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ARTICLE

Identification of four novel associations for B-cell
acute lymphoblastic leukaemia risk
Jayaram Vijayakrishnan 1,19, Maoxiang Qian2,3,19, James B. Studd 1, Wenjian Yang2, Ben Kinnersley 1,

Philip J. Law 1, Peter Broderick 1, Elizabeth A. Raetz4, James Allan5, Ching-Hon Pui 6,7, Ajay Vora8,

William E. Evans 2,7, Anthony Moorman9, Allen Yeoh10,11, Wentao Yang2, Chunliang Li 12,

Claus R. Bartram13, Charles G. Mullighan 6,7,14, Martin Zimmerman15, Stephen P. Hunger16, Martin Schrappe17,

Mary V. Relling2,7, Martin Stanulla15, Mignon L. Loh18, Richard S. Houlston 1* & Jun J. Yang 2,6,7*

There is increasing evidence for a strong inherited genetic basis of susceptibility to acute

lymphoblastic leukaemia (ALL) in children. To identify new risk variants for B-cell ALL

(B-ALL) we conducted a meta-analysis with four GWAS (genome-wide association studies),

totalling 5321 cases and 16,666 controls of European descent. We herein describe novel risk

loci for B-ALL at 9q21.31 (rs76925697, P= 2.11 × 10−8), for high-hyperdiploid ALL at 5q31.1

(rs886285, P= 1.56 × 10−8) and 6p21.31 (rs210143 in BAK1, P= 2.21 × 10−8), and ETV6-

RUNX1 ALL at 17q21.32 (rs10853104 in IGF2BP1, P= 1.82 × 10−8). Particularly notable are the

pleiotropic effects of the BAK1 variant on multiple haematological malignancies and specific

effects of IGF2BP1 on ETV6-RUNX1 ALL evidenced by both germline and somatic genomic

analyses. Integration of GWAS signals with transcriptomic/epigenomic profiling and 3D

chromatin interaction data for these leukaemia risk loci suggests deregulation of B-cell

development and the cell cycle as central mechanisms governing genetic susceptibility

to ALL.
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A
cute lymphoblastic leukaemia (ALL) is the most common
paediatric cancer with B-cell precursor ALL (B-ALL)
accounting for ~85% of the cases1. Although the peak age

of diagnosis of ALL is between ages 2 and 5 years, some initiating
somatic genomic abnormalities (e.g., chromosomal transloca-
tions) can be detectable at birth2,3. Both the absence of specific
environmental risk factors and early onset suggest a strong
inherited genetic basis for susceptibility4–6. Our understanding
of ALL susceptibility has been informed by genome-wide asso-
ciation studies (GWAS) identifying 11 regions harbouring risk
variants: 7p12.2 (IKZF1), 8q24.21, 9p21.3 (CDKN2A/B), 10p12.2
(PIP4K2A), 10q26.13 (LHPP), 12q23.1 (ELK3), 10p14 (GATA3),
10q21.2 (ARID5B), 14q11.2 (CEBPE), 16p13.3 (USP7) and
21q22.2 (ERG)7–16. ALL is a biologically heterogeneous disease
with subtypes defined by recurrent initiating genetic abnormal-
ities. After initiation, however, leukaemia cells acquire a con-
stellation of secondary lesions. The two most common subtypes
of B-ALL are ETV6-RUNX1 fusion positive and high-
hyperdiploid (HD) ALL17, each accounting for 20–25% of
cases. HD ALL is characterised by a chromosome number > 51
due to the non-random gain of specific chromosomes. Subtype-
specific GWAS associations have so far been identified at 10q21.2
(ARID5B) associated with HD ALL, 10p14 (GATA3) for Phila-
delphia chromosome-like ALL, and 2q22.3 associated with ETV6-
RUNX1-positive ALL7,9,12,18,19.

To gain a more comprehensive insight into susceptibility to
ALL, we performed a meta-analysis of four GWAS from the North
America13,18,20 and Europe7,9,12, with additional replication. We
report both the discovery of four new susceptibility regions for
ALL and refined risk estimates for the previously reported loci. In
addition, we have investigated the gene regulatory mechanisms
underlying the genetic associations observed at these risk loci by
integrating genome-wide chromosome conformation capture
(Hi-C) data and chromatin immunoprecipitation-sequencing
(ChIP-seq), epigenomic and transcriptomic profiling to pinpoint
target genes.

Results
GWAS meta-analysis and replication. We conducted a meta-
analysis of four GWAS B-ALL datasets: UK GWAS I, German
GWAS, UK GWAS II and the COG_SJ GWAS7,9,12,13,18,20,
totalling 5321 cases and 16,666 controls of European descent.
Following established quality-control measures for each GWAS
dataset (Supplementary Fig. 1), the genotypes of ~10 million
single-nucleotide polymorphisms (SNPs) in each study were
imputed. After filtering out SNPs on the basis of minor allele
frequency (MAF) and imputation quality, we assessed asso-
ciations between ALL status and SNP genotype in each study
using logistic regression. Risk estimates were combined through
an inverse-variance-weighted fixed-effects meta-analysis21,22.
Quantile–quantile (Q–Q) plots for SNPs did not show evidence
of substantive over dispersion (λGC values 1.02–1.08; Supple-
mentary Fig. 2). Given the biological heterogeneity of ALL, as
evidenced by subtype-specific associations at a number of
previously published regions9,12,18, we analysed the association
between genotype and all B-ALL cases, and the common sub-
types of HD and ETV6-RUNX1-positive ALL. Risk loci that
were genome-wide significant only with a particular ALL sub-
type were defined as subtype-specific associations.

Meta-analysis identified 16 risk loci above genome-wide
significance (P < 5 × 10−8, by inverse-variance method based on
a fixed-effects model), of which 10 are previously reported B-ALL
risk loci (Fig. 1 and Supplementary Table 1). Of the six new
genome-wide significant candidate risk loci, one was generic to all
B-ALL, three were specific for high-HD ALL and two were

specific for ETV6-RUNX1-positive ALL (Supplementary Table 1).
These six SNP associations were interrogated in an independent
series of 2237 cases and 3461 controls (COG_SJ GWAS non-
European American (EA); Supplementary Tables 2 and 3). Four
of the six SNPs were validated in the replication series (P < 0.05,
by additive logistic regression test): for all B-ALL at 9q21.3
(rs76925697, nearest gene TLE1), for HD ALL at 5q31.1
(rs886285, C5orf56) and 6p21.31 (rs210143, BAK1), and for
ETV6-RUNX1-positive ALL at 17q21.32 (rs10853104, IGF2BP1)
(Table 1 and Supplementary Tables 2, 4 and 5). In addition to
providing further evidence for the 21q22.2 association for all B-
ALL14, we also identified a subtype-specific association for HD
with rs9976326 (Table 1 and Supplementary Tables 1, 4 and 5).

Next, we performed a conditional analysis on the sentinel risk
SNP at each locus to search for further independent signals at
new and previously reported risk regions. We confirmed the
presence of previously reported dual association signals at 9p21.3
(CDKN2A/B) and 10p12.2 (PIP4K2A) (Supplementary Table 6).
In addition, independent risk variants were identified at 21q22.2
(ERG) and 7p12.2 (IKZF1) (Supplementary Table 7 and
Supplementary Figs. 3, 4, 5, 6 and 7).

Functional annotation of new risk loci. To gain insight into the
biological basis of association signals, we examined the epigenetic
landscape of risk regions in B cells. For each of the new risk
regions, we evaluated chromatin profiles using ChromHMM,
ATAC-seq data in primary B cells from the Roadmap Epige-
nomics consortia23, and the GM12878 lymphoblastoid cell line
from ENCODE24,25 (Fig. 2 and Supplementary Figs. 3, 4, 5, 6, 7).
As the strongest associated GWAS SNP may not represent the
causal variant, we examined variants in linkage disequilibrium
(LD) with the top risk SNP in each region (defined by r2 > 0.8,
P < Pmin × 50; Supplementary Table 8). Genomic spatial proxi-
mity and chromatin looping between non-coding DNA and tar-
get genes are key to gene regulation; we therefore interrogated
promoter capture Hi-C (CHiC) data from naive B cells26 (Sup-
plementary Table 9) as well as Hi-C and H3K27Ac ChIP data in
human ALL cells27 (Supplementary Fig. 8). We also sought to
identify target genes by performing quantitative trait locus (QTL)
analysis of mRNA expression (eQTL) data from GTEx28, Blood
eQTL29, MuTHER30 and CAGE31 databases, and DNA methy-
lation (mQTL) (Supplementary Table 10). We annotated risk loci
with variants mapping to haematopoietic transcription factor
(TF)-binding sites (Fig. 2, Supplementary Figs. 3, 4, 5, 6 and 7,
and Supplementary Table 11). Using Summary data-based
Mendelian Randomisation (SMR) analysis, we examined for
pleiotropy between GWAS signal and cis-eQTL for genes within
1Mb of the sentinel SNP to identify a possible causal relationship
between gene expression and disease (Supplementary Tables 12
and 13).

Lead SNPs at 6p21 are located within an intron 1 kb
downstream of the BAK1 transcription start site and possess
histone marks characteristic of active promoter activity and open
chromatin accessibility (Fig. 2a). The top SNP, rs210143, falls
within a TF-binding cluster and the C-risk allele is associated
with reduced BAK1 expression (PBlood= 3.3 × 10−310, by linear
regression test). SMR analysis confirmed a significant association
with BAK1 expression and ALL consistent with a likely causal
relationship (Supplementary Table 12). The 6p21 association was
confined to HD ALL only, whereas risk variants did not reach
genome-wide significance for either ETV6-RUNX1 or all B-ALL.
BAK1 was not differentially expressed in leukaemic blasts from
any ALL subtype (Supplementary Fig. 9).

The HD ALL-specific association at 5q31 (C5orf56) localises
to genomic regions featuring ChIP-seq marks indicative of
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regulatory elements. Although SNP rs2522044 is eQTL for
SLC22A4 and C5orf56 (PBlood= 8.8 × 10−51 and 7.3 × 10−12,
respectively, by linear regression test), a looping interaction
between the top SNP rs886285 and the immune regulatory gene
IRF1 was observed (Fig. 2b and Supplementary Table 9). SMR
analysis did not reveal any association with C5ORF56, SLC22A4
or IRF1 expression, nor did these genes show subtype-specific
expression in ALL blasts (Supplementary Table 12).

Risk SNPs at 17q21 localising to the second intron of IGF2BP1
lack evidence of cis-regulatory activity. However, the strongest
associated SNP, rs10853104, maps to a TF-binding cluster and
is predicted to disrupt a conserved CTCF-binding motif (Fig. 2c),
suggesting an influence on topological-associated domain
structure. As the 17q21 association was unique to ETV6-
RUNX1-positive ALL, we investigated the relationship between
ALL subtype and expression of genes within 1 Mb of
rs10853104. ETV6-RUNX1-positive ALL cells showed significant
overexpression of IGF2BP1 compared with other ALL subtypes

(Supplementary Figs. 10 and 11; P= 3.68 × 10−23, by two-sided
Wilcoxon’s rank-sum test).

The lead SNP rs76925697 at a new B-ALL risk locus in 9q21
resides 500 kb centromeric to TLE1 within a genomic region
devoid of chromatin marks indicative of regulatory function
(Fig. 2d). We also did not observe any evidence for eQTLs or TF
binding. However, in ALL cells, the region containing the risk
SNP showed strong looping with a distal enhancer within TLE1
(Suppelementary Fig. 8). Finally, we identified an HD ALL-
specific association at the previously reported 21q22 locus within
intron 3 of ERG. Notably, the T-risk allele of the lead SNP
rs9976326 is predicted to disrupt binding of the haematological
TF AML1/RUNX1 and is associated with reduced gene
methylation.

Transcriptome-wide association studies (TWASs) investigating
the association of genetically predicted gene expression with
disease can identify new susceptibility genes by aggregating
evidence across variants, thereby increasing study power. We
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performed a TWAS integrating genomic and expression data32.
This analysis confirmed the risk loci described above but did not
identify any additional associations independent of GWAS
signals, which were statistically significant (Supplementary
Figs. 12 and 13).

To implicate recurrent disruption of TF-binding sites at ALL
risk loci genome wide, we performed TF-binding enrichment
analysis as per Cowper-Sal-lari et al.33. This analysis identified
over-representation of TF binding at risk SNPs compared with a
random SNPs subset. A number of TFs somatically mutated in B-
ALL, including PBX1 (Benjamini–Hochberg corrected P-value
[PBH]= 0.007), TCF3 (PBH= 0.007), ETS1 (PBH= 0.009), RUNX1
(PBH= 0.012) and ERG (PBH= 0.030) (Supplementary Fig. 14)
were enriched at risk loci providing evidence that germline
variation and somatic alterations may impact on the same
pathways. In addition, we identified BRD4 (PBH= 0.007) and
NR3C1 (PBH= 0.009) binding sites as significantly enriched at risk
loci, suggesting their disruption contributes to leukaemogenesis.

Relationship between new risk alleles and clinical features. We
did not find an association between sex or age at diagnosis of ALL
with the new risk SNPs using case-only analysis. We also found
no statistically significant relationship between SNP genotype and
patient outcome using data from German and COG_SJ GWAS
cohorts20,34. A failure to demonstrate additional relationships
may, however, be reflective of limited statistical power.

Contribution of risk SNPs to heritability. Using LD-adjusted
kinships (LDAK)35, the heritability of ALL ascribable to all
common variation was identified as 21% (SD ± 0.065) (Supple-
mentary Table 14). Together, the risk loci identified so far
accounted for 31% of the total variance in genetic risk of ALL
(Supplementary Table 15). To assess the collective impact of all
identified risk SNPs we constructed polygenic risk scores (PRS)
considering the combined effect of all risk SNPs modelled under a
log-normal relative risk distribution after correcting the Z-scores
for Winner’s curse using FIQT36. Based on their PRS score, an
individual in the top 1% of genetic risk would have a 4.7-fold
increased risk of ALL when compared with an individual with
median genetic risk (Supplementary Fig. 15).

Discussion
Our analysis provides evidence of four new associations with the
risk of developing ALL. Besides providing additional evidence for

genetic susceptibility to ALL, these new risk loci provide further
insights into the biological basis of ALL development. Integrating
information from Hi-C data with chromatin profiling and eQTL/
mQTL data implicates a number of genes with strong a priori
evidence as the functional basis of associations, e.g., at 6p21.31
the pro-apoptotic protein BAK1, at 21q22.2 the haematological
ETS TF ERG and at 17q21.32 proliferation factor IGF2BP1.
Conditional analysis revealed two novel secondary associations at
7p12.2 (IKZF1) and 21q22 (ERG), in addition to the previously
identified signals at 10p12.2 (PIP4K2A) and 9p21.3 (CDKN2A/
2B). Two of the genome-wide significant associations from our
discovery meta-analysis were not replicated. This may be the
consequence of a different population allelic structure between
cohorts of different ancestry (Europeans in the discovery and
non-Europeans in the replication) or population-specific asso-
ciations14. Our recently discovered T-ALL risk locus USP7 was
also not significant in this GWAS because of its lineage-specific
effect on ALL susceptibility15.

BAK1 is essential for B-cell homoeostasis and its knockout
mice accumulate immature and mature follicular B cells. BAK1
induces apoptosis by binding to and antagonising anti-apoptotic
proteins, including BCL237–39. Reduced BAK1 expression relieves
repression of BCL2, inhibiting apoptosis and conferring a pro-
survival advantage40. Proximity of the lead 6p21 risk variant,
rs210143-T, to the BAK1 promoter and a strong negative asso-
ciation with expression suggests decreased BAK1 promotes ALL
leukaemogenesis. Notably, the 6p21 region is also pleiotropic,
influencing chronic lymphocytic leukaemia (CLL) and testicular
cancer risk. Moreover, the strongest association for both CLL and
ALL is rs210143, suggesting a similar mechanistic basis.

The 12q21 association at IGF2BP1 is specific for ETV6-
RUNX1-positive ALL and this subtype also significantly over-
expresses IGF2BP141. We did not observe a significant association
between IGF2BP1 genotype and its expression in ETV6-RUNX1
ALL, plausibly because the subtle effects of this germline risk
variant on IGF2BP1 transcription were masked by the drastic
upregulation as a result of ETV6-RUNX1 fusion. The subtype-
specific nature of the association may be explained by the
observation that in ETV6-RUNX1 positive ALL IGF2BP1 binds to
the ETV6-RUNX1 transcript increasing its stability and expres-
sion42. IGF2BP1 has been implicated in promoting proliferation
and cell survival via the post-transcriptional regulation of a
number of genes including KRAS, MYC and PTEN43.

Our analysis confirms the ALL association at 21q22 (ERG)
recently reported in Hispanics44. In addition, we report a new

Table 1 Summary of results for genome-wide significant childhood ALL risk loci.

CHR SNP (Subtype) Locus (gene) Position (BP) Risk allele RAF OR (95% CI) P-value

2 rs17481869(ETV6-RUNX1) 2q22.3 146124454 A 0.08 1.74 (1.45–2.09) 2.37 × 10−09

5 *rs886285 (High-Hyperdiploidy) 5q31.1 (C5orf56) 131765206 T 0.34 1.29 (1.18–1.41) 1.56 × 10−08

6 *rs210143 (High-Hyperdiploidy) 6p21.31 (BAK1) 33546930 C 0.73 1.30 (1.19–1.43) 2.21 × 10−08

7 rs17133805 7p12.2 (IKZF1) 50477514 G 0.32 1.65 (1.56–1.74) 5.28 × 10−71

8 rs75777619 8q24.21 130185176 G 0.12 1.26 (1.17–1.36) 2.30 × 10−09

9 *rs76925697 9q21.31 83747371 A 0.96 1.52 (1.31–1.76) 2.11 × 10−08

9 rs113650570 9p21.3 (CDKN2A) 21976402 A 0.02 2.32 (2.03–2.65) 8.06 × 10−35

10 rs10821936 10q21.2 (ARID5B) 63723577 C 0.33 1.80 (1.71–1.89) 1.19 × 10−106

10 rs3824662 10p14 (GATA3) 8104208 A 0.19 1.29 (1.21–1.38) 3.57 × 10−14

10 rs2296624 10p12.2 (PIP4K2A) 22856946 C 0.67 1.25 (1.18–1.32) 2.79 × 10−15

10 rs12779301 10q26.13 (LHPP) 126292655 C 0.66 1.22 (1.15–1.29) 5.72 × 10−13

12 rs4762284 12q23.1 (ELK3) 96612762 T 0.32 1.15 (1.12–1.19) 3.75 × 10−07

14 rs2239630 14q11.2 (CEBPE) 23589349 A 0.45 1.28 (1.22–1.35) 1.72 × 10−21

17 *rs10853104 (ETV6-RUNX1) 17q21.32 (IGF2BP1) 47092076 T 0.47 1.33 (1.21–1.47) 1.82 × 10−08

21 rs9976326 (High-Hyperdiploidy) 21q22.2 (ERG) 39776485 T 0.25 1.33 (1.21–1.46) 4.79 × 10−09

BP base pair, CHR chromosome, CI confidence intervals, OR odds ratio, RAF risk allele frequency. OR and CI are derived from current meta-analysis. *New loci discovered in current meta-analyses. Other

risk loci were reported in previous GWAS using subsets of ALL cohorts included herein.
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HD ALL association with rs9976326. The SNP rs9976326 and the
top SNP reported in Hispanics (rs2836371) are separated by 3 kb
and correlated (pairwise LD values r2= 0.52, D’= 0.85 and r2=
0.60, D’= 0.87 in European and admixed Americans 1000
genomes populations, respectively). ERG encodes an ETS

domain-containing TF important for normal hematopoietic
development. Somatic alteration of ERG is recurrent in ALL and
rs9976326 is in close proximity to hotspot deletions45.

Although risk SNPs at 5q31 reside in C5orf56, which has no
established role in B-cell biology, Hi-C interactions implicate the
TF IRF1, which is required for normal T-cell development and is
deleted in 50% of acute myelogenous leukaemia46,47. The inter-
genic region at 9q21.3 (near TLE1) has no clear candidate and the
biological basis of the association is unclear.

TF-enrichment analysis revealed gene BRD4 with no previous
indication from germline or somatic studies in ALL and the gene
NR3C1 whose alterations are associated with poor outcome and
high risk in ALL patients48. BRD4, a member of the BET protein
family, is a transcriptional co-activator that binds acetylated
histones recruiting TFs to DNA. BRD4 has been found to co-
localise with the lymphoid TFs SPI1, FLI1, ERG, MYB and
CEBPα/β49, and this may account for its enrichment at risk loci.
Several groups have shown activity of BET inhibitors in AML
cells lines50,51. NR3C1 is the glucocorticoid receptor, the target of
the immunomodulatory hormones glucocorticoids, including
cortisol, and drugs including dexamethasone and prednisone. The
effect of these compounds is potent immune-suppression and
reduced inflammation. Glucocorticoid treatment reduces circu-
lating B-cell numbers52 and induces cell death in ALL cells by
lowering the expression of B-cell survival factors53. Further
validation will be required to establish a role of disrupted
NR3C1 signalling in the genesis of ALL.

Deciphering the functional consequences of risk loci is inher-
ently challenging, as analyses are complicated by background
haplotype structure. We have relied in part on integration of
GWAS signals with in silico and publicly accessible epigenetic
data; hence, these predictions require experimental verification
through functional assays in the future.

In summary, our study provides further evidence for inherited
susceptibility to ALL and support for subtype specificity at risk
loci. The different subtypes of B-ALL presumably reflect the
different aetiology and evolutionary trajectories of progenitor
cells influenced by inherited variation. Our findings further
support a model of ALL susceptibility based on transcriptional
dysregulation consistent with altered B-cell differentiation, where
dysregulation of apoptosis and cell cycle signalling features as
recurrently modulated pathways. Genes elucidated from GWAS
functional annotation may represent promising therapeutic tar-
gets for drug discovery. Finally, although our GWAS meta-
analysis is the largest of its kind, greater sample sizes are likely to
uncover additional associations underscoring the need for colla-
borative analyses.
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Fig. 2 Regional plots of association results and recombination rates for

the newly identified risk loci. a 6p21 (rs210143), b 5q31 (rs886285), c 17q21,

d 9q21.3 (rs76925697), e 21q22 (rs9976326). Loci are shown at both

1Mb (left) and 100 kb (right) resolutions. Upper panes show FDR corrected

eQTL P-values extracted from the Blood database; ChIP transcription factor

binding sites shown as blue bars. GWAS pane shows plots show association

−log10P-values (left y-axis) of SNPs shown according to their chromosomal

positions (x-axis). Light blue line shows recombination rates in (cM/Mb)

from UK10K Genomes Project (right y-axis). Lead SNPs are denoted by large

circles labelled by rsID. Colour intensity of each symbol reflects LD, white

(r2=0), dark red (r2= 1.0). Genome coordinates are from NCBI human

genome GRCh37. Lower pane shows chromatin-state segmentation tracks
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Methods
Ethics. Collection of samples and clinical information was undertaken with
informed consent and ethical review board approval. Specifically, Medical Research
Council UKALL97/99 trial by UK therapy centres and approval for UKALL2003
from the Scottish Multi-Centre Research Ethics Committee (REC:02/10/052), the
UK Bloodwise Childhood Leukaemia Cell Bank, the United Kingdom Childhood
Cancer Study, and University of Heidelberg; AALL0232 (clinicaltrials.gov
NCT00075725)54 and P9904/P9905/P9906 (NCT00005585/NCT00005596/
NCT00005603)55 from the Children’s Oncology Group (COG); and Total Therapy
XIIIB/XV (NCI-T93-0101D/NCT00137111)56,57 from the St. Jude Children’s
Research Hospital. The diagnosis of ALL was established in accordance with World
Health Organization guidelines.

GWAS data. The four GWAS datasets have been the subject of previous pub-
lications: (i) UK GWAS I—824 cases, 2699 controls from the 1958 British Birth
Cohort and 2501 controls from the UK Blood Service controls7; (ii) German
GWAS—1155 Berlin–Frankfurt–Münster (BFM) trial (1993–2004) cases, 2132
Heinz Nixdorf Recall study controls9; (iii) UK GWAS II—1021 cases from Medical
Research Council UK ALL-2003 and ALL-97/99 trials, 2976 PRACTICAL Con-
sortium and 4446 Breast Cancer Association Consortium controls12; (iv) COG_SJ
GWAS—2,879 cases of European ancestry from the COG AALL0232, COG P9904/
P9905/P9906, St. Jude Total Therapy XIIIB/XV and 2057 non-ALL controls of
European ancestry from the Multi-Ethnic Study of Atherosclerosis (MESA) study
(dbGAP phs000209.v9)13,18,20.

The replication study included 2237 cases and 3461 non-ALL controls of non-
European ancestry from the same cohort as COG_SJ GWAS.

The UK GWAS I, UK GWAS II and German GWAS series were genotyped
using Illumina Human 317K Human OmniExpress-12v1.0 or Infinium
OncoArray-500K arrays. The COG_SJ GWAS and replication series were
genotyped using Affymetrix Human SNP 6.0 (St. Jude Total XVI, COG P9904/
9905, MESA) and Affymetrix GeneChip Human 500k Mapping arrays (St. Jude
Total XIIIB/XV and COG P9906).

Statistical analysis of GWAS data. Analyses were undertaken using R v3.2.358,
PLINK v1.959, SNPTEST v2.5.222 and IMPUTE v2.360 software. Standard quality-
control measures were applied to each GWAS61. Specifically, individuals with low
call rate ( < 95%) as well as all individuals with non-European ancestry (using the
HapMap version 2 CEU, JPT/CHB and YRI populations (and Native American in
COG_SJ dataset) as a reference) were excluded for discovery GWAS and meta-
analysis. SNPs with call rate < 95% were excluded or showed deviation from
Hardy–Weinberg equilibrium (P < 10−5). Appropriateness case–control matching
was evaluated using Q–Q plots inflation test statistics. The inflation factor λ was
calculated to indicate the degree of genomic inflation, by dividing the median of the
test statistics by the median expected values from a χ2 distribution with 1 degree of
freedom (Supplementary Fig. 2). Prediction of the untyped genotypes was carried
out using 1000 Genomes Project (Phase 1) and UK10K as reference62,63. To
account for genomic inflation post imputation, top Eigenvectors from the principal
component analysis were used as covariates in the final association analysis64: the
top two and five Eigenvectors for the UK_German GWAS and the COG_SJ
GWAS, respectively. No further adjustments for P-values were applied. The
association between each SNP and risk was calculated assuming an additive model
and meta-analyses were performed using META v1.721,22. Association meta-
analyses only included SNPs with info score > 0.8, imputed call rates > 0.9 and
MAFs > 0.01. We calculated Cochran’s Q statistic to test for heterogeneity and the
I2 statistic to quantify the proportion of the total variation that was caused by
heterogeneity.

In COG_SJ dataset, genetic ancestry (European [CEU], African [YRI], East Asian
[JPT/CHB] and Native American) was determined by using ADMIXTURE (version
1.3.0)65, with the sum of these four ancestries being 100% for any given subject. EA,
African American and Asian were defined as having > 95% European genetic
ancestry, > 70% African ancestry and > 90% Asian ancestry, respectively. Hispanics
were individuals for whom Native American ancestry was > 10% and greater than
African ancestry, as previously described18. Using a large reference panel of human
haplotypes from the Haplotype Reference Consortium (HRC r1.1 2016)66 in
Michigan Imputation Server66,67 with ShapeIT (v2.r790)68 as the phasing tool, we
imputed untyped SNPs genome-wide. SNPs were excluded if (1) imputation quality
metric R2 < 0.3 (indicating inadequate accuracy of the imputed genotype); (2) minor
allele frequency in cases and controls < 0.01; (3) HWE P < 1 × 10−5 in cases and
controls classified as European American. Using Q–Q plots inflation test statistics, we
estimated an inflation factor λ of 1.09 in the replication series.

The discovery GWAS P-value was thresholded at 5 × 10−8 for genome-wide
significance and replication P-value was thresholded at 0.05 for validation. For all
four variants validated in the replication analysis, we estimated a false discovery
rate < 5% with nominal P-value < 0.05, using Benjamini–Hochberg procedure.

We performed the same statistical analyses for all the datasets unless specifically
stated.

Summary Mendelian randomisation analysis. SMR analysis was conducted as
per Zhu et al.69. The most significant eQTL or mQTL for each gene was used as an

instrumental variable to test for an association between expression levels of the
gene and B-ALL using summary statistics from the meta-analysis GWAs dataset.
The expression levels of the gene identified should be significantly associated with
the disease as a result of true pleiotropy as opposed to correlation due to linkage
between the GWAS variants and functional eQTL variants; accordingly, the het-
erogeneity in dependent instruments (HEIDI) analysis was performed as per Zhu
et al.69 Publicly available eQTL data were extracted from the CAGE eQTL dataset
(peripheral blood, n= 2765)31, GTEx eQTL v7, whole blood (n= 369) and
Epstein-Barr Virus-transformed lymphocytes (n= 117), and blood eQTL
datasets29,70,71. To investigate regulatory elements associated with B-ALL, we uti-
lised the methylation QTL datasets Aberdeen (Blood, n= 639) and UCL (Blood,
n= 665)72. All eQTL or mQTL summary datasets were pruned to only those
probes with PeQTL/mQTL < 5 × 10−8. GWAS summary statistics files were generated
from the meta-analysis of UK GWAS I, UK GWAS II, German GWAS and
COG_SJ datasets. Reference files were generated by merging 1000 genomes phase 3
and UK10K (ALSPAC and TwinsUK) data. Summary eQTL files for the GTEx
samples were generated from downloaded v7p ‘all_SNPgene_pairs’ files. Only
probes with eQTL P < 5.0 × 10−8 were considered in the SMR analysis. HEIDI test
P-values < 0.05 were taken to indicate significant heterogeneity.

Association test of predicted gene expression with ALL risk. Associations
between predicted gene expression and ALL risk were examined using MetaXcan,
accounting for LD32. SNP weights and their respective covariance for all GTEx
tissues were obtained from predict.db (http://predictdb.org/), which is based on
GTEx version 7 eQTL data. To combine S-PrediXcan data across the different
tissues taking into account tissue–tissue correlations, we used S-MultiXcan. To
determine whether associations between genetically predicted gene expression and
ALL risk were influenced by variants previously identified by GWAS, we performed
conditional analyses adjusting for GWAS risk SNPs (Supplementary Table 16)
predicted by GCTA-COJO stepwise logistic regression analysis73,74. Adjusted
output files were provided as the input GWAS summary statistics for S-PrediXcan
analyses as above.

Functional-epigenetic annotation. Promoter CHiC, chromatin-state annotation
and TF analyses were performed on lead SNPs, defined as any SNP with a P-value
< P(min) × 50 and R2 > 0.8 from the lead SNP at a locus.

eQTL data. SNP gene expression associations were extracted from the Blood29,
CAGE31, and MuTHER70 eQTL datasets. Only associations from the Blood dataset
are shown in Fig. 2.

ATAC-seq. Chromatin accessibility in the lymphoblastoid cell line GM12878 was
extracted from GSE4775375.

Chromatin-state annotation. Chromatin-state segregation data, analysed by
ChromHMM, ae shown for the primary B-cell lines E031 and E032, and the
lymphoblastoid cell line GM12878 from the roadmap76 and Encode24 projects,
respectively.

Promoter capture Hi-C. Promoter-looping interactions were downloaded and
filtered for a −log(weighted P) ≥ 5 in naive B cells only26. Interactions were called
using CHiCAGO77. Interactions overlapping lead SNPs in each locus are reported.

Hi-C and histone mark ChIP-seq in ALL cells. Hi-C and H3K27Ac ChIP-seq were
performed in human ALL cell line Nalm6 at St. Jude27. For Hi-C, the Nalm6 cell
line was cultured under recommended conditions to about 80% confluence. Five
million cells were crosslinked with 1% formaldehyde for 10 min at room tem-
perature, then digested with 125 units of MboI and labelled by biotinylated
nucleotides and were proximity ligated. After reverse crosslinking, ligated DNA
was purified and sheared to 300–500 bp, then ligation junctions were pulled down
with streptavidin beads and prepared as a general Illumina library. The Hi-C
sample was sequenced paired-end 76 cycles on Illumina Hiseq 4000. For the
H3K27ac ChIP-seq, a frozen cell pellet containing 10 million cells was sent to
Active Motif for ChIP and library preparation. The sample was divided into an
aliquot for ChIP using an antibody to H3K27ac (Active Motif) and an input
control. Single-end sequencing was performed using an Illumina NextSeq 500
generating 76 cycles for each sequencing read. Histone acetylation mark and
chromatin looping signals were directly downloaded from the NCBI GEO
GSE115494 dataset. Loop interactions were called using HiCCUPS78 from Juicer
tools v1.12.01 under default parameters at a resolution of 5 kb and 10 kb. Enriched
interaction was reported with a false discovery rate < 0.1.

TF-enrichment analysis. TF-binding enrichment analysis was performed
according to the method of Cowper-Sal lari et al.33 examining SNPs in LD with the
sentinel SNP (i.e., r2 > 0.8 and D′ > 0.8). Publically available TF ChIP-seq data were
obtained from ChIP-Atlas (http://chip-atlas.org/). TF-binding sites were filtered for
those with a MACS peak Q-value > 100 and from cells lines with a ‘blood’
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annotation. Overlapping binding sites from the same ChIP target were merged. For
each mark, the overlap of the SNPs and the binding sites was assessed to generate a
mapping tally. A null distribution was produced by performing 10,000 permuta-
tions, randomly selecting LD blocks with the same number of SNPs as the test set,
and calculating the null mapping tally. P-values were calculated by normalising the
tallies to the median of the null distribution.

Heritability analysis. We used LDAK version 4.935 to estimate the polygenic
variance (i.e., heritability) ascribable to all genotyped and imputed GWAS SNPs.
Heritability ascribed to all the genotyped and imputed SNPs was calculated from
summary data after filtering; information score filtering (>0.99), allele frequency
(>0.01) and Hardy–Weinberg deviation (P < 1 × 10−5), resulting in 1,553,634 SNPs
for analyses. SNP-specific weightings were calculated reflecting correlations across
SNPs (predictors) using UK10K and 1000 genomes data, after adjusting for LD,
MAF and genotype certainty.

Contribution of genetic variance to familial risk. Estimation of risk variance
associated with each SNP was performed as per Pharoah et al.79. For an allele (i) of
frequency p, relative risk R and log risk r, the risk distribution variance (Vi) is:

Vi ¼ 1� pð Þ2E2 þ 2p 1� pð Þ r � Eð Þ2þ p2 2r � Eð Þ2 ð1Þ

where E is the expected value of r given by:

E ¼ 2p 1� pð Þr þ 2p2r ð2Þ

For multiple risk alleles, the distribution of risk in the population tends towards
the normal with variance:

V ¼ ΣVi ð3Þ

The percentage of total variance was calculated assuming a familial risk of
childhood ALL of 3.2 (95% confidence interval (CI) 1.5–5.9) as per Kharazmi
et al.80. All genetic variance (V) associated with susceptibility alleles is given as
√3.280. The proportion of genetic risk attributable to a single allele is:

ViV
�1

Eighteen risk loci were included in the calculation of the PRS for childhood ALL
by selecting the top SNP from the current meta-analysis from each previously
published loci in addition to the two risk loci discovered in this study. The 11
variants are thought to act independently, as previous studies have shown no
interaction between risk loci7,9–11. PRS were generated as per Pharoah et al.79

assuming a log-normal distribution LN(μ,σ2) with mean μ and variance σ2. The
population μ was set to σ2/2, in order that the overall mean PRS was 1.0.

Relationship between SNP genotype and ALL clinical features. The relationship
between SNP genotype and survival was analysed in the German AIEOP-BFM
series, which consisted of 834 patients within the AIEOP-BFM 2000 trial. Patients
were treated with conventional chemotherapy (i.e., prednisone, vincristine, dau-
norubicin, l-asparaginase, cyclophosphamide, ifosfamide, cytarabine, 6-mercapto-
purine, 6-thioguanine and methotrexate), a subset of those with high-risk ALL
were treated with cranial irradiation and/or stem cell transplantation. Events, for
event-free survival, were defined as resistance to therapy, relapse, secondary cancer
or death. Kaplan–Meier methodology was used to estimate survival rates, with
differences between groups tested using the log-rank method (two-sided P-values).
Cumulative incidences of competing events were calculated using the methodology
of Kalbfleisch and Prentice, and compared using Gray’s test. Cox regression ana-
lysis was used to estimate hazard ratios and 95% CIs adjusting for clinically rele-
vant covariates. Similar analyses of SNP genotype with treatment response and
outcome measures were performed in the COG_SJ series as reported
previously20,34. No significant association was observed for these novel risk SNPs
(i.e., P > 0.05)20,34.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
UK controls were obtained from the Wellcome Trust Case Control Consortium 2 (http://

www.wtccc.org.uk/; 50.7% male;81 WTCCC2:EGAD00000000022 and

EGAD00000000024). Imputation reference panels are available from 1000 G phase I

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/) and the UK10K (n= 3781;

EGAS00001000090, EGAD00001000195 and EGAS00001000108; www.uk10k.org). The

UK GWAS I, UK GWAS II and German GWAS data for ALL cases are available through

the European Genome-Phenome Archive website (EGA, https://ega-archive.org,

EGAS00001003937, EGAS00001002809 and EGAS00001003936, respectively). The

SJ_COG GWAS data for ALL cases are deposited in the NIH dbGAP (https://www.ncbi.

nlm.nih.gov/gap/) under phs000638.v1.p1 and phs000637.v1.p1. ATAC-seq dataset

GSE47753_GM12878_ATACseq_50k_AllReps_ZINBA_pp08.bed.gz was downloaded

from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE47753). ChromHMM data for primary B-cell are available at http://egg2.wustl.

edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/

jointModel/final/ and ChromHMM annotation for GM12878 is available from http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/

wgEncodeBroadHmmGm12878HMM.bed.gz. Promoter CHiC data are available at

https://osf.io/u8tzp/. eQTL and mQTL data for SMR analysis were downloaded from

https://cnsgenomics.com. GTEx version 7 data are available at https://gtexportal.org/

home/datasets. Requests for other data should be directed to the authors.

Received: 22 April 2019; Accepted: 17 October 2019;

References
1. Stiller, C. Childhood Cancer in Britain: Incidence, Survival, Mortality. (Oxford

Univ. Press, Oxford, 2007).
2. Greaves, M. F. & Wiemels, J. Origins of chromosome translocations in

childhood leukaemia. Nat. Rev. Cancer 3, 639–649 (2003).
3. Gruhn, B. et al. Prenatal origin of childhood acute lymphoblastic leukemia,

association with birth weight and hyperdiploidy. Leukemia 22, 1692–1697
(2008).

4. Perera, F. P. Environment and cancer: who are susceptible? Science 278,
1068–1073 (1997).

5. Stiller, C. A. & Parkin, D. M. Geographic and ethnic variations in the
incidence of childhood cancer. Br. Med. Bull. 52, 682–703 (1996).

6. Williams, L. A., Yang, J. J., Hirsch, B. A., Marcotte, E. L. & Spector, L. G. Is
there etiologic heterogeneity between subtypes of childhood acute
lymphoblastic leukemia? A review of variation in risk by subtype. Cancer
Epidemiol. Biomarkers Prev. 28, cebp.0801.2018 (2019).

7. Papaemmanuil, E. et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated
with risk of childhood acute lymphoblastic leukemia. Nat. Genet. 41,
1006–1010 (2009).

8. Sherborne, A. L. et al. Variation in CDKN2A at 9p21.3 influences childhood
acute lymphoblastic leukemia risk. Nat. Genet. 42, 492–494 (2010).

9. Migliorini, G. et al. Variation at 10p12.2 and 10p14 influences risk of
childhood B-cell acute lymphoblastic leukemia and phenotype. Blood 122,
3298–3307 (2013).

10. Vijayakrishnan, J. et al. The 9p21.3 risk of childhood acute lymphoblastic
leukaemia is explained by a rare high-impact variant in CDKN2A. Sci. Rep. 5,
15065 (2015).

11. Vijayakrishnan, J. et al. A genome-wide association study identifies risk loci
for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1.
Leukemia 31, 573–579 (2017).

12. Vijayakrishnan, J. et al. Genome-wide association study identifies
susceptibility loci for B-cell childhood acute lymphoblastic leukemia. Nat.
Commun. 9, 1340 (2018).

13. Trevino, L. R. et al. Germline genomic variants associated with childhood
acute lymphoblastic leukemia. Nat. Genet. 41, 1001–1005 (2009).

14. Qian, M. et al. Novel susceptibility variants at the ERG locus for childhood
acute lymphoblastic leukemia in Hispanics. Blood 133, 724–729 (2019).

15. Qian, M. et al. Genome-wide association study of susceptibility loci for T-cell
acute lymphoblastic leukemia in children. J. Natl Cancer Inst. djz043
(2019).

16. Xu, H. et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute
lymphoblastic leukemia in ethnically diverse populations. J. Natl Cancer Inst.
105, 733–742 (2013).

17. Mullighan, C. G. et al. Genome-wide analysis of genetic alterations in acute
lymphoblastic leukaemia. Nature 446, 758–764 (2007).

18. Perez-Andreu, V. et al. Inherited GATA3 variants are associated with Ph-like
childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 45,
1494–1498 (2013).

19. Perez-Andreu, V. et al. A genome-wide association study of susceptibility to
acute lymphoblastic leukemia in adolescents and young adults. Blood 125,
680–686 (2015).

20. Yang, J. J. et al. Genome-wide association study identifies germline
polymorphisms associated with relapse of childhood acute lymphoblastic
leukemia. Blood 120, 4197–4204 (2012).

21. Liu, J. Z. et al. Meta-analysis and imputation refines the association of 15q25
with smoking quantity. Nat. Genet. 42, 436–440 (2010).

22. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new
multipoint method for genome-wide association studies by imputation of
genotypes. Nat. Genet. 39, 906–913 (2007).

23. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping consortium.
Nat. Biotechnol. 28, 1045–1048 (2010).

24. Consortium, E. P. An integrated encyclopedia of DNA elements in the human
genome. Nature 489, 57–74 (2012).

25. Consortium, E. P. A user’s guide to the encyclopedia of DNA elements
(ENCODE). PLoS Biol. 9, e1001046 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13069-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5348 | https://doi.org/10.1038/s41467-019-13069-6 | www.nature.com/naturecommunications 7

http://www.wtccc.org.uk/
http://www.wtccc.org.uk/
http://www.uk10k.org
https://ega-archive.org
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47753
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47753
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
http://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/wgEncodeBroadHmmGm12878HMM.bed.gz
https://osf.io/u8tzp/
https://cnsgenomics.com
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
www.nature.com/naturecommunications
www.nature.com/naturecommunications


26. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and
non-coding disease variants to target gene promoters. Cell 167, 1369–1384 e19
(2016).

27. Tian, L. et al. Long-read sequencing unveils IGH-DUX4 translocation into the
silenced IGH allele in B-cell acute lymphoblastic leukemia. Nat. Commun. 10,
2789 (2019).

28. Consortium, G. T. Human genomics. The Genotype-Tissue Expression
(GTEx) pilot analysis: multitissue gene regulation in humans. Science 348,
648–660 (2015).

29. Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers
of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

30. Grundberg, E. et al. Mapping cis- and trans-regulatory effects across multiple
tissues in twins. Nat. Genet. 44, 1084–1089 (2012).

31. Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in
peripheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).

32. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple tissues
improves association detection. PLoS Genet. 15, e1007889 (2019).

33. Cowper-Sal lari, R. et al. Breast cancer risk-associated SNPs modulate the
affinity of chromatin for FOXA1 and alter gene expression. Nat. Genet. 44,
1191–1198 (2012).

34. Karol, S. E. et al. Genetics of ancestry-specific risk for relapse in acute
lymphoblastic leukemia. Leukemia 31, 1325–1332 (2017).

35. Speed, D. et al. Reevaluation of SNP heritability in complex human traits. Nat.
Genet. 49, 986–992 (2017).

36. Frampton, M. J. et al. Implications of polygenic risk for personalised colorectal
cancer screening. Ann. Oncol. 27, 429–434 (2016).

37. Takeuchi, O. et al. Essential role of BAX,BAK in B cell homeostasis and
prevention of autoimmune disease. Proc. Natl Acad. Sci. USA 102,
11272–11277 (2005).

38. Chittenden, T. et al. Induction of apoptosis by the Bcl-2 homologue Bak.
Nature 374, 733–736 (1995).

39. Leu, J. I. & George, D. L. Hepatic IGFBP1 is a prosurvival factor that binds to
BAK, protects the liver from apoptosis, and antagonizes the proapoptotic
actions of p53 at mitochondria. Genes Dev. 21, 3095–3109 (2007).

40. Chen, J. et al. miR-125b inhibitor enhance the chemosensitivity of
glioblastoma stem cells to temozolomide by targeting Bak1. Tumour Biol. 35,
6293–6302 (2014).

41. Andersson, A. et al. Molecular signatures in childhood acute leukemia and
their correlations to expression patterns in normal hematopoietic
subpopulations. Proc. Natl Acad. Sci. USA 102, 19069–19074 (2005).

42. Stoskus, M., Vaitkeviciene, G., Eidukaite, A. & Griskevicius, L. ETV6/RUNX1
transcript is a target of RNA-binding protein IGF2BP1 in t(12;21)(p13;q22)-
positive acute lymphoblastic leukemia. Blood Cells Mol. Dis. 57, 30–34 (2016).

43. Huang, X. et al. Insulin-like growth factor 2 mRNA-binding protein 1
(IGF2BP1) in cancer. J. Hematol. Oncol. 11, 88 (2018).

44. Qian, M. et al. Novel susceptibility variants at the ERG locus for childhood
acute lymphoblastic leukemia in Hispanics. Blood 133, 724–729 (2018).

45. Zhang, J. et al. Deregulation of DUX4 and ERG in acute lymphoblastic
leukemia. Nat. Genet. 48, 1481–1489 (2016).

46. Willman, C. L. et al. Deletion of IRF-1, mapping to chromosome 5q31.1, in
human leukemia and preleukemic myelodysplasia. Science 259, 968–971 (1993).

47. Boultwood, J. et al. Allelic loss of IRF1 in myelodysplasia and acute myeloid
leukemia: retention of IRF1 on the 5q- chromosome in some patients with the
5q- syndrome. Blood 82, 2611–2616 (1993).

48. Irving, J. A. et al. Integration of genetic and clinical risk factors improves
prognostication in relapsed childhood B-cell precursor acute lymphoblastic
leukemia. Blood 128, 911–922 (2016).

49. Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET
bromodomain inhibition suppresses the function of hematopoietic
transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039
(2015).

50. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an
effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

51. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute
myeloid leukaemia. Nature 478, 524–528 (2011).

52. Coutinho, A. E. & Chapman, K. E. The anti-inflammatory and
immunosuppressive effects of glucocorticoids, recent developments and
mechanistic insights. Mol. Cell Endocrinol. 335, 2–13 (2011).

53. Kruth, K. A. et al. Suppression of B-cell development genes is key to
glucocorticoid efficacy in treatment of acute lymphoblastic leukemia. Blood
129, 3000–3008 (2017).

54. Larsen, E. C. et al. Dexamethasone and high-dose methotrexate improve
outcome for children and young adults with high-risk B-acute lymphoblastic
leukemia: a report from Children’s Oncology Group Study AALL0232. J. Clin.
Oncol. 34, 2380–2388 (2016).

55. Borowitz, M. J. et al. Clinical significance of minimal residual disease in
childhood acute lymphoblastic leukemia and its relationship to other prognostic
factors: a Children’s Oncology Group study. Blood 111, 5477–5485 (2008).

56. Pui, C. H. et al. Improved outcome for children with acute lymphoblastic
leukemia: results of Total Therapy Study XIIIB at St Jude Children’s Research
Hospital. Blood 104, 2690–2696 (2004).

57. Pui, C. H. et al. Treating childhood acute lymphoblastic leukemia without
cranial irradiation. N. Engl. J. Med 360, 2730–2741 (2009).

58. Team, R. D. C. R: A Language and Environment for Statistical Computing. (R
Foundation for Statistical Computing, Vienna, Austria, 2008).

59. Purcell, S. et al. PLINK: a tool set for whole-genome association and
population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

60. Marchini, J. & Howie, B. Genotype imputation for genome-wide association
studies. Nat. Rev. Genet. 11, 499–511 (2010).

61. Anderson, C. A. et al. Data quality control in genetic case-control association
studies. Nat. Protoc. 5, 1564–1573 (2010).

62. Consortium, U. K. et al. The UK10K project identifies rare variants in health
and disease. Nature 526, 82–90 (2015).

63. Genomes Project, C. et al. A global reference for human genetic variation.
Nature 526, 68–74 (2015).

64. Price, A. L. et al. Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

65. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of
ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

66. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype
imputation. Nat. Genet. 48, 1279–1283 (2016).

67. Das, S. et al. Next-generation genotype imputation service and methods. Nat.
Genet. 48, 1284–1287 (2016).

68. Delaneau, O., Marchini, J. & Zagury, J. F. A linear complexity phasing method
for thousands of genomes. Nat. Methods 9, 179–181 (2011).

69. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

70. Nica, A. C. et al. The architecture of gene regulatory variation across multiple
human tissues: the MuTHER study. PLoS Genet. 7, e1002003 (2011).

71. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat.
Genet. 45, 580–585 (2013).

72. Hannon, E., Weedon, M., Bray, N., O’Donovan, M. & Mill, J. Pleiotropic
effects of trait-associated genetic variation on DNA methylation: utility for
refining GWAS loci. Am. J. Hum. Genet. 100, 954–959 (2017).

73. Zhu, Z. et al. Causal associations between risk factors and common diseases
inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

74. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. Genome-wide complex
trait analysis (GCTA): methods, data analyses, and interpretations. Methods
Mol. Biol. 1019, 215–236 (2013).

75. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, DNA-binding proteins and nucleosome position. Nat.
Methods 10, 1213–1218 (2013).

76. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human
epigenomes. Nature 518, 317–330 (2015).

77. Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in
Capture Hi-C data. Genome Biol. 17, 127 (2016).

78. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 159, 1665–1680 (2014).

79. Pharoah, P. D., Antoniou, A. C., Easton, D. F. & Ponder, B. A. Polygenes, risk
prediction, and targeted prevention of breast cancer. N. Engl. J. Med. 358,
2796–2803 (2008).

80. Kharazmi, E. et al. Familial risks for childhood acute lymphocytic leukaemia
in Sweden and Finland: far exceeding the effects of known germline variants.
Br. J. Haematol. 159, 585–588 (2012).

81. Wellcome Trust Case Control, C. Genome-wide association study of 14,000
cases of seven common diseases and 3,000 shared controls. Nature 447,
661–678 (2007).

Acknowledgements
In the UK, funding was provided by Bloodwise and Cancer Research UK (C1298/A8362).

In the United States, this work was partly supported by National Institutes of Health

Grant Numbers CA21765, CA98543, CA114766, CA98413, CA180886, CA180899,

GM92666, GM115279, and GM097119, and the American Lebanese Syrian Associated

Charities. We thank the patients and parents who participated in the Children’s

Oncology Group (COG) protocols included in this study, the clinicians and research staff

at St. Jude Children’s Research Hospital and COG institutions, Jeanette Pullen (Uni-

versity of Mississippi, Jackson, MS) for assistance in the classification of patients with

ALL and Mark Shriver (Pennsylvania State University, University Park, PA) for sharing

single-nucleotide polymorphism genotype data of the Native American references. M.Q.

is supported by the Initial Funding for New PI of Fudan University, the National Natural

Science Foundation of China (81973997) and the Program for Professor of Special

Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. S.P.H. is the

Jeffrey E. Perelman Distinguished Chair in Pediatrics at The Children’s Hospital of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13069-6

8 NATURE COMMUNICATIONS |         (2019) 10:5348 | https://doi.org/10.1038/s41467-019-13069-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Philadelphia. M.L.L. is the University of California, San Francisco Benioff Chair of

Children’s Health and the Deborah and Arthur Ablin Chair of Pediatric Molecular

Oncology.

Author contributions
J.J.Y. and R.S.H. designed the overall study. Association analysis and statistical data

analysis were performed by J.V. and M.Q. Functional analysis was undertaken by J.B.S.,

J.V., W.Y. and M.Q. W.Y., B.K. and P.J.L. provided bioinformatics support. P.B.

supervised the data production of UK GWAS II. J.A., A.V. and A.M. provided samples

recruited on the ALL-97/99 and ALL-2003 trials. C.R.B., M. Stanulla, M. Schrappe and

M.Z. provided samples through the Berlin–Frankfurt–Münster (BFM) trial (1993–2004);

M. Stanulla and M.Z. conducted outcome analysis on BFM samples. E.A.R., C.-H.P.,

W.E.E., C.G.M., S.P.H., M.V.R. and M.L.L. supervised the sample collection and data

production of the COG_SJ cohort. C.-H.P., W.E.E., A.Y., C.L., S.P.H., M.V.R., M.L.L.,

R.S.H. and J.J.Y. interpreted the data and the research findings. The manuscript was

drafted by J.J.Y., R.S.H., J.V., M.Q. and J.B.S., and was reviewed by all of the co-authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-

019-13069-6.

Correspondence and requests for materials should be addressed to R.S.H. or J.J.Y.

Peer review information Nature Communications thanks the anonymous reviewer(s) for

their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13069-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5348 | https://doi.org/10.1038/s41467-019-13069-6 | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-019-13069-6
https://doi.org/10.1038/s41467-019-13069-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Identification of four novel associations for B-cell acute lymphoblastic leukaemia risk
	Results
	GWAS meta-analysis and replication
	Functional annotation of new risk loci
	Relationship between new risk alleles and clinical features
	Contribution of risk SNPs to heritability

	Discussion
	Methods
	Ethics
	GWAS data
	Statistical analysis of GWAS data
	Summary Mendelian randomisation analysis
	Association test of predicted gene expression with ALL risk
	Functional-epigenetic annotation
	eQTL data
	ATAC-seq
	Chromatin-state annotation
	Promoter capture Hi-C
	Hi-C and histone mark ChIP-seq in ALL cells
	TF-enrichment analysis
	Heritability analysis
	Contribution of genetic variance to familial risk
	Relationship between SNP genotype and ALL clinical features
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


