCs 

exceeding 0.7, except for stride frequency variability (ICC = 

0.66, 0.65, and 0.62 in V, ML, and AP directions, respec-

tively) and width of the dominant frequency in the V direc-

tion (ICC = 0.62). When only part of the week was used, 

ICCs were typically ranging between 0.3 and 0.7 (1 day), or 

half of the ICCs were below 0.7 (3 days).

The low-frequency percentage showed a potential fall 

risk indicator, which had a positive association with fall 

history with a threshold of 0.7 Hz for the V and AP direc-

tions and a threshold of 10 Hz for the ML direction, all with 

good reliability. In addition, we identified the following 

characteristics along the V axis as potential fall risk indica-

tors: local dynamic stability, local dynamic stability per 

stride, gait smoothness, and amplitude and slope of the 

dominant frequency. For the low-frequency percentage in 

the AP direction, the association with fall history was sig-

nificant at the α level of 0.05 after correction for multiple 

comparisons.

The results of the logistic regression can be found in the 

appendix.

Discussion

The aim of this study was to explore the potential of trunk 

acceleration measurements collected during daily life for 

the purpose of fall risk assessment. We tested a range of gait 

characteristics derived from trunk acceleration data with 

regard to 2 important criteria that must be fulfilled for a 

characteristic to qualify as a fall risk indicator: reliability 

and validity.

Reliable Gait Characteristics

The criterion of reliability is not easily met in daily life 

measurements, which are unsupervised. Circumstances 

during the measurements are likely to change, such as walk-

ing surfaces, turns and obstacles, variations in gait speed, 

the performance of a dual task, and interactions with other 

people. Such variations in circumstances may add random 

fluctuations to gait characteristics, which may undermine 

the reliability of their estimates. However, averaging char-

acteristics determined over an extended period (eg, 1 week) 

can cancel out these fluctuations, which may result in even 

more reliable estimates than what would be obtained in a 

single session under controlled conditions. The ICCs of the 

gait characteristics estimated from 1 week of recordings 

were generally above 0.7, which indicates good reliability34 

and, thus, good potential for the assessment of fall risk 

based on trunk accelerations measured continuously in 

daily life. This is an encouraging finding given the potential 

effect of unknown variations that can be present in the 

uncontrolled measurements.

Association With Fall History

The issue of validity may pose an even taller order than 

that of reliability. Several studies have addressed the 

validity of methods for estimating parameters in daily 

life,35-38 but in the current study, validity pertains to a 

required association between the characteristic under 

study and actual fall risk. It is not guaranteed that charac-

teristics indicating fall risk when measured in laboratory 
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Figure 1. Number of falls in the preceding year as reported by 
participants.
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settings indicate the same when measured in daily life. 

Based on controlled laboratory measurements, local 

dynamic stability, interstride variability, gait speed, and 

gait symmetry have revealed significant associations with 

fall incidence,5-9 while the amplitude and slope of the 

dominant frequency and acceleration range have discrimi-

nated fallers from nonfallers based on daily life accelera-

tion data.11 Most of these findings were confirmed by our 

daily life data, at least in the sense that local dynamic sta-

bility and local dynamic stability per stride showed a posi-

tive association with fall history and the amplitude and 

slope of the dominant frequency (all in the V direction) 

showed a negative association with fall history. Previous 

studies found a relation between falling and local dynamic 

stability in the AP7 and ML8 directions with data obtained 

during treadmill walking, but we could not replicate these 

findings using ambulatory collected data.

The absence of associations with the variability measures 

and gait symmetry might be explained by methodological 

differences between the controlled studies and our study, 

which may well have affected variability and symmetry. For 

instance, when one walks on a treadmill or on a straight path 

on a level surface, there is no obvious incentive for a large 

variability, and it might therefore be mainly related to lim-

ited gait control. In daily life, however, variability and asym-

metric gait may result from active control for the purpose of, 

for example, navigation through complex environments. For 

mean gait speed, a similar explanation may hold. In daily 

life, gait speed could be more dependent on the circum-

stances and episode distances than on the participant’s capa-

bilities, whereas in supervised studies, the circumstances 

and episode distances are typically similar and standardized 

by instruction, and differences are thus likely to depend 

more on the participant’s capabilities.

Comparing the present study and that of Weiss et al,11 

we note that we obtained different results for characteris-

tics that both studies had in common. The associations 

reported by Weiss et al were not all confirmed in our study 

or, if present, displayed less significance. It could be that 

these differences resulted from a difference in the popula-

tion studied, as we recruited community-living as well as 

institutionalized older adults, whereas Weiss et al11 stud-

ied community-living older adults only and excluded par-

ticipants with clinically diagnosed gait or balance 

disorders. Hence, the heterogeneity of our study popula-

tion may have led to different relations between gait char-

acteristics and fall risk.

The low-frequency percentage had a positive association 

with fall history for all directions. This novel characteristic 

has not previously been associated with falls. The effect 

size and significance of these associations should therefore 

be interpreted with caution, in particular since the threshold 

Table 2. Gait Characteristics’ Association With Fall History From Negative Binomial Regression and Reliabilitya.

B (P) ICC B (P) ICC B (P) ICC

Gait speed −0.25 (.067) 0.83  
Speed variability −0.07 (.60) 0.81  
Stride time 0.18 (.12) 0.91  
Stride regularity −0.22 (.11) 0.73  
Stride time variability 0.24 (.074) 0.73  
Stride frequency −0.16 (.19) 0.88  

 Vertical Mediolateral Anteroposterior  

Movement intensity −0.15 (.28) 0.89 −0.09 (.50) 0.91 −0.15 (.28) 0.92
Stride frequency variability 0.05 (.70) 0.66 0.12 (.36) 0.65 0.22 (.070) 0.62
Gait symmetry (harmonic ratio) −0.25 (.070) 0.80 −0.07 (.61) 0.79 −0.24 (.070) 0.77
Gait smoothness (index of 

harmonicity)
–0.37 (.004) 0.84 0.03 (.84) 0.83 0.10 (.46) 0.85

Low-frequency percentage 0.27 (.020)b 0.81 0.44 (.003)c 0.81 0.40 (.0006)b 0.75

Local dynamic stability 0.30 (.021) 0.76 0.06 (.67) 0.84 0.13 (.36) 0.77
Local dynamic stability per stride 0.31 (.014) 0.83 0.16 (.16) 0.92 0.21 (.095) 0.83
Amplitude of dominant frequency –0.30 (.026) 0.87 0.02 (.88) 0.81 −0.09 (.54) 0.79
Width of dominant frequency 0.22 (.11) 0.62 0.22 (.070) 0.80 0.32 (.066) 0.88
Slope of dominant frequency –0.30 (.025) 0.86 0.00 (.99) 0.83 −0.14 (.32) 0.79
Acceleration range −0.16 (.28) 0.89 −0.07 (.58) 0.91 −0.16 (.25) 0.88

Abbreviation: ICC, intraclass correlation coefficient absolute agreement.
aEffect size B normalized to characteristic’s standard deviation and P value. Characteristics with a fall-related association having a P value < .05 in bold.
b0.7 Hz.
c10 Hz.
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frequency was optimized for significance based on 10 test 

frequencies. Nevertheless, this characteristic constitutes a 

potential fall risk indicator. For the V and AP directions, the 

optimal threshold was 0.7 Hz, implying an increased fall 

risk with the presence of more slow V and AP variations 

below the step frequency. These changes may result from 

postural changes affecting sensor orientation because such 

changes in orientation will change the projection of the 

gravitational acceleration on the measurement directions. 

This can occur if the trunk orientation changes between for-

ward leaning and backward leaning over the course of a few 

steps. Such a varying AP trunk orientation might be caused 

by a loss of accurate postural control during gait. The stron-

ger association for the AP direction than for the V direction 

can be explained by these slow variations in the orientation 

of the sensor. The gravity signal is vertical, but by varia-

tions of the orientation, it is measured partly by the sensor’s 

AP component, as the sine of the forward/backward sway 

angle. The change in the sensor’s V component scales with 

the cosine of this angle, which, for small angles, changes 

much slower than the sine. The power caused by these slow 

orientation changes is therefore much smaller in the V com-

ponent than in the AP component, and its estimate is there-

fore more sensitive to disturbance by acceleration signals 

from other effects. For the ML direction, by contrast, the 

optimal threshold for the low-frequency percentage was 10 

Hz, implying an increased fall risk with the absence of a 

high-frequency signal. We did not expect this latter associa-

tion to be positive. However, the presence of a high-fre-

quency signal above 10 Hz indicates fast kinematic changes 

and may reflect quick responses through a rapid rate of 

force generation rather than tremors and sudden erratic 

movements. This rate of force generation, also known as 

power, is considered important in the context of falling.39 A 

threshold of 10 Hz might seem very high considering the 

assumption of England and Granata40 that a signal above 10 

Hz is unlikely related to musculoskeletal motion. They 

based this belief on position measurements, whereas we 

used acceleration, the spectral power of which, following 

the Fourier transform differentiation theorem, is adjusted by 

a factor directly proportional to the frequency to the fourth 

power as compared to position. In other words, high-fre-

quency power of musculoskeletal motion could be negligi-

ble in position signals but not in acceleration signals.

Gait smoothness, quantified by the index of harmonicity, 

was negatively associated with fall history for the V direc-

tion. Although this measure has been used to characterize 

quality of gait previously,14 as far as we are aware, this is 

the first time that an association with fall history was found.

Limitations

Movements other than gait (eg, cycling or stair negotiation) 

may have been categorized as locomotion and may have 

been included in our analysis in some cases. However, we 

expected that episodes of other movements in the locomo-

tion category would be relatively rare, especially in our 

population, and therefore have only a marginal influence on 

the characteristics’ aggregate estimates. Still, improvement 

of estimates might be achievable by narrowing the selection 

of locomotion episodes with additional criteria.

A difference between our study and many other studies 

in the field of interest is the use of negative binomial regres-

sion instead of a method that specifically contrasts fallers 

and nonfallers, such as a logistic regression or a Student t 
test. We chose the negative binomial regression because 

summarizing the number of falls that a participant experi-

ences into a logistic variable would have ignored important 

details on recurrences of falls within our population. 

However, to facilitate direct comparison with other studies, 

we also conducted a logistic regression, the details of which 

are reported in the appendix.

The aggregation of our characteristics by the median 

over all epochs of locomotion during 1 week caused a loss 

of the information on extreme values, which might repre-

sent near falls. Assuming that near falls are an indicator of 

increased fall risk, this suggests that a different aggrega-

tion method focusing on the extremes rather than the 

median value could provide additional information on 

fall risk.

Future Work and Implications

The current study revealed significant associations between 

fall history and several gait characteristics in daily life gait. 

However, the aim of the present line of work is to eventu-

ally make a contribution to prospective fall risk prediction. 

If the current findings are confirmed by other and prospec-

tive data, daily life gait characteristics obtained through 

ambulatory accelerometry may help to enhance the assess-

ment of fall risk of individuals in clinical practice.

Conclusion

This study revealed that characteristics of trunk accelera-

tions could be reliably determined when obtained from 

gait episodes over 1 week of ambulatory measurements 

during daily life. Local dynamic stability, local dynamic 

stability per stride, gait smoothness, and the amplitude 

and slope of the dominant frequency (all in the V direc-

tion) were identified as potential fall risk indicators, as 

were the percentage of low-frequency power below 0.7 

Hz in the V and AP directions and the percentage of low-

frequency power below 10 Hz in the ML direction,. The 

observed associations between these characteristics and 

fall history provide a promising starting point for evalu-

ating them in their capacity as prospective predictors of 

fall risk.
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Appendix

Logistic regression was applied to our data, with gait 

characteristic as the predictor and with participants clas-

sified as fallers when they had experienced 2 or more falls 

in the preceding 12 months as the dependent variable. The 

results of this analysis are collected in Table A1. 

The estimates for significance were quite similar to those 

estimated by negative binomial regression. Although P 

values passed the selection threshold of .05 for some 

characteristics (stride time variability and amplitude and 

slope of the dominant frequency in the V direction), the 

main message of our study remains the same for either 

regression model.

Table A1. Gait Characteristics’ Association With Fall History Based on Logistic Regressiona.

Characteristic B (P) B (P) B (P)

Gait speed −0.49 (.11)  
Speed variability 0.08 (.72)  
Stride time 0.28 (.18)  
Stride regularity −0.37 (.099)  
Stride time variability 0.45 (.032)  
Stride frequency −0.25 (.28)  

 Vertical Mediolateral Anteroposterior

Movement intensity −0.51 (.29) −0.20 (.50) −0.30 (.33)
Stride frequency variability 0.17 (.44) 0.29 (.19) 0.43 (.059)
Gait symmetry (harmonic ratio) −0.36 (.11) −0.10 (.63) −0.26 (.25)
Gait smoothness (index of harmonicity) –0.48 (.028) 0.05 (.81) 0.11 (.61)
Low-frequency percentage 0.48 (.023)b 0.70 (.019)c 0.76 (.002)d

Local dynamic stability 0.53 (.026) 0.05 (.81) 0.21 (.34)
Local dynamic stability per stride 0.53 (.025) 0.26 (.24) 0.34 (.13)
Amplitude of dominant frequency −0.38 (.10) 0.15 (.48) −0.12 (.57)
Width of dominant frequency 0.38 (.064) 0.33 (.11) 0.27 (.24)
Slope of dominant frequency −0.40 (.082) 0.11 (.60) −0.16 (.46)
Acceleration range −0.36 (.38) −0.17 (.50) −0.42 (.25)

aEffect size B normalized to characteristic’s standard deviation and P value. Characteristics with a fall-related association having a P value < .05 in bold.
b0.7 Hz.
c10 Hz.
d0.5 Hz.
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