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Abstract

Background: Papillary thyroid carcinoma (PTC) is the most common thyroid cancer. While many patients survive, a

portion of PTC cases display high aggressiveness and even develop into refractory differentiated thyroid carcinoma.

This may be alleviated by developing a novel model to predict the risk of recurrence. Ferroptosis is an iron-

dependent form of regulated cell death (RCD) driven by lethal accumulation of lipid peroxides, is regulated by a set

of genes and shows a variety of metabolic changes. To elucidate whether ferroptosis occurs in PTC, we analyse the

gene expression profiles of the disease and established a new model for the correlation.

Methods: The thyroid carcinoma (THCA) datasets were downloaded from The Cancer Genome Atlas (TCGA), UCSC

Xena and MisgDB, and included 502 tumour samples and 56 normal samples. A total of 60 ferroptosis related

genes were summarised from MisgDB database. Gene set enrichment analysis (GSEA) and Gene set variation

analysis (GSVA) were used to analyse pathways potentially involving PTC subtypes. Single sample GSEA (ssGSEA)

algorithm was used to analyse the proportion of 28 types of immune cells in the tumour immune infiltration

microenvironment in THCA and the hclust algorithm was used to conduct immune typing according to the

proportion of immune cells. Spearman correlation analysis was performed on the ferroptosis gene expression and

the correlation between immune infiltrating cells proportion. We established the WGCNA to identify genes modules

that are highly correlated with the microenvironment of immune invasion. DEseq2 algorithm was further used for

differential analysis of sequencing data to analyse the functions and pathways potentially involving hub genes. GO

and KEGG enrichment analysis was performed using Clusterprofiler to explore the clinical efficacy of hub genes.

Univariate Cox analysis was performed for hub genes combined with clinical prognostic data, and the results was

included for lasso regression and constructed the risk regression model. ROC curve and survival curve were used for

evaluating the model. Univariate Cox analysis and multivariate Cox analysis were performed in combination with
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the clinical data of THCA and the risk score value, the clinical efficacy of the model was further evaluated.

Results: We identify two subtypes in PTC based on the expression of ferroptosis related genes, with the proportion

of cluster 1 significantly higher than cluster 2 in ferroptosis signature genes that are positively associated. The

mutations of Braf and Nras are detected as the major mutations of cluster 1 and 2, respectively. Subsequent

analyses of TME immune cells infiltration indicated cluster 1 is remarkably richer than cluster 2. The risk score of

THCA is in good performance evaluated by ROC curve and survival curve, in conjunction with univariate Cox

analysis and multivariate Cox analysis results based on the clinical data shows that the risk score of the proposed

model could be used as an independent prognostic indicator to predict the prognosis of patients with papillary

thyroid cancer.

Conclusions: Our study finds seven crucial genes, including Ac008063.2, Apoe, Bcl3, Acap3, Alox5ap, Atxn2l and B2m,

and regulation of apoptosis by parathyroid hormone-related proteins significantly associated with ferroptosis and

immune cells in PTC, and we construct the risk score model which can be used as an independent prognostic

index to predict the prognosis of patients with PTC.

Keywords: Thyroid papillary carcinoma, Immune-related genes, Tumour microenvironment, Ferroptosis genes,

Prognostic model

Introduction
Thyroid cancer (TC) is the most common endocrine

malignant tumour worldwide and its incidence has been

increasing [1]. In 1990, there were an estimated 95,030

incident cases of TC and 22,070 deaths; this increased to

255,490 incident cases and 41,240 deaths in 2017 [2]. In

2020, TC has been found in 9th place for incidence

among all cancers, with more than 586,000 cases diag-

nosed worldwide. In addition, there is a 3-fold higher

incidence rate of TC in women, which is about 10.1 per

100,000 cases, representing one in every 20 cancers

diagnosed among women [3]. TC shows the highest

incidence rates in Northern America, Australia/New

Zealand, Eastern Asia, and Southern Europe. The inci-

dence rate of TC is also increasing in China, and it has

become one of the ten major cancers threatening the

health of Chinese residents [4]. The rapid increase of

thyroid cancer has been largely attributed to the use of

progressively sensitive diagnostic imaging modalities [5,

6]. A study also found that obesity positively correlated

with 16% of TC cases and 63% of large-size tumors diag-

nosed from 2013 to 2015 in the USA [7]. Differentiated

thyroid cancer, which originates from thyroid follicular

epithelial cells, accounts for more than 95% of TC, among

which papillary thyroid carcinoma (PTC) constitutes more

than 85% of cases [8, 9].

Traditional treatment methods of PTC include radical

surgery, endocrine therapy and 131I therapy, and most

treatments display relatively good efficacy, e.g., patients

who are disease-free after one course of 131I ablation

show a range of in 1–3% recurrence rate [10]. However,

a small proportion of PTC displays high aggressiveness

and even develops into RAI-refractory differentiated

thyroid cancer (RAIR-DTC). This causes roughly 15% of

the patients to experience recurrence within 10 years

after the initial treatment [11–13]. Accurate assessment

of the prognosis of PTC is essential to ensure that high-

risk and advanced patients receive appropriate treatment

without over-treating low-risk patients. The American

Thyroid Association (ATA) currently recommends the

use of TNM staging to predict mortality and proposes a

system to assess the risk of recurrence, which includes

the size of the main tumour and whether it has grown

into nearby areas (T), the extent of spread to nearby

lymph nodes (N), and whether the cancer has metasta-

sised to other organs of the body (M) [9, 14]. It has been

addressed that tumour microenvironment (TME) pos-

sibly plays an important role in response to chemother-

apy and antiangiogenic therapy [15, 16]. In the process

of tumorigenesis, tumour cells interact with the sur-

rounding microenvironment to promote immune toler-

ance, which then develops into immune escape that

eventually results in tumour development and angiogen-

esis, invasion, metastasis, and chronic inflammation [10].

TME has been found to be a complex and continu-

ously evolving matrix, containing such cells as stromal

cells, fibroblasts, endothelial, innate and adaptive im-

mune cells [17]. The transcriptome of PTC has been

well-characterised and the major molecular events

associated with most PTC cases, including the aber-

rant expression of Brafv600e, Ras, point mutations of

Tert and RET/PTC rearrangements were elucidated

[18–20]. However, reports on the interaction between

PTC and stromal tissue, lymphocytic infiltrate, or

normal thyrocytes and expression profiles of associ-

ated marker genes are limited. A study of 23 PTC

patients using oligonucleotide microarrays identified 19

genes differentially expressed with reference to 10 patients

with other thyroid disease, such as Lrp4, Eva1, Tmprss4,

Qpct, and Slc34a2 [21]. A recent study comparing the
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gene expression profiles of PTC and normal thyroid in

both micro-dissected cells and whole tissue slides revealed

crosstalk between cancer cells and TME possibly involving

the functions of Ptcsc, Ctgf, Tff3, Fn1, Mpped2 [22].

As a type of programmed cell death, ferroptosis is

dependent on iron and induced by the accumulation

of oxidatively damaged phospholipids, associated with

the malfunction of glutathione-dependent antioxidant

defences that are mediated by glutathione peroxidase

4 (Gpx4) via different pathways [23–25]. and, result-

ing in a large amount of ROS, which promotes fer-

roptosis The declines in metabolism of lipid peroxides

catalysed by Gpx4 and glutathione (GSH) level intra-

cellularly, lead to Fe2+ oxidising lipids in a Fenton-

like manner, which enhances ferroptosis due to the

elevation of lipid reactive oxygen species (ROS) in

cells [24, 26]. In recent years, the induction of ferrop-

tosis has been investigated as an alternative and/or

joint therapeutic approach to trigger cancer cell

death, with respect to other types of cell death, espe-

cially for the treatment of malignancies resistance is-

sues in some cancers; the marker genes and

modulator molecules of ferroptosis have been identi-

fied [13, 27, 28]. However, the role of ferroptosis in

PTC currently remains elusive.

In this study, we integrated the THCA dataset from

TCGA and the clinical databases of THCA from UCSC

Xena to identify reliable differentially expressed genes

(DEGs) relevant to ferroptosis in PTC. Then, univariate

Cox survival analysis and lasso Cox regression analysis

were performed to identify DEGs of PTC, and we pro-

posed a prognostic prediction model using DEGs and

clinical data from the TCGA-THCA and UCSC Xena

datasets. We performed Multivariate Cox survival ana-

lysis on hub genes combined with clinical prognosis data

and showed that the model can be used to predict PTC

prognosis.

Methods
Data processing

The papillary thyroid carcinoma (THCA) datasets were

obtained from two platforms. THCA database level 3

count was searched in The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/

repository). The datasets in TCGA were transformed

into Transcripts Per Million (TPM) values and the mu-

tation data of The Single Nucleotide Polymorphism

Database (SNP) were downloaded for THCA. The clin-

ical data of THCA were obtained using the UCSC Xena

browser (https://xenabrowser.net/). Only patients with

primary tumours who did not receive neoadjuvant ther-

apy were included in this retrospective analysis [13].

Their clinicopathological, genetic, epigenetic, and sur-

vival data were downloaded for a secondary analysis. In

this study, the datasets of 502 tumour samples and 56

normal samples were used.

Identification of THCA subtypes based on related genes

of ferroptosis

A set of 60 related genes of ferroptosis genes were sum-

marised from the MisgDB database (https://www.gsea-

msigdb.org/gsea/msigdb). The ConsensusClusterPlus

package was used for consensus clustering and molecu-

lar subtype screening. In brief, k-means clustering was

used, with 50 iterations (each using 80% of the samples)

[29]. The best cluster number was determined by the

clustering score for the cumulative distribution function

(CDF) curve, and the relative changes in the area under

the CDF curve were evaluated. Principal component

analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE), commonly used for dimensionality

reduction, were used to verify the reliability of the con-

sensus clusters.

Heatmap

The ssGSEA score xi for each THCA sample i was con-

verted to xi′ using the equation:

x0i ¼ xi−xminð Þ= xmax−xminð Þ

while xmax and xmin represent the maximum and mini-

mum single-sample gene-set enrichment analysis

(ssGSEA) scores for all samples in the THCA dataset, re-

spectively. The relationship among subtypes, clinical pa-

rameters and ferroptosis genes gene expression were

shown by thermography with R-package pheatmap.

Comparison of immune cell subgroups among molecular

subtypes of THCA

We continued to use maftools to explore the difference

between two subtypes and drew the waterfall of them. In

order to investigate the biological difference and under-

stand the different pathways involved by the subtypes,

Gene Set Enrichment Analysis (GSEA) was used with

the clusterProfiler package. Gene set variation analysis

(GSVA) was used to further analyze the difference of

pathways between the subtypes using GSVA package

[30, 31].

Immune infiltration microenvironment in THCA

The difference between the subtypes may be due to the

complexity of tumour microenvironment, so we used

the ssGSEA algorithm to analyse the proportion of 28

kinds of immune cells in THCA, and used hclust

algorithm to classify the immune cells according to the

proportion of immune cells. Finally, a box-plot was

constructed to contrast immune cell content between the

subtypes. If the normal distribution and homogeneity of
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variance were met, T-test was used; if not, Wilcox test was

used. The above operations were completed by using

complexheatmap package, ssGSEA package, corrplot

package and ggplot2 package.

Gene co-expression network analysis

To investigate characteristic immune gene distribution in

each molecular subtype of THCA and identify genes or

gene modules highly related to immune cell infiltration, the

WGCNA R package was used to evaluate 502 immune-

related genes comprising the expression matrix. WGCNA

network was constructed and the significant modules were

identified. Genes of the significant modules were selected

as subtype related hub genes for follow-up analysis.

Data validation of the differentially expressed genes (DEGs)

To further analyse DEGs, DEseq2 algorithm was used

for differential analysis of sequencing data (using adjust

P-value < 0.05 and logFC > 2 as thresholds). Volcano

plots and heatmap were applied to visualize the distribu-

tion of the overlapping DEGs between the training and

test sets [32]. The above operation was done using the

DEseq2 package.

Functional enrichment, pathway analysis of hub genes

In order to identify the possible functions and pathway

of hub genes, Gene Ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

[33, 34] enrichment analyses were performed using the

clusterProfiler package [35]. The visualisation module of

clusterProfiler was used for displaying analysis results.

P < 0.05 was selected as the cut-off criterion.

Cox regression and survival analysis

To explore the clinical efficacy of hub genes, univariate

Cox analysis was performed on hub genes combined

with clinical prognosis data, and the results of univariate

Cox regression (P < 0.05) were included in lasso regres-

sion. The lasso regression results were incorporated into

multivariate Cox regression. The risk regression model

was built according to the multivariate analysis results,

and the formula of the model was as follows:

risk score ¼
Xn

i¼1

βi � xi

ROC curve and survival curve were used to evaluate the

results of the model. Univariate Cox analysis and multi-

variate Cox analysis were performed by combining THCA

clinical data and risk score values for further evaluation.

Statistical analysis

All the above analyses were completed by R software.

Adjust P-value < 0.05, P-value < 0.05 and FC > 2 were used

as statistical thresholds. The statistical methods and

algorithms used are described in the corresponding steps.

Results
Identification of THCA subtypes based on immune gene

sets

The 502 tumour samples of THCA were divided into k

subtypes (k = 2–9) using the R package ConsensusClus-

terPlus. Consensus distributions for each k were dis-

played, which dissect the optimal k value at which the

sample distribution was stable (Fig. 1A). Based on the

consensus score of the CDF curve, the optimal cluster

number was determined as k = 2, and the relative

changes in the area under the CDF curve were evaluated.

These were finally divided into two distinct and non-

overlapping subtypes, i.e., cluster 1 and cluster 2. The

consensus matrix heat map of these two clusters was

shown in Fig. 1B. A principal component analysis (PCA)

plot (Fig. 1C) and a two dimensional t-SNE analysis

(Fig. 1D) further verified the LUAD cohort and the reli-

ability of the consensus clusters.

Association among subtypes, clinical parameters and

ferroptosis signature genes

To explore the association among subtypes, clinical

parameters and ferroptosis signature genes, we analysed

gene cluster, tumour stage, survival status, pathologic

stage, pharmaceutical, radiation, race, gender, age, and

ferroptosis signature genes in the TCGA cohort. The re-

lationship among subtypes, clinical parameters and fer-

roptosis signature genes is derived by thermography

(Fig. 2). On the left side of the heatmap, genes that were

positively associated with ferroptosis were coded red

(such as Csf2, Hsbp1, Pebp1, Nfs1, Hmgcr, Sqle, Mt1g,

and Pgd), whereas blue colour was used to indicate

genes that are negatively associated with ferroptosis

(incl. Tp53, Keap1, Rpl8, Nox1, Fth1, Hmox1, Acsl4,

Sat1, Gpx4, Ptgs2, Gls2, Fancd2, Alox5, Slc1a5 and

Dpp4). Gene cluster differed significantly between the

two subtypes. In particular, the proportion of cluster 2

was significantly higher than cluster 1 in ferroptosis

signature genes that are positively associated, yet the

expression of these genes generally appeared higher in

cluster 2, such as Acsf2, Mt1g, Gclc and Aifm2. More-

over, cluster 1 had remarkably larger proportion of genes

that are negatively associated with ferroptosis, for

instance, Tp53, Dpp4, Slc1a5, Alox5 and Ptgs2.

In terms of the spread magnitude to nearby lymph

nodes (stage_N), N1 was largely relevant to cluster 1,

while N0 and NX were more present in cluster 2. The

metastasis to distant sites (stage_M) showed an in-

creased proportion of MX in cluster 2, while the extent

of the tumour (stage_T) distributed across both cluster 1

and 2, with latter exhibited higher proportion of T2
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(Fig. 2). There were more pathological stage III and IV

cases associated with cluster 1, whereas cluster 2 subtype

showed more genes associated with stage II, which

represents non-invasive tumour with no spread to lymph

nodes and no metastasis.

Somatic mutation landscape of the two subtypes were

identified by GSEA

We continued to explore the differences between the

two subtypes using the maftools package to explore the

mutation profile and drawing the waterfall map of them

(Fig. 3). It was found that the somatic mutation types of

the two subtypes were missense mutations. The top 2

somatic mutation genes of subtype cluster 1 were Braf

(88%) and Tnn (7%) (Fig. 3A), with the other 47 genes

with low mutation frequency less than 5%. Cluster 2

showed somatic mutations of Nras, Hras and Tg with

more than 10% of mutation frequency (Fig. 3B). This in-

dicates biological differences between the two subtypes.

Gene set enrichment analysis

GSEA and GSVA were used to analyse the enriched

pathways in each cluster to investigate the molecular dif-

ferences in the phenotypes of these two subtypes. GSEA

analysis suggested that subtype cluster 1 was mainly

involved in bacterial invasion of epithelial cells, cell

Fig. 1 Consensus clustering of THCA TCGA cohorts. A CDF curve of the consistency score for different subtype numbers (k = 2–9). B The

consensus score matrix for THCA samples when k = 2. A higher consensus score between two samples indicates that they are more likely to be

assigned to the same cluster in different iterations. C Principal component analysis (PCA) plot of the TCGA cohort. D 2D t-SNE analysis of the

TCGA cohort
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adhesion molecules, completion and coaggregation cas-

cades and intestinal immune network for IgA produc-

tion (Fig. 4A). In subtype cluster 2 phenylalanine,

tyrosine and tryptophan biosynthesis, thyroid hormone

synthesis, tyrosine metabolism, ubiquinone and other

terpenoid−quinone biosynthesis were enriched (Fig. 4B).

GSVA was used to further explore the differences in

participating KEGG pathways between the two subtypes,

and the results were shown in Fig. 4C (adjust P-value<

0.05; see Additional file 1: Table S1 for more details). In

addition, there were more immune response relevant

pathways present in cluster 1 than cluster 2, such as

Fig. 2 Unsupervised clustering of ferroptosis genes expression in the THCA cohort. The gene cluster, tumour stage, survival status, pathologic

stage, pharmaceutical, radiation, race, gender, age, and ferroptosis signature genes were used as patient annotations. Red represented high

expression of regulators and blue represented low expression
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antigen processing and presentation (P-value = 1.27E-22),

natural killer cell mediated cytotoxicity (P-value = 1.36E-37),

Fc gamma R-mediated phagocytosis (P-value = 1.12E-23),

cytokine-cytokine receptor interaction (P-value = 7.18E-45),

and toll-like receptor signalling pathway (P-value = 1.17E-

24). Cluster 2 was enriched with more metabolism pathways,

for instance, metabolisms of glycine, serine and threonine

(P-value = 1.04E-30), porphyrin and chlorophyll (P-value =

2.93E-33), and fatty acid (P-value = 4.05E-41).

Immune characteristics of the two subtypes

The difference between two immune subtypes might be

formed because of the complexity of the TME. To ex-

plore the biological behaviours between the two clusters,

we performed ssGSEA algorithm to analyse the propor-

tion of 28 kinds of immune cells in immune infiltration

microenvironment in THCA. The results showed that

the degree of immune infiltration in cluster 1 was largely

higher than in cluster 2, suggested by the greater activa-

tion of immune response relevant cells, among which ac-

tivated B cells, CD8 and CD4 T cells appeared to be the

top three cell types (Fig. 5A). Spearman correlation ana-

lysis was used to calculate the correlation between fer-

roptosis gene expression and the proportion of immune

infiltrating cells (Fig. 5B). This showed positive correl-

ation of Alox5, Fancd2, Dpp4, Hmox1, Ptgs2, Slc1a5,

Sat1 and Acsl4 with most cell types with relatively high

magnitudes. In contrast, the negative correlation of these

cells with ferroptosis was indicated by the relative low

expression of Acsf2, Pebp1, Nfs1, Hsbp1, Hmgcr, Acsl3

and Gss. The difference of immune cell contents

between the two subtypes were compared (Fig. 5C and

Additional file 2: Table S2). Notably, cluster1 was

remarkably enriched (P-value < 0.0001) with nearly all

innate immune cell types, except eosinophil and mono-

cyte, compared to cluster 2.

Identification of DEGs distinct phenotypes derived from

gene co-expression network

The distribution of genes expression profiles in the sub-

types was investigated to identify genes or gene modules

highly related to immune infiltration microenvironment.

The WGCNA R-package was used to evaluate the ex-

pression matrix data from 502 tumour samples. Analysis

of network topology for various soft-thresholding powers

indicated that when the power value was equal to 5 (β =

5), the predicted gene co-expression network exhibited

scale-free topology by the fit index greater than 0.8, with

inherent modular features (Additional file 3: Fig. S1A).

The adjacency function was used to generate the adja-

cency matrix based on the β and gene expression matrix.

The hierarchical clustering was built based on the TOM

dissimilarity measure (Fig. 6A). A total of 25 seven co-

expression modules were detected. The module preserva-

tion statistics was employed to achieve reliable and pre-

served modules (Fig. S1B). The co-expression network was

examined by the NULMS Stanford dataset, with genes

assigned to modules based on the modules in the reference

dataset. There are 16 modules strongly preserved (Z-sum-

mary more than 10), such as blue, green, turquoise yellow

and red modules; while seven modules are moderately

preserved (5 < Z-summary < 10).

The association between module eigengenes, subtypes

and immunity were then computed through the Pear-

son’s correlation coefficient, which evaluates the P-value

was calculated for any given correlation. The blue mod-

ule was most significantly correlated with subtypes, and

the yellow module had the highest correlation with im-

mune typing (Additional file 3: Fig. S1C). Therefore, the

Fig. 3 Somatic mutation landscapes of subtypes cluster 1 (A) and 2 (B) identified by GSEA in TCGA cohort. Landscape of mutation profiles in

THCA samples. A total of 34 genes with more than 10% of mutation frequency were chosen in the waterfall plot. Various colours of the waterfall

plot with annotations at the bottom represent different mutation types. The barplot above the legend shows the mutation number
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Fig. 4 A The enriched KEGG pathways associated with DEGs of cluster 1 predicted by GSEA analysis. B The enriched KEGG pathways associated

with DEGs of cluster 2 predicted by GSEA analysis. C Thermogram shows the activation state of KEGG pathways in different clusters after

processing by GSVA. The red node represents up-regulation and the blue node represents down-regulation, P-value < 0.05
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Fig. 5 (See legend on next page.)
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genes of these two modules were selected as subtype re-

lated hub genes for subsequent analysis, which included a

total of 1747 hub genes. The DEseq2 algorithm was used

to further analyse the hub genes in the sequencing data,

and significant differentially expression of 814 hub genes

were found, among which 308 were up-regulated and 506

were down-regulated in tumour tissues (Fig. 6B). The heat

map comparing the expression of these 814 genes in

Log2FC values was displayed in Fig. 6C (See Additional

file 4: Table S3 for the full gene list).

Gene ontology and KEGG pathway analysis showed

functional enrichment in immune regulations

To further analyse the functions and pathways that 814

hub genes are potentially involved in, GO term and

KEGG pathway enrichment analyses were performed

(See figure on previous page.)

Fig. 5 Identification of the two immune subtypes in the THCA cohort. A Heatmap of the two immune subtypes based on ssGSEA algorithm for

28 immune gene sets. B The correlation heatmap demonstrates the relationship between ferroptosis genes expressions and immune cells

infiltration. Dots size shows the extent of their relationships and dots colour indicates if they are positive-related (red dots) or negative-related

(blue dots). The number on the scale bar indicates the coefficients of correlation between genes expression and cells infiltration. Blank squares

mean insignificance (P-value > 0.05). C The abundance of each TME infiltrating cell in THCA modification patterns. The upper and lower ends of

the boxes represented interquartile range of values. The lines in the boxes represented median value, and black dots showed outliers. The

asterisks represented the statistical P-value (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001)

Fig. 6 A Gene dendrogram and module colours of 502 PTC patients. B The volcano plot and C heatmap plot of 814 hub genes differentially

expressed in tumour and normal tissues (including 308 up-regulated and 506 down-regulated genes)
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using the clusterProfiler package. GO analysis showed

that 814 hub genes were mainly involved in biological

processes such as regulation of small GTPase mediated

signal transduction, positive regulation of endocytosis

and regulation of plasma lipoprotein particle levels. In

terms of cellular components, these genes showed high

relevance to membrane (Fig. 7A). KEGG pathway ana-

lysis showed that 814 hub genes were mainly enriched in

Salmonella infection and endocytosis pathways (Fig. 7B).

The enrichment analysis of Wikipathway revealed that

regulation of apoptosis by parathyroid hormone-related

protein, apoptosis modulation and signalling, and patho-

genic Escherichia coli infection were the top 3 pathways

(Fig. 7C). Besides, several cancer relevant pathways were

also enriched in the hub genes (Additional file 4: Table S3).

Establishment and assessment of the predict model

To explore the clinical efficacy of 814 hub genes,

Univariate Cox analysis was performed with clinical

prognosis data and the results of P-value < 0.05 were

recorded in Table S3. The results of Univariate Cox re-

gression (P-value < 0.05) were included in lasso regression.

Dimensionalisation was reduced according to the Lambda

curve (Fig. 8A) and the proportional hazards model curve

(Fig. 8B), which showed that the deviance was the smallest

when the number of genes in the model was 19. The

lasso regression results were incorporated into multi-

variate Cox regression, as seven genes were identified by

LASSO regression (Additional file 4: Table S3), including

Ac008063.2, Apoe, Bcl3, Acap3, Alox5ap, Atxn2l and B2m.

The risk regression model diagram was displayed in

Fig. 8C according to the multivariate analysis results. In

order to evaluate the specificity and sensitivity of the

prognostic model, ROC curve and survival curve were

used for evaluation. The AUC value of the ROC curve was

0.748 (Fig. 8D) and the survival curve showed a significant

difference between the high-risk and low-risk groups

(P-value = 6.329E-4), indicating a good result of the

model (Fig. 8E).

The risk score predicted prognosis

To further evaluate the clinical efficacy of the model,

univariate Cox analysis (Fig. 9A) and multivariate Cox

analysis (Fig. 9B) were performed by combining THCA

clinical data and risk score values, which implied that

the risk score value of the model could be used as an

independent prognostic indicator to predict the prognosis

of patients with thyroid papillary carcinoma (see

Additional file 5: Table S4 for full statistical results).

Discussion
The incidence of PTC is a heavy disease burden around

the world, and has increased quite significantly over the

past two decades [36–38]. Patients with recurrent PTC

who undergo surgical treatment have a high risk of com-

plications, including tracheal collapse, laryngeal edema

and recurrent laryngeal nerve injury [9, 36, 39]. Further-

more, PTC is a highly heterogeneous disease and tumour

Fig. 7 A The GO analysis and B the KEGG pathway enrichment analysis of 814 hub genes. The node colour changes gradually from yellow to

black in ascending order according to the adjusted P-values. The size of the node represents the number of counts. C The Wikipathway

enrichment analysis. Larger blue points represent significant terms (P-value < 0.05); smaller grey points represent non-significant terms. The darker

the blue colour of a point, the more significant it is
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Fig. 8 A Log (Lambda) value of the 24 genes in LASSO model. B Cross-validation for tuning parameter selection in the proportional hazards

model, dotted vertical lines were drawn at the optimal values, and seven genes were identified by LASSO regression. C The distribution of risk

score and gene expression levels among patients. D The ROC curve for assessing the reliability of the predict model. E The Kaplan-Meier curve of

the predicted model

Fig. 9 Univariate and Multivariate Cox analysis analysis of risk score, cluster, age, gender, radiation and TNM stage. A Prognostic value detection

of the gene signature via univariate survival-related analysis in PTC. B Prognostic value detection of the gene signature via multivariate survival-

related analysis in PTC
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progression involves a complex network comprised of mul-

tiple signalling pathways [40, 41]. Nomogram is widely

used to evaluate clinical prognosis in oncology because it

can integrate a variety of prognostic determinants, including

molecular biological and clinicopathological parameters [8,

40, 42]. The combination of our prognostic gene signature

with conventional clinical parameters may provide a better

tool to predict PTC prognosis.

The discovery of distinct lethal subroutines of RCD

has facilitated great progress in cancer treatment [43–

45]. Ferroptosis was identified as a new form of RCD

distinct from apoptosis, necrosis, autophagy, and other

forms of cell death. It is an iron-dependent cell death

process and caused by lipid peroxidation relying on

reactive oxygen species (ROS) generation [24, 46, 47].

There has been growing interest in exploring the mecha-

nisms underpinning ferroptosis in recent years, and

several seminal discoveries have elucidated the process

[44, 48, 49]. Ferroptosis is thought to only be inhibited

by the phospholipid hydroperoxide-reducing enzyme

glutathione peroxidase 4 and radical-trapping antioxi-

dants [26, 44]. GSH-GPX4 and FSP1-CoQ10 are the two

main ferroptosis resistance pathways [50, 51].

Growing evidence suggests that immune cells in TME

play vital roles in tumorigenesis. These innate immune

cells include macrophages, neutrophils, dendritic cells,

innate lymphoid cells, myeloid-derived suppressor cells,

and natural killer cells which potentially possess tumour-

antagonising or tumour-promoting functions [29, 52, 53].

Cancer cells exhibited iron ion aggregation in the TME

for active proliferation, thus from the perspective of iron

homeostasis, regulating ferroptosis could effectively kill

tumour cells. In addition, ferroptosis also plays an import-

ant immunological role, participating in the process of

tumour surveillance by immune cells and tumour immun-

ity [52, 54, 55]. The metabolism of immune cells affects

their differentiation and function [56]. Given the complex

interaction of environmental factors in TME as a pro-

found impact on the metabolic activities of immunity,

matrix and tumour cell types and ferroptosis [48, 57].

Thus, exploring immunophenotype in TME could help

reveal the significance of ferroptosis in cancer treatment.

The cross study of ferroptosis and immune cells might

lead to a discussion of clinical application.

In this study, we seek to investigate whether there

was ferroptosis regulation via exploring the crucial

genes and pathways of ferroptosis in PTC. A total of

502 PTC samples and 56 normal samples integrated

from TCGA and UCSC Xena datasets were analysed,

and 60 ferroptosis related genes were derived from

MisgDB datasets. Two distinct subtypes (i.e. cluster 1,

cluster 2) were identified in our study accordingly

based on these related genes. The proportion of clus-

ter 1 was significantly higher than cluster 2 in the

signature genes that either positively or negatively associ-

ated with ferroptosis. The main mutation types of these

two subtypes were identified as missense mutation. The

missense mutations of Braf have been detected in circu-

lating DNA in the serum of some patients with PTC [58].

A close association of Braf mutations with extrathyroidal

extension, lymph node metastasis, and stage III/IV of PTC

has been strongly suggested [59]. The significance of

missense mutations of Nras and Hras in PTC has also

been identified [60–62].

The distinct enriched KEGG pathways revealed GSEA

analysis of cluster 1 and cluster 2 implied biological dif-

ferences between the two genotypes. The GSVA analysis

showed that there were more immune response relevant

pathways enriched in cluster 1 (adjust P-value < 0.05,

Additional file 1: Table S1). The difference between the

two subtypes possibly resulted from the complexity of

TME, since the degree of immune infiltration in cluster

1 was remarkably higher than that in cluster 2, which

was reflected by the contents of many immune cell

types. Subsequent analysis of TME cell infiltration indi-

cated THCA cluster1 was remarkably rich in innate

immune cell infiltration including T cells, natural killer

cells, macrophage, eosinophil, mast cell, MDSC, plasma-

cytoid dendritic cell.

We subsequently analysed the related hub genes of the

two modules with the highest correlation between mo-

lecular typing and immune typing in WGCNA network,

and there were 814 DEGs including 308 up-regulated

genes and 506 down-regulated genes in PTC tissues.

Then, lasso regression was evaluated and incorporated

into multivariate Cox regression, the crucial genes (i.e.,

Ac008063.2, Apoe, Bcl3, Acap3, Alox5ap, Atxn2l and

B2m) were identified and the risk regression model was

constructed according to the results of multivariate ana-

lysis. ROC curve and survival curve indicated a good result

of the model. Based on these findings, the risk score of the

model could be used as an independent prognostic

indicator to predict the prognosis of patients with PTC.

All of these genes, with the exception of Ac008063.2, have

been implicated in cancer cell proliferation. With the ex-

ception of Apeo, which is highly expressed in liver cancer,

all of the genes have low cancer specificity, according to

Human Protein Atlas (Ac008063.2 could not be identified).

B2m has been identified as a potential biomarker for

thyroid cancer, kidney disfunction and renal disease [63].

Higher rates of B2m mutation are correlated with lower

patient survival rates, which is speculated to be due to

increased immune evasion [64, 65]. Atxn2l is a stress

response molecule which has been identified as a potential

cancer prognosis gene for cancer, such as adrenocortical

carcinoma [66, 67]. Alox5ap has been identified as specific-

ally upregulated in leukemia stem cells and unchanged in

hematopoietic stem cells, indicating specificity in cancer cell

Lin et al. BMC Genomics          (2021) 22:576 Page 13 of 16



self-renewal and differentiation [68, 69]. There is relatively

little oncological literature on Acap3, however it has been

identified as highly down-regulated in late-stage liver cancer

patients [70]. Bcl3 up-regulation has been associated with

poorer prognostic outcomes [71, 72]. It is classified as an

oncogene and has been implicated in breast cancer cell

migration [73, 74]. Apoe is associated with tumorigenesis in

many cancers, including lung, gastric and thyroid cancer,

and a higher risk of metastasis [75–77].

To our knowledge, a prognostic model based on

ferroptosis genes and immune cells in tumour immune

infiltration microenvironment has not been reported up

to now. Compared with whole genome sequencing, our

prediction model based on a limited number of gene

expression levels might be more economical and

practical. Further, the risk score of the model could pre-

dict the prognosis of patients with PTC. However, the

external validation of the seven-gene signature and

prognostic nomogram is needed in more independent

cohorts. In addition, to clarify the molecular mechanism

underlying the seven genes in relation to PTC, the

spatial expression pattern and quantity of these genes at

protein level warrants further investigation.

Conclusions
We demonstrated that ferroptosis was associated with

immune cell infiltration in TME of patients with PTC,

based on which a seven-gene signature and a prognostic

model to predict the prognosis was established. The

seven genes appeared closely related to the progression

and prognosis of PTC and thus could be potential thera-

peutic targets. The predicted model proved to be reliable

in predicting the prognosis of patients with PTC and

might thus be beneficial for individualised treatment and

medical decision making.
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