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ABSTRACT Tessaratoma papillosa (Drury) first invaded Taiwan in 2009. Every year, T. papillosa causes

severe damage to the longan crops. Novel applications for edge intelligence are applied in this study to

establish an intelligent pest recognition system to manage this pest problem. We used a detecting drone to

photograph the pest and employed a Tiny-YOLOv3 neural network model built on an embedded system

NVIDIA Jetson TX2 to recognize T. papillosa in the orchard to determine the position of the pests in real-

time. The pests’ positions are then used to plan the optimal pesticide spraying route for the agricultural

drone. Apart from planning the optimized spraying of pesticide for the spraying drone, the TX2 embedded

platform also transmits the position and generation of pests to the cloud to record and analyze the growth

of longan with a computer or mobile device. This study enables farmers to understand the pest distribution

and take appropriate precautions in real-time. The agricultural drone sprays pesticides only where needed,

which reduces pesticide use, decreases damage to the environment, and increases crop yield.

INDEX TERMS Edge intelligence, unmanned aerial vehicles (UAV), real-time embedded systems, slope

land orchard, object detection, agricultural pests damage, precision agriculture, intelligent pest recognition.

I. INTRODUCTION

Since T. papillosa invaded Kaohsiung, Taiwan in 2009, it has

spread quickly throughout Taiwan and severely endangered

the crops of the Sapindus family, such as Dimocarpus

longan, Litchi chinensis, Sapindus saponaria, and Koel-

reuteria elegans. T. papillosa feeds on litchi and longan with

piercing-sucking mouthparts, which suck the buds, shoots,

flower spikes and young fruits of these crops, resulting in

blossom drop, fruit drop, twigs, young fruit withering, skin

blackening, and other injuries. Consequently, the damage

from T. papillosa seriously affects the yield and quality of

litchi and longan.

Taiwan is in a subtropical region with a mostly warm cli-

mate suitable for crop cultivation throughout the entire year.

Many agricultural products are exported worldwide annually.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sherali Zeadally .

However, rapidly spreading diseases and pests cause crop

damage and affect farmers’ incomes. During the crop growth

period, to prevent pest infestations, farmers apply large

dosages of chemical pesticides to reduce crop damage from

diseases and pests, even though the excessive pesticide use

harms the environment. It is usually all-consuming for the

workforce to kill insects and spray pesticides on the entire

field. If pests and diseases can be detected quickly and early

before they spread, UAVs can apply pesticides only where

needed to reduce crop damage and minimize harm to the

overall environment. Therefore, we hope that this research

can help farmers reduce the cost of pesticides and increase

human resource efficiency.

The UAVs have high maneuverability and are often

equipped with the Global Positioning System (GPS),

automatic flight control, real-time image transmission,

wireless communication systems, multiple sensors, and

other functional components. They can obtain extremely
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high-resolution surficial information, making it easier to col-

lect and investigate spatial data, while greatly accelerating

the acquisition of spatial information. They can also conduct

routine patrols and keep track of abnormal conditions.

In recent years, the development of drones in smart agri-

culture has become increasingly prevalent. In spring 2019,

the onset of the rainy season caused severe flooding in many

places in Taiwan. Drones capable of aerial photography were

used to document damage to rice paddies. Through analysis

of the aerial images, the lodging degree, the distribution and

the area of rice were effectively determined, thus significantly

improving the efficiency of disaster investigations.

In recent years, the development of drones in smart agri-

culture has become increasingly prevalent and very suitable

for applying edge intelligence to agriculture. In spring 2019,

the onset of the rainy season caused severe flooding in many

places in Taiwan. Drones capable of aerial photography were

used to document damage to rice paddies. Through analysis

of the aerial images, the lodging degree, the distribution and

the area of rice were effectively determined, thus significantly

improving the efficiency of disaster investigations.

Around the world, German drone companies have used

insecticidal drones to drop Trichogramma, a natural enemy

of the European Corn Borer, into cornfields to control these

pests. The industrial drones are equippedwith high-resolution

sensor arrays that perform a variety of applications and they

are robust enough for outdoor operations around the clock.

In this study, we used two types of drones: a small recon-

naissance drone and a large pesticide-spraying drone. The

small size of the reconnaissance drone helps to avoid leaf

disturbance. It is used for treetop inspections to take images

of T. papillosa, which are then transmitted to the edge server

to determine the pest’s life stage and location. The edge com-

puting server is used to plan the optimal pesticide application

route. The pesticide-spraying drone then sprays the precise

pesticide application based on the route.

The remaining sections of this article are arranged as fol-

lows. Section 2 introduces relevant references and inspiring

applications that are used in this work. Section 3 presents the

data set, the hardware environment and the implementation

methods. Section 4 describes the architectural framework of

the study and illustrates the customizations performed for

small object detection. Section 5 describes and discusses the

experimental results before providing a conclusion.

II. RELATED WORK

A. APPLYING DEEP LEARNING TO AGRICULTURAL

INSPECTION

The growing popularity of artificial intelligence applications

in various industries has promoted the application of deep

learning in many fields. Among these applications, image

recognition technologies have been widely used in agricul-

tural applications, such as farmland mapping, crop image

segmentation and target detection of pasture animals. Image

recognition is mainly used in training neural network mod-

els to identify categories and to use convolutional neural

networks (CNN) to extract target areas in images, segment

objects and determine the numbers and types of pests on the

leaves.

Yang et al. [1] have proposed a litchi picking robot which

is an important tool for improving the automation of litchi

harvesting, with a binocular camera to collect the litchi

images. They have also improved the YOLOv3 network in

the YOLO (You only look once) series; YOLOv3 is currently

the most widely used technology for object detection. They

designed the YOLOv3-DenseNet34 litchi detection network.

The Results have shown that the YOLOv3-DenseNet34 has

enhanced the detection accuracy and speed. Based on the

triangulation principle of binocular stereo vision, the average

precision (mAP) of the litchi’s coordinates was calculated.

The binocular stereo vision-based litchi pre-positioning

method has a maximum absolute error of 3.66cm, an aver-

age absolute error of 2.30cm and an average relative error

of 0.836% at a detection distance of 3m, which fulfills the

requirement of the picking robot. In a large area, the visual

pre-targeting requirements of the YOLO network perform

regression directly without RPN to detect targets in the

image. Hence, the method is fast and can be implemented for

real-time applications.

The latest version (YOLOv3) [2] not only has higher

detection accuracy and speed but also performs well in the

detection of small targets. However, the YOLOv3 model has

a more complex architecture which requires more processing,

rendering it less suitable for real-time applications such as

the harvesting robots. Conversely, the layer optimization and

parameter reduction in the Tiny-YOLOv3 [3] model reduces

the computational complexity, making it suitable to incorpo-

rate the edge devices, Jetson and Raspberry Pi, applying the

object detection model for edge intelligence with real-time

pest identification.

With the rapid development of deep learning methods,

the neural networks constructed with these methods require

significant Graphics Processing Unit (GPU) performance.

The GPU is a processor that is specially designed to han-

dle intensive graphics rendering tasks. The deep learning

model has recently been improved so that a lightweight

model can be implemented on the embedded platform for

real-time operation. We compared the most commonly used

YOLOv3 and the Tiny-YOLOv3 network models for object

detection, analyzing the recognition accuracy and speed of

these two methods to balance the recognition accuracy and

speed in deep learning.

B. APPLICATION OF EMBEDDED SYSTEMS TO DEEP

LEARNING

Jetson is a potent GPU embedded platform for computing

mass data. Deep learning computations can be performed on

the GPU, and the CPU can compute the benchmarking algo-

rithms. Hulens et al. [4] have presented a survey of different

embedded processing platforms, regarding their computing

abilities and the influence on the system’s battery life. The

results have shown that the CPU performance of Jetson TK1
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(the predecessor of Jetson TX2) is lower than the average of

the same rank of embedded systems.

There are two ways to configure the devices for mobile

edge computing and the internet of Things (IoT) on the

Jetson TX2; one is to compress the training model for

deep learning and the other is to train a relatively smaller

model. Examples of model compression include the opti-

mization of convolution or operations [5], the quantiza-

tion of the parameters [6], [7], and the simplification of

the model structure [8]–[11]. These approaches assume

that a pre-trained model already exists and compressing it

would speed up the operation without significantly affect-

ing the accuracy. However, most of these well-trained mod-

els tend to be used for general-purpose applications. For

example, the AlexNet [12], [13] can accurately classify the

1000 classes in ImageNet, which is approximately a 37.5%

top-1 error rate.

To perform the UAV’s object detection and positioning,

we need to classify the different instars of T. papillosa.

Although the pre-trained model could be used as a feature

extractor, the resultant model would overload the embedded

devices even through fine-tuning and increase the operational

costs. This work proposes a method to reduce the input

images’ recognition rate and increase the model’s convolu-

tional layers to resolve the issues with the embedded devices.

C. THE ROUTE PLANNING FOR THE AGRICULTURE DRONE

FOR SPRAYING PESTICIDE
Distance is an essential factor in our route-planning algo-

rithm for the pesticide-spraying drones, since accurately-

determined GPS coordinates of the detected pests are

required to reduce both the flight distance over the

3D-sloped terrain and the energy requirements of the drones.

Saxena et al. [14] have published a novel approach to con-

struct a 3D depth model from a single image. Chahal et al.

[15] have proposed combining machine learning techniques

to generate a depth image from a single image. However,

the depth image can only indicate whether object A is closer

to or farther from the camera than object B. The distance from

A to the camera cannot be calculated from the depth image

alone.

To overcome these difficulties, we have navigated the

drones close to the pests’ locations to improve positioning

accuracy and reduce measurement errors. We have used tri-

angulation methods to identify similarities for image depth

measurement and calibrated the optical sensors according

to the distance and scale of a known object. The in-depth

image generates a reference point between the object and the

camera. The following formula describes the method:

F =
P · d

w
(1)

Equation (1) yields the focal length of the system, which is

used to calculate the distance of a detected object, where F is

the focal length of the camera, P is the resolution (in pixels)

of the object, d is the distance from the camera to the object

and w is the width of the object.

D. APPLYING EDGE COMPUTING TO DEEP LEARNING

The image recognition in deep learning focuses on the effi-

ciency of real-time recognition and timely data acquisition

mechanisms to support delay sensitive. Edge intelligence

processing which is dependent on the hardware performance,

the ability for a quick response, and the availability of ample

storage capacity. Past pest recognition methods used embed-

ded devices to acquire images upon pest detection and trans-

mit the acquired images to the cloud, where the deep learning

architecture was deployed to recognize the pests. The recog-

nition results were then returned to the embedded device.

This study overcomes these problems by incorporating edge

computing with the GPU of the embedded hardware, which

has low power consumption, high performance and quick

transmission time, to provide highly accurate and real-time

recognition of T. papillosa.

NVIDIA’s Jetson is a well-known embedded hardware

with small size, light weight, and low power consump-

tion. It is a widely-used accelerator for machine learning

algorithms to speed up complex machine learning com-

putations [17], [18]. However, to fully utilize the Jetson’s

performance in real-time, it is necessary to optimize both the

Jetson hardware and the Neural Network (NN) algorithms.

In recent years, Jetson has developed the TK1, TX1 and

TX2 versions. They all use YOLOv3 for target detec-

tion [19], [20], indicating that the YOLO and SSD have better

accuracy and transmission speed. Among the different ver-

sions, Nvidia TX1 has been applied to tennis ball collecting

robots using deep learning [21]. TX2 is an embedded device

suitable for deep learning training. Luo et al. [22] have used

theKinect-V2 vision sensors to detect and locate targets using

robots with Tiny-YOLOv3 on the TX2. The Cascaded-CNN

(C-CNN) model has been implemented with the TX2 and

applied to the classification of weeds in multi-spectral images

in intelligent agriculture. These studies [23]–[26] have shown

that the embedded hardware of the Jetson series is effective

in target detection and has the advantages of having high

efficiency and low power consumption.

III. METHODOLOGY

T. papillosa has one generation per year. The life cycle

includes three stages: eggs, nymphs, and adults. The mat-

ing season is from February to August. Peak egg-laying

by females is from April to May. Nymphs emerge from

April to October; the insect overwinters in the adult stage,

and the overwintering adults appear in January to August the

following year.

In this study, a detecting drone is used for real-time

photography of T. papillosa in the orchard before spray-

ing pesticides from an agricultural drone. The pest images

captured by the detecting drone are sent to the orchard’s

TX2 embedded system via the network. The TX2 recog-

nizes the T. papillosa life stages and locations in real-time.

It considers each tree’s height on the slope and the pest’s

position, to calculate the 3D flight path for the agricul-

tural drone. The flight sequence and the optimal path’s total
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FIGURE 1. The system architecture flow chart.

distance are transmitted to the agricultural drone for spraying

pesticides.

This study aims that the agricultural drone applies pesti-

cides only where needed and apply novel applications for

edge intelligence to agricultural control. The pesticides can

be applied in a timely fashion, effectively preventing pest

dispersion, reducing pesticide use and minimizing damage

to the environment. Fig. 1 shows a flowchart of the system’s

architecture.

A. YOLOv3 MODEL AND TINY-YOLOv3 MODEL

RECOGNIZE TESSARATOMA PAPILLOSA

The purpose of this study is to provide immediate feedback

when the drone performs pest identification in the orchard.

However, T. papillosa is physically very small and the drones

need to be capable of detecting small targets with high recog-

nition accuracy. To fulfill these requirements, a lightweight

and fast artificial intelligence model is essential. Therefore,

the YOLOv3 [2] model and Tiny-YOLOv3 [3] model have

been selected as the identification models for this study.

1) SAMPLE COLLECTION AND LABEL

Deep learning models need to have sufficient training sam-

ples to avoid overfitting the training data and negatively

affecting the recognition rate of T. papillosa. We collected

images of T. papillosa at different instars and different angles

(such as side view, front view, etc.), as well as from the

orchard and the Internet to increase the number of training

samples for the YOLOv3 model and Tiny-YOLOv3 model

(as shown in Fig. 2).

We collected about 700 images of different stages and

instars of T. papillosa from the Internet and the orchards.

We used the image expansion method to expand the data

of these 700 images to more than 5000 as training sam-

ples. An additional 473 untrained images were used as test

samples.

The samples are manually labeled for the training of the

YOLOv3 and Tiny-YOLOv3 models to avoid negatively

affecting these models’ recognition of T. papillosa. Before

training the YOLOv3 and Tiny-YOLOv3 models, it is neces-

sary to label T. papillosawithin each image. We used the tool

LabelImg to label the collected sample images to establish the

FIGURE 2. The different life stages and instars of T. papillosa.

FIGURE 3. The interface of Labelimg for target pixel information of label
image.

target pixel information (as shown in Fig. 3). The information

is tagged to the images containing the eggs, nymphs or adults,

and this is stored in XML format.

2) DATA AUGMENTATION

Many studies [27] have found that data augmentation can

increase the accuracy of model recognition. Therefore,

we have collected many samples in this work. After label-

ing the images, we used an Imgaug library for image aug-

mentation in the machine learning experiments for data

augmentation. The operations performed to augment the

images include cutting, rotating, contrast enhancement, noise

addition, edge sharpening and so on. The corresponding

label information is automatically generated to increase the

amount of training data and improve the recognition by the

YOLOv3 and the Tiny-YOLOv3 models.

We refer to the reference [28] to perform image augmenta-

tion with fewer data samples.

The study created five categories of life stages and instars

of T. papillosa (Figure 2). However, the number of sam-

ples of the two categories of eggs and nymphs hatched in

the past 30 mins was only about 50-80, far less than the
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FIGURE 4. Examples of augmented images.

other categories – nymphs hatched more than 30 mins ago,

older nymphal instars, and adults – which had more than

200 samples each. To improve the accuracy of YOLOV3 and

Tiny-YoLov3 models in identifying the five categories of

stages and instars of T. papillosa, the images of eggs and

nymphs hatched in the past 30 mins were increased by the

image augmentation method [28] to make them equivalent in

number to the other three categories. Thenwe used the sample

compensationmethod to reach a total number of training sam-

ples of about 5000 images, which included all five categories.

Finally, we used the YOLOv3 and Tiny-YoLov3 models,

training the samples to recognize the different categories of

T. papillosa.

The research results show that the average number of

training sets for each recognition category will improve

recognition accuracy.

Imgaug is a Python library. It calls upon Python to per-

form data augmentation, process the sample images, and

revise the label information. The Imgaug library has a total

of 98 image augmentation functions. In this study, we have

used the dropout, rotation, fliplr, edge sharpening, gamma

contrast, additive Gaussian noise, and Gaussian blur (as

shown in Fig. 4) functions to augment the training samples

for both the YOLOv3 and the Tiny-YOLOv3 models.

3) TRAINING YOLOV3 MODEL

The YOLO (You only look once) series are neural network

algorithms for object detection. They are implemented in

the Darknet architecture. Although the author, Joseph Red-

mon, has not used any famous deep learning framework,

the algorithms’ highly effective object detection models are

extremely suitable for industrial applications, such as pedes-

trian detection, industrial image detection and so on. The

basic idea of the YOLO algorithm is as follows. First, use the

feature extraction network to extract features from the input

image to obtain a feature map of a certain size, such as 13 by

FIGURE 5. YOLOv3 Architecture diagram [2].

13, and divide the input image into 13 ∗ 13 grid cells. The grid

cell is used to predict the object’s coordinates. YOLOv3 uses

multiple scales to make predictions. It uses the upsample and

fusion methods similar to the FPN (where the last three scales

are fused, and the other two scales are 26 ∗ 26 and 52 ∗ 52,

respectively). Detection performed on the featuremap obtains

a high recognition rate for small targets, which is suitable

for the detection of T. papillosa and the recognition of small

objects of small insects of different stages from the images

taken by the drone.

The darknet-53 network structure is based on full con-

volution and introduces the residual structure at the same

time. Many layered models have descending gradients dur-

ing the training and Darknet-19 has 19 convolutional layers.

ResNet’s residual structure reduces the difficulty in the train-

ing of deep networks and Darknet-53’s 53-layer network can

significantly improve the accuracy. When deeper networks

are required for convergence, they may degrade the coverage

as the network layers become deeper and more complicated,

and the accuracy also suffers. The ResNet is implemented

to avoid the network performance degradation caused by

the deepening of the network. We used the YOLOv3 net-

work architecture [2] for training and recognition, as shown

in Fig. 5.

4) TRAINING TINY-YOLOV3 MODEL

Although many trained Tiny-YOLOv3 models are available

on the Internet, the models are not trained to recognize

T. papillosa. Therefore, we have redesigned the Tiny-

YOLOv3 model and readjusted the parameters of the model

during training to set T. papillosa as the recognition tar-

get. The hardware equipment used in this work includes a

GIGABYTE Z370M motherboard, an Intel i7-8700 3.2GHz

CPU, a NVIDIA GeForce RTX 2070-8G GPU with 16G

DDR4-2666 internal memory, and the Docker container envi-

ronment, which is established on Ubuntu. TensorFlow (with

CUDA support) is used in the container to train the Tiny-

YOLOv3 model. The Docker container is a typical virtual

machine. It utilizes a virtualization technology and does not

require a separate operating system to execute programs. The

programs and operating systems can be executed without
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FIGURE 6. Tiny-YOLOv3 Architecture diagram [3].

affecting each other when the device is running. Docker

containers can be used to avoid damage to the core of the

operating system due to manual errors during experiments

and can be quickly used to establish the environment required

for testing on different operating systems.

In this work, we utilized the Tiny-YOLOv3 network

architecture for training and recognition, as shown in Fig. 6.

B. THE POSITIONING OF AERIAL IMAGES

We have stitched multiple aerial images into a large aerial

view as an informative map for positioning. The error of

the coordinates will be calculated when the drone detects T.

papillosa. We used the ground features’ relative coordinates

to stitch the image and utilized the ground control points to

correct the absolute coordinates of all the surveyed areas. In

this work, the orchard’s Digital Surface Model (DSM) data

(as shown in Fig. 7) and aerial images acquired by the drone

are used to calculate the absolute coordinates of T. papillosa’s

locations, to plan the agricultural spray paths.

Fig. 7 shows the UAV hovering over the orchard. From the

figure, we can see that there is a difference in the height of

the trees. The pests to be detected are not directly underneath

the UAV and need to be located using the proposed methods.

Fig. 8 shows the 3D model reconstructed from the aerial

images acquired by the UAV. The model is used later to

determine the absolute coordinates of T. papillosa.

C. ROUTE PLANNING OF AGRICULTURE DRONE FOR

SPRAYING PESTICIDES
T. papillosa is currently the most important pest in the longan

industry. Since most of the longan trees are planted on hill-

sides and hilltops, these trees are difficult to prune, so they can

FIGURE 7. DSM data with a resolution of 1.42cm/pixel generated from
the aerial images acquired by the UAV.

FIGURE 8. UAV hovering over the orchard.

grow to more than 13 meters in height. As a result, farmers

have to spray pesticides by hand to control pests and dis-

eases. With the aging of the rural workforce and shortage of

farmers, the number of abandoned longan orchards increases.

Therefore, if drones are used to detect where T. papillosa

occurs and agricultural drones are then employed to spray

pesticides to prevent and control T. papillosa infestations,

the aforementioned problems could be alleviated.

In this work, it is proposed that the drone plans the pesticide

spraying route on the slopes after identifying the pests in the

orchards. The planning involves three steps: 1. defining the

target area, 2. setting the takeoff and landing points, and 3.

optimizing the route.

1) Defining the target area: The locations of the pests

identified by the drone and the effective spray radius

of the agricultural spraying drone are used to plan a

complete route. The target area is then divided based

on the time required by each pesticide spraying drone.

2) Setting the takeoff and landing points: After the target

area has been set, the takeoff and landing positions in

the orchard are determined to estimate the UAV’s flight

time, which includes the takeoff and landing positions

in the planned route.

3) Optimize the route: An ant algorithm is used to accom-

modate the UAV’s limited range when optimizing the

pesticide spraying route.
We recognize the pests’ locations through the reconnais-

sance aircraft, in which the positions are recorded to plan

the shortest path. Figure 9 shows the area that needs to be
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FIGURE 9. Locations where pesticide treatments are needed. The
yellow-dashed circles represent the agricultural drone’s range for
spraying pesticides; the red stars are the positioning points for
calibration before each drone flight.

sprayed with pesticides based on a radius of 5 meters from the

pests’ location, as indicated by the yellow dotted circles. The

positions and sequence of where pesticide sprays are needed

are transmitted to the flight controller of the plant protection

machine. The red stars in Fig. 9 are used as coordinate points

for positioning and calibration during each flight.

D. EMBEDDED PLATFORM

Since the Tiny-YOLOv3 model needs to be implemented

with the CUDA kit, a GPU computing platform is required.

However, the weight, size, and power of the current GPU

embedded devices are limited. For example, the NVIDIA

GTX 1080Ti has a TDP of 250W and 1.3TFLOPS. Although

the GPU is able to perform the training smoothly in offline

situations, it is not suitable for a drone due to the GPU’s

power requirements.We need to find a systemwith low power

requirements, efficient processing and lightweight features to

enable the drones to fly safely and take clear images of the

pest locations in real-time. Equation (2) is used to determine

whether the weight or power is suitable for the embedded

platform on a UAV. In Equation (2), r is the radius of the

drone propellers (meters), m is the weight of the aircraft

(kilograms), P is the power (watts), g is the acceleration of

gravity (9.80665 m/s2), and K is the air density Qair . K can

be obtained from Equ2tion (3), where at 20◦C and at pressure

of Latham, í is 0.363562254.

P = K ·
(m · g)3/2

r
(2)

K =

√

1

2π · Qair
(3)

A computing platform for embedded applications typically

has a payload of less than 15W (for example, the Intel NUC

board NUC5I3MYBE is 15W, and the Raspberry Pi 3 is about

6.7W). In this work, we consider embedded systems that are

lightweight withmultiple CUDAand low power consumption

to assemble the embedded platform for the UAV. We have

selected the NVIDIA Jetson Tx2 with a weight of 85 grams,

256 CUDA cores (1.5TFLOPS), 7.5W (peak efficiency) and

FIGURE 10. Self-assembled reconnaissance drone.

FIGURE 11. APD-616X Agricultural spray drone.

15W (peak performance) as the embedded system to be used

on the drones for edge computing and the recognition of

T. papillosa.

NVIDIA Jetson TX2 is an ARM-based, high-performance

and energy-efficient embedded computing device, which is

built around a NVIDIA PascalTM-family GPU and loaded

with 8GB of memory and 59.7GB/s of memory bandwidth.

It has dedicated units for accelerating neural network calcu-

lations for image processing and can be operated on Ubuntu

16.04 LTS [29]–[32]. We have installed the NVIDIA Jetson

TX2 on a reconnaissance drone (shown in Fig. 10) and experi-

mented on the longan trees on the slopes of Nanhua in Tainan,

Taiwan.

The deep learning model of Tiny-YOLOv3 built on TX2 is

used to perform T. papillosa recognition and locate the pest.

TX2 will plan an optimized pesticide spraying path for the

agricultural drone according to the pest position, while con-

sidering the tree heights on the sloping land. The optimized

path is transmitted to the flight controller (Pixhawk 4) of

the APD-616X agricultural spray drone through a wireless

connection. We flew the entire path before spraying pes-

ticides to verify the optimized path’s correctness with a

pesticide-spraying drone (as shown in Fig.11) under full

water conditions.

E. CNN OPTIMIZATION ON THE EMBEDDED PLATFORM

1) REDUCING IMAGE RESOLUTION

A disparity map computes the horizontal displacement

between each pair of corresponding pixels in two images.

Wang et al. [33] have presented a technique for disparity

estimation, which achieves a balance between accuracy and

speed. The technique passes the input image pair through a

feature extractor, which computes feature maps at different

resolutions (for example, at scales of 1/16, 1/8 and 1/4).
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Their technique improves accuracy through the following

steps: using an image size of 1024∗1024 pixels as an exam-

ple, to ensure the image transmission speed, the first step

uses 1/16 of the image size, that is, 64∗64 pixels for fea-

ture recognition; the second step increases the image size to

128∗128 pixels, to improve and correct the accuracy of the

recognition from the first step; the third step is to increase

the image size to 256∗256 pixels and perform similar actions

as the second step; and finally in step four, to use a spatial

propagationmodel to simplify all used parameters obtained to

reduce the storage space of the model, to achieve the effect of

recognition in TX2 real-time. The detailed operational steps

are as follows:

1) Compute the features at 1/16 of the original scale and

generate a low-resolution disparity map from the dis-

parity network. The first stage has low latency since

low-resolution features are used.

2) If enough time is available, the technique enters step 2,

where features at 1/8 of the original scale are obtained.

In this step, only a correction of the map from step 1 is

computed since these errors can be detected at a higher

resolution.

3) If time is still available, step 3 is conducted, which

is similar to step 2 except that the scale is 1/4, which

doubles the resolution.

4) The map of step 3 is refined using a spatial propagation

model. This technique reduces the number of param-

eters by several orders of magnitude and achieves a

frame rate between 10 and 35 frames per second on

TX2.

2) INCREASING THE NUMBER OF NEURAL NETWORK

LAYERS

We have experimented on a computer with an Intel i7-6700K

CPU and a NVIDIA GTX 1080Ti GPU (11.3TFLOPS).

When processing a single video stream, the frame rate is

40FPS and the GPU load is about 42%. If two parallel

video streams are processed at the same time, the frame

rate exceeds 35FPS and the GPU load is about 65%. For

successful pest recognition using the Tiny-YOLOv3 model

on the drone, we have increased the number of layers in the

Tiny-YOLOv3 model to reduce the number of parameters in

each layer of convolution, however, the overall number of

parameters is doubled and the memory required by CUDA

is maintained at less than 11Gb.

IV. EXPERIMENTAL RESULTS

This section describes the process and results of the exper-

iment. First, we have implemented different models of

YOLOv3 and Tiny-YOLOv3 with the embedded computer

Jetson TX2 to compare their speed and accuracy in the recog-

nition of T. papillosa. Data augmentation is performed on

the T. papillosa data sets and the parameters are adjusted to

improve the models’ learning rates. Finally, based on the pest

recognition results from the TX2 embedded on the drone,

the route for the pesticide-spraying drone is planned by the

FIGURE 12. Comparison of YOLOv3 and Tiny-YOLOv3.

TX2 to compare the flight distances of the ant algorithm and

the top-down sequential algorithm.

A. COMPARING THE PERFORMANCE OF YOLOv3 AND

TINY-YOLOv3 MODELS

This experiment used TensorFlow as the environment for

the TX2. The mean average precision (mAP) is calculated

to evaluate the performance of the YOLOv3 and Tiny-

YOLOv3 models from 473 images of T. papillosa taken by

the drone with a resolution of 416∗416 pixels. Fig. 11 shows

the frames per second (FPS), and the mean average precision

(mAP) of the YOLOv3 and Tiny-YOLOv3 models.

The results in Fig. 12 show the accuracy and performance

of the YOLOv3 and Tiny-YOLOv3 models. The recognition

speed of the Tiny-YOLOv3 model is more than three times

faster than that of the YOLOv3 model. Therefore, this work

uses the Tiny-YOLOv3 model based on the TX2 embedded

device for the effective recognition of T. papillosa in the

orchard.

The value of Intersection over Union (IoU) has a great

influence on target detection. If the IoU value is too high,

it will cause the test results to show that the marked ones are

correct, but many correct ones will be lost and not marked.

If the IoU value is too low, the test results will show that

all correct and many incorrect ones will be marked. Based

on the above reasons, in this study we experimented with the

influence of the IoU value on the recognition of T. papillosa,

as shown in Fig. 13-15, We used the 473 images as the test

samples, and each image contains more than one T. papillosa

individual. The Tiny-YOLOv3 model was trained with T.

papillosa image samples to recognize the five categories of

stages and instars. The red parts in Figures 13-15 are the

numbers of target identification errors, and the green parts

are the numbers of correct identifications.

In addition, the IoU settings also affect pest recognition

accuracy in the images. If the IoU is set too high, the pest

recognition accuracy is affected, resulting in lower accuracy.

If the IoU is set too low, a pest may be labeled by many

bounding boxes and the precision will be higher, but the

recall rate will be low. Based on the experimental results

in Fig. 15, IoU = 0.5% has been selected as the IoU for this

work.
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FIGURE 13. Predicted objects when IoU = 0.3%.

FIGURE 14. Predicted objects when IoU = 0.45%.

FIGURE 15. Predicted objects when IoU = 0.5%.

B. RESOLUTION AND RECOGNITION ACCURACY OF THE

INPUT IMAGS

The input image resolution of the Tiny-YOLOv3 model is

416 ∗ 416 pixels. To improve the pest recognition accuracy

from the drone, we revised the resolution of the input image

to 512 ∗ 512 pixels and 640 ∗ 640 pixels for the experiments.

We have found that as the resolution increases, the frame

rate (frames per second) decreases, but the accuracy of pest

recognition increases. Fig. 16 shows the recognition results

of different input image resolutions. Figs. 16 (a) and (c) have

resolutions of 416 ∗ 416 pixels, and the mAP for these fig-

ures are 50.12% and 38.12%, respectively. Figs. 16 (b) and (d)

have resolutions of 640 ∗ 640 pixels, and the mAP for these

figures are 95.33% and 89.72%, respectively. These results

show that when the image resolution is low, the identification

FIGURE 16. Comparison between different detectors.

FIGURE 17. (a) The path planning from high to low based on the altitude.
(b) The path planning based on the ant algorithm.

accuracy is also low, and the system is unable to distinguish

between some pests and non-pests.

C. COMPARISON PATH ALGORITHMS

This study compares the route-optimizing method based on

the identified pest positions to a traditional method, in which

the entire orchard is sprayed. The route-optimizing method

not only shortens flight time by 19% but also reduces pes-

ticide use. In this study, we improved the ant algorithm by

considering the earth’s ellipse phenomenon, and used the

Haversine formula, Equation (4) to calculate any two task

points’ distance in the ant algorithm. We compared two pes-

ticide spraying routes for the drones; one route is performed

by spraying from high to low based on altitude, as shown in

Fig. 17 (a), and the other is the shortest distance based on the

ant algorithm, as shown in Fig. 17 (b). Results show that for

the agricultural drone to spray pesticides in a sloped area, the

path based on the ant algorithm is shorter than the path based

on high to low altitude.

hav

(

d

r

)

=hav (ϕ2−ϕ1)+cos (ϕ1) cos (ϕ2) hav (λ2−λ1)

(4)

We adopted the Deep Q-Learning algorithm (DQN) of

enhanced learning to improve the optimization pesticide
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FIGURE 18. Comparison of accumulated flight distances between the
original flight path and the ant algorithm, DQN path algorithm.

application route and set the environmental parameters

through the edge computing server, including the orchard’s

terrain height and the pests’ location. Then we used DQN

to plan the optimal pesticide application route automatically.

Figure 18 compared three path planning methods the DQN

algorithm, the ant algorithm, and high to low based on the alti-

tude. The figure showed that the DQN algorithm is better than

the other two methods and the pesticide application route can

be intelligently planned through the edge server. In the future,

we will continue to research to consider more environmen-

tal variables to achieve an intelligent pesticide application

route algorithm for pesticide-spraying drone tailored to local

conditions.

D. RECOGNITION OF T. PAPILLOSA IN ORCHARDS BY

DRONE

Fig. 19 shows the results of T. papillosa recognition in a lon-

gan orchard in Nanhua by a drone and TX2. When TX2 rec-

ognizes the pest, it records the life cycle stage and the position

of the pest and plans the optimized route for the pesticide

spraying drone. Figure 19 shows that the implemented system

on the drone is able to recognize the different stages of

T. papillosa even under different lighting and background

conditions.

E. ASSESSING THE EFFECTIVENESS OF AGRICULTURAL

SPRAY DRONES AGAINST T. PAPILLOSA

We overcame the difficulties with agricultural drones fly-

ing on sloped terrain by using a drone equipped with

high-resolution optical cameras to take orthophotos, thereby

creating 3D terrain data. We used the reconnaissance drone

to photograph T. papillosa, and these data were provided to

the TX2 embedded system that planned the optimal flight

route based on the pests’ positions and the variable heights

of longan trees on slopes. In turn, all this information was

provided to the agricultural drone spraying pesticides. The

drone adjusted its flight height according to tree heights, as it

followed the optimized path to precisely perform pesticide

spraying.

Results show that use of the drone to prevent damage from

T. papillosa can provide over 95% control of this pest T.

papillosa, reduce water volume use by 12.5% for spraying

pesticides, save more than 50% of farmers’ labor, and reduce

pesticide usage by 70%. Fig. 20 shows the variations in the

numbers of T. papillosa in the sloping orchard of Nanhua,

FIGURE 19. Recognition results by the Tiny-YOLOv3 model in the TX2 for
the images acquired by the drone’s camera.

FIGURE 20. Variations in the numbers of T. papillosa in the experimental
field.

Tainan, Taiwan, to confirm that this study is effective for

controlling this pest T. papillosa.

V. CONCLUSION

This study uses edge intelligence applications to detect T.

papillosa and plans routes for the pesticide spraying drone

in real time. It shows that the combination of the drone with

the TX2 is able to provide real-time pest detection in the

orchard. The FPS and mAP values suitable for practical field

applications are initialized on the embedded device TX2.

Edge computing is performed with the Tiny-YOLOv3 to plan
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the optimized route to reduce pesticide use and provide the

shortest flight route for the agricultural spraying drone. This

work has proposed a feasible method for edge operations

on embedded systems to recognize T. papillosa in real-time.

We have found that the Tiny-YOLOv3 algorithm based on

neural networks has excellent performance about the FPS and

mAP. In this study, we have used input images of different

sizes and IoU values to adjust the parameters of the Tiny-

YOLOv3 model. We have also used the disparity map to

optimize the image detection time by the TX2, resulting in

increasing the frame rate and reducing the RAM requirement,

and an overall improvement of the Tiny-YOLOv3 model’s

recognition performance.

Once the TX2 has identified the pests, it uses DQN path

algorithm to plan an optimal route based on the pests’ posi-

tions and tree heights. We compared two routes for the pesti-

cide spraying drone. We have demonstrated that the planned

path based on the ant algorithm is 19% shorter than the

high to low path based on the altitude. Through this work,

edge computing has been successfully applied to smart farm-

ing, and farmers can reduce pesticide use while effectively

controlling pest dispersal. This research cooperates with the

Tainan District Agricultural Research and Extension Station,

Council of Agriculture (COA) of Taiwan government unit.

Experts have determined that the research results used edge

intelligence to automatic precision spraying.

This study uses the APD-616X agricultural spray drone,

which can be sprayed pesticides for an area of 1000m2 when

fully loaded about 25-35L. It reduces the consumption

of water by 87.5% compared with the traditional manual

spraying of pesticides. The pesticide-spraying drone takes an

average spraying time of 5.3 minutes/1000m2. The manual

pesticide sprayer is 11.4 minutes/1000m2. The pesticide-

spraying drone’s operating time is 53% less than the manual

method. Besides, manual knapsack spraying requires two

people operators to pull the tube and one to drive the sprayer,

which differs from a pesticide-spraying drone that requires

only one person to operate, pesticide-spraying drone reduces

50% of the workforce. The research that reduces workforce

consumption, lower pesticide costs and decreased environ-

mental damage has achieved precision agriculture.

In the future, we will use environmental sensors to analyze

and predict whether climatic factors, such as temperature,

humidity and light intensity, influence the occurrence of

pests, and to help farmers take timely preventive actions.
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