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Abstract

A hybrid experimental–numerical methodology is presented for the parameter identification of a mixed

nonlinear hardening anisotropic plasticity model fully coupled with isotropic ductile damage accounting for

microcracks closure effects. In this study, three test materials are chosen: DP1000, CP1200, and AL7020.

The experiments involve the tensile tests with smooth and notched specimens and two types of shear tests.

The tensile tests with smooth specimens are conducted in different directions with respect to the rolling

direction. This helps to determine the plastic anisotropy parameters of the material when the ductile
damage is still negligible. Also, in-plane torsion tests with a single loading cycle are used to determine

separately the isotropic and kinematic hardening parameters. Finally, tensile tests with notched specimens

and Shouler and Allwood shear tests are used for the damage parameters identification. These are con-

ducted until the final fracture with the triaxiality ratio � lying between 0 and 1=
ffiffiffi

3
p

(i.e. 0 � � � 1=
ffiffiffi

3
p

). The

classical force–displacement curves are chosen as the experimental responses. However, for the tensile test

with notched specimens, the distribution of displacement components is measured using a full field meas-

urement technique (ARAMIS system). These experimental results are directly used by the identification

methodology in order to determine the ‘‘best’’ values of material parameters involved in the constitutive
equations. The inverse identification methodology combines an optimization algorithm which is coded

within MATLAB together with the finite element (FE) code ABAQUS/Explicit. After optimization, good

agreement between experimental and numerically predicted results in terms of force–displacement curves

is obtained for the three studied materials. Finally, the applicability and validity of the determined material

parameters are proved with additional validation tests.
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Introduction

With increasing requirement of the crashworthiness and fuel efficiency, high strength steels and

aluminum alloys are extensively used as body structure of modern automotive components. Due

to the weak ductility of these materials, the prediction of their forming limits offers considerable

challenges. Numerous failure criteria (based on necking or fracture) are proposed. Briefly speaking,

methods for failure prediction in metallic materials can be classified in two groups: coupled and

uncoupled damage approaches. In the case of uncoupled approaches, the damage effects on elastic

and plastic strains are neglected and appropriate failure criteria are used to describe the material

failure based on maximum or equivalent stress, maximum or equivalent strain, plastic work, plastic

dissipation, and so on (Bai and Wierzbicki, 2008; Ebnoether and Mohr, 2013; Johnson and Cook,

1985; Rice and Tracey, 1969 among others). Due to their uncoupled nature, these models do not

consider stress and stiffness decrease due to the damage-induced softening during deformation.

Accordingly, they cannot accurately predict the localization and failure under various stress states.

In the case of coupled approaches, the effect of damage on the material behavior appears as

mandatory in order to account for the damage-induced softening. In fact, taking into account the

effect of ductile damage on the behavior of the deformed materials allows predicting the large

inelastic strains and rotations of the processed workpieces and evolving boundary conditions. It

can also indicate where and when the damaged zones appear and evolve during the forming process.

From the microscopic viewpoint, ductile damage resulting from large plastic strains of metallic

material develops in three main stages: (i) microvoids nucleation around the preexisting precipitates

or second phases, (ii) microvoids growth, and (iii) microvoids coalescence leading to the initiation of

macroscopically observed cracks. To account for the damage-behavior coupling, two approaches are

widely used: the physically motivated approach initially developed by Gurson (1977) and the

phenomenological approach based on continuum damage mechanics (CDM) (Lemaitre and

Chaboche, 1985). Except the models by Gelin (1990) and Rousselier (1987), the former class of

models involving Gurson approach and its extensions to various situations account only for the

effect of the ductile damage on the stress decrease while keeping unchanged (i.e. insensitive to the

damage occurrence) the material stiffness (Aravas, 1986; Benzerga and Leblond, 2010; Besson, 2009;

Besson et al., 2003; Gologanu et al., 1995; Gurson, 1977; Needleman and Triantafyllidis, 1980;

Onate and Kleiber, 1988; Pardoen et al., 2004; Rice and Tracey, 1969; Rousselier, 2001;

Tvergaard, 1990 among many others).

The CDM approach follows the framework of thermodynamics of irreversible processes with

state variables in which the damage is represented by a scalar (isotropic damage) or a tensor of

various ranks (anisotropic damage) (Besson, 2010; Lemaitre, 1992; Lemaitre and Chaboche, 1985;

Lemaitre et al., 2009; Lemaitre and Desmorat, 2005; Murakami, 2012; Saanouni, 2012; Voyiadjis

and Kattan, 1992). The CDM approach has been extensively used to study different kinds of damage

in various isotropic and anisotropic materials as can be found on the above cited books.

Particularly, it has been widely used to describe the ductile damage of metallic materials under

large plastic strains (Brokken et al., 1998; Celentano and Chaboche, 2007; Chow and Wang,

684 International Journal of Damage Mechanics 24(5)



1987; Desmorat et al., 2007, 2010; Hartley et al., 1989; Lee et al., 1985; Saanouni and Chaboche,

2003; Saanouni and Hammi, 2000; Saanouni et al., 2011, 2008; Soyarslan and Tekkaya, 2010).

The model used in this study belongs to the class of CDM models. It accounts for the initial

plastic anisotropy and mixed nonlinear isotropic and kinematic hardening fully coupled with ductile

isotropic damage including the microcracks closure effects. In this model the triaxiality ratio, defined

as the ratio between the hydrostatic stress (first stress invariant) and the equivalent stress (second

stress invariant), is taken into account in the thermodynamic damage force Y when it is expressed in

the stress space (Lemaitre, 1992). However, the third stress invariant involved in the Lode angle is

not taken into account. In recent experimental studies, Bao and Wierzbicki (2004) showed that the

Lode angle parameter also affects the damage evolution, especially at low stress triaxiality. Also Xue

(2007) developed a damage plasticity model, which includes both the hydrostatic pressure and Lode

angle influence. In Cao et al. (2013a) classical Lemaitre’s damage model has been enhanced by

introducing the Lode angle to describe the ductile damage evolution in Zirconium alloy. The

Lode angle effect is out of the scope of the present paper and will be addressed in a forthcoming

study. In fact, in a recent work of the authors (Badreddine et al., 2014) it has been shown that the

effect of the Lode angle is automatically accounted for when anisotropic damage is used.

Each type of constitutive equations is characterized by a given number of material parameters

which need to be determined based on appropriate experimental data. The determination of the

values of these parameters for a given material is not an easy task. Various identification methodol-

ogies based on inverse approach have been proposed to identify different kinds of constitutive

equations (Bonora, 1999; Bouchard et al., 2011; Cao et al., 2013a, 2013b; Eggertsen and

Mattiasson, 2010; Khoddam et al., 1996; Yoshida et al., 1998, 2003). However, there is still no

standard guideline which can help users to identify easily the overall involved material parameters.

In the context of damage mechanics, most of the previous identification methodologies are proposed

based on standard tensile tests. This cannot accurately capture the damage growth under more

complex loading paths under changing triaxiality ratios. Bao and Wierzbicki (2004) carried out

15 tests of aluminum alloy to cover stress triaxiality ranging from –1/3 to 1, including uniaxial

tension, notched specimens, specimens with a central hole, simple shear (SS) specimens, tensile tube,

and cylindrical bars for upsetting tests. In order to obtain the threshold strain at different stress

triaxialities, notched round bar and image processing methodology were used to calibrate the

Gurson-Tvergaard-Needleman (GTN) model under multiaxial stress states (Bonora et al., 2005;

Li et al., 2011; Yoshida and Ishikawa, 2011). A novel specimen geometry designed by Shouler

and Allwood (2010), allowing proportional shear loading paths across the strain ratio

(�1 � "2="3
� �

� 1=2), can be performed using classical universal tensile machine. Another kind of

shear specimen geometry, proposed by Merklein and Biasutti (2011) for performing forward and

reverse SS tests, can be used to investigate the Bauschinger effect at room or high temperature. Note

that, to avoid some difficulties related to the application of cyclic loading paths (Abel and Ham,

1966; Yoshida et al., 1998), Yin et al. (2012) proposed a modified twin bridge shear test. In the case

of notched tension and shear tests, inhomogeneous stress and strain distributions are involved, and

the stress–strain curves cannot be determined directly from the tests. The hybrid experimental–

numerical methodology commonly called inverse method can be used for parameter identification.

The inverse approach consists on minimizing the difference between available experimental data and

numerically predicted results in order to find (iteratively) the best values of the overall material

parameters (Bouchard et al., 2011; Khoddam et al., 1996; Yoshida et al., 1998, 2003).

The main goal of the present work is to introduce a methodology to guide the identification of the

used fully coupled constitutive equations, which have 17 material parameters related to elasticity,

anisotropic plasticity, and ductile isotropic damage. Various tests need to be conducted for the
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identification of material parameters for three different materials, namely: DP1000, CP1200, and

AL7020. Uniaxial tension tests (ASTM, 2000) can be performed in different loading directions with

respect to the rolling direction (RD), which allow the identification of elastoplasticity parameters.

The tests with cyclic loading paths can be used to determine the contribution of the kinematic

hardening. For the ductile damage parameters, specimens with different geometries related to dif-

ferent triaxiality ratios need to be performed. The important microcracks closure effect parameter h

has been taken into account, which dramatically decreases the rate of damage growth under com-

pressive loading paths.

In the current study, the elastoplastic parameters and the damage parameters are identified sep-

arately. The elastoplasticity with the combined isotropic and kinematic hardening should be identi-

fied using uniaxial tensile tests and torsion tests with cyclic loading paths. Damage parameters can

be determined with the help of the tensile tests with notched specimens and the SS tests, which can

help to observe the formability of materials under different stress states with the triaxiality ratios �
varying between 0 and 1=

ffiffiffi

3
p

. This identification procedure based on classical inverse approach is

shortly described in Appendix 1. In the second chapter, the elastoplastic constitutive equations are

briefly reviewed, which take into account the initial plastic anisotropy of Hill type and the mixed

nonlinear isotropic and kinematic hardening fully coupled with ductile isotropic damage including

the microcracks closure. This proposed model is already implemented into ABAQUS/Explicit FE

code for the numerical simulation of sheet and/or bulk metal forming processes. It is also used here

together with a MATLAB-based numerical inverse approach to determine the best values of the

objective parameters. A complete experimental database is performed for the studied materials

(DP1000, CP1200, and AL7020) using: uniaxial tension tests, notched tension specimens, twin

bridge torsion test (Yin et al., 2012), newly proposed SS tests (Shouler and Allwood, 2010).

A ARAMIS optical system distributed by the company GOM is also used to capture and record

the strain distribution on the test zones, and the local force–displacement curves are plotted and

used by the identification methodology. The validation of the identified model is performed using

additional combined tension–shear tests.

Throughout this paper, the following notations will be used: T and T represent second-rank and

fourth-rank tensors, respectively, T : T and T� T denote the double contraction (or inner product)

and tensor product, respectively. ~T represents the effective state variable which is defined at the

fictive undamaged configuration.

Outline of the fully coupled constitutive equations

The elastoplastic constitutive equations fully coupled with the isotropic ductile damage are devel-

oped in the framework of thermodynamics of irreversible processes with state variables assuming

large plastic strains and small elastic strains. In order to ensure the required objectivity of the

constitutive equations, the so-called rotating frame formulation is used which leads to the additive

decomposition of the total strain rate tensor into an elastic small strain rate and a finite plastic strain

rate (Badreddine et al., 2010; Saanouni and Chaboche, 2003). The detailed theoretical, numerical,

and applicative aspects of various versions of the fully coupled formulations can be found in

Saanouni (2012) and we limit ourselves here to giving the main feature of the particular model

used in this study. The following couples of state variables are used: (i) "e, �
� �

represents the

elastoplastic flow; (ii) �, Xð Þ represents the kinematic hardening; (iii) r, Rð Þ represents the isotropic
hardening, and (iv) d, Yð Þ represents the isotropic ductile damage in Lemaitre and Chaboche (1985)

sense. It should be noted that the damage variable takes values between 0 and 1 and the total

fracture of the representative volume element (RVE) is achieved when d ¼ dc ¼ 1. The strong
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coupling between the plastic flow with hardening and the ductile damage is performed in the frame-

work of total energy equivalence assumption (Badreddine et al., 2010; Saanouni, 2012; Saanouni

and Chaboche, 2003), leading to the definition of the effective state variables ~"e, ~�ð Þ, ~�, ~X
� �

, and

~r, ~R
� �

through the use of three damage-effect functions according to

~"e ¼ geðd Þ"e and ~� ¼ �

geðd Þ
ð1Þ

~� ¼ g�ðd Þ� and ~X ¼ X

g�ðd Þ
ð2Þ

~r ¼ grðd Þr and ~R ¼ R

grðd Þ
ð3Þ

where the damage effect functions geðd Þ, g�ðd Þ, and grðd Þ are scalar valued, positive, and decreasing

functions of damage with geðd ¼ 0Þ¼ g�ðd ¼ 0Þ ¼ grðd ¼ 0Þ ¼ 1 at the initial undamaged state and

geðdcÞ¼ g�ðdcÞ ¼ grðdcÞ ¼ 0 at the final fracture of the RVE. In this work the following choices of the

damage effect functions are adopted

geðd Þ ¼ g�ðd Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p

and grðd Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d�
p

ð4Þ

where � is a parameter governing the effect of ductile damage on the isotropic hardening compared

to the kinematic hardening and elastic modules (Saanouni, 2012).

The microcracks closure phenomenon is generally observed for the loading paths alternating

tension and compression phases. Indeed, if compression succeeds to tension with some microcracks

created in tension, it is observed that these opened microcracks tend to close during the compressive

phase of loading (see Lemaitre, 1992; Lemaitre and Desmorat, 2005; Saanouni, 2012 for more

details). This leads to a partial or complete recovery of some damage-affected mechanical properties

as the elastic modulus, hardening moduli, etc. and drastically reduces or even completely skips the

damage evolution during the compression phase of the applied loading. This activation–deactivation

of damage has been largely studied in the literature for various types of materials (Chaboche, 1992,

1993; Daudeville and Ladevèze, 1993; Lemaitre, 1992; Lemaitre and Desmorat, 2005; Marigo, 1985;

Ortiz, 1985; Saanouni, 2012; Simo and Ju, 1987; Zhu et al., 1992). The basic idea to account for this

phenomenon is to decompose the tensorial state variables into negative and positive parts and to

affect some material properties by the damage differently under positive and negative phases of the

applied loading. This leads inherently to some theoretical problems directly related to the continuity

and/or convexity loss of the yield function, state, and dissipation potentials (Chaboche, 1992, 1993;

Li and Smith, 1998; Qi and Bertram, 1999).

In this work only the small elastic strain tensor (and inherently the associated Cauchy stress

tensor) is decomposed into positive and negative parts leading to a damage release rate which is

lower in compression than in tension. This allows having a lower damage rate in compression than

in tension for the same amount of loading as can be found in Saanouni (2012). To do that, let us

consider any symmetric second-rank tensor T with Tdev ¼ T� ð1=3ÞtrðTÞ1 its deviatoric part. The

additive decomposition of this tensor into positive and negative parts T ¼ T
� �

þþ T
� �

� can be made

with T
� �

þ¼
P3

i¼1 Tih i~ei � ~ei and T
� �

�¼ T� T
� �

þ where Tih i is the ith eigenvalue of the tensor T and ~ei
its associated eigenvector. The notation xh i indicates the positive value of x, i.e. xh i ¼ x if x> 0 and

xh i ¼ 0 if xh i � 0 and 1 denotes the unit second-rank tensor. Accordingly, the effect of the ductile
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damage on the elastic behavior described by the effective variables of equation (1) is modified and

decomposed into deviatoric and hydrostatic parts as following

t

~"e ¼ geðd Þ "e
� �

þþgeðhd Þ "e
� �

�

¼
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p

ee
� �

þþ
1
3
trð"eÞ
� �

1
� �

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� hd
p

ee
� �

��
1
3
�trð"eÞ
� �

1
� �

~� ¼ �h iþ
geðd Þ þ

�h i�
geðhd Þ

¼ 1
ffiffiffiffiffiffi

1�d
p �dev

� �

þþ
1
3
trð�Þ
� �

1
� �

þ 1
ffiffiffiffiffiffiffiffi

1�hd
p �dev

� �

��
1
3
�trð�Þ
� �

1
� �

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð5Þ

in which ee stands for the deviatoric part of the small elastic strain tensor "e and the parameter

h 2 0:0 1:0½ � is the microcracks closure parameter.

By using the effective strain-like variables defined above in the Helmholtz free energy taken as a

state potential, the following state relationships can be easily obtained (Badreddine et al., 2010;

Saanouni, 2012; Saanouni et al., 1994)

� ¼ 2�e 1� dð Þ ee
� �

þþ 1� hdð Þ ee
� �

�

h i

þ ke 1� dð Þ trð"eÞ
� �

� 1� hdð Þ �trð"eÞ
� �	 


1 ð6Þ

X ¼ ð1� d Þ2
3
C� ð7Þ

R ¼ ð1� d�ÞQr ð8Þ

Y ¼ Ye þ Y� þ Yr ð9Þ

Ye ¼ 2�e ee
� �

þ: ee
� �

þþh ee
� �

�: ee
� �

�

h i

þ ke trð"eÞ
� �2þh �trð"eÞ

� �2
h i

ð10Þ

Y� ¼ 1

3
C� : � ð11Þ

Yr ¼ 1

2
�d��1Qr2 ð12Þ

where �e and le are the classical Lame’s constants and ke ¼ ð2�e þ 3leÞ=3 is the compressibility

modulus, while the parameters C and Q are the kinematic and the isotropic hardening moduli,

respectively. Clearly, equation (10) shows that the microcracks closure parameter h serves to

reduce the damage force for compressive load if h5 1 and if h ¼ 0 there is no more contribution

of the compressive load on the damage force. This is the simplest way to differentiate the damage

rate under tension and compression.

Note that the use of the total energy release rate given by equations (9) to (12) in the damage

evolution (see equation (18)) leads to a contribution of the elastic as well as the hardening parts in

the damage growth. It is important to highlight that the microcracks closure effect is only applied to

the elastic part of the damage energy release rate (equation (10)). In Figure 1 the microcracks closure

effect on the ductility, here given as the equivalent plastic strain at fracture, comparing both elastic

and total energy in the damage evolution is depicted. This figure describes the evolution of the

ductility (i.e. equivalent plastic strain before final failure d¼ 0.9) with respect to the triaxiality. As
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shown in this figure, the ductility increases for negative triaxiality when h< 1, i.e. when the micro-

cracks closure effect is accounted for. As anticipated, this increase is relatively more important when

considering only the elastic part of the damage energy release rate, for which it is observed that the

ductility tends to infinity for the triaxiality values below –1/3, i.e. uniaxial compression, for the case

h¼ 0. While the existence of cut-off triaxiality for fracture is an active research field, the mathem-

atical flexibility of the current model can account for damage development for the studied triaxiality

range. Note that in the original Lemaitre’s damage model, which uses only the elastic part of the

energy release rate as the damage driving force, h¼ 0.2 is suggested for metallic materials.

To ensure the thermodynamic admissibility of the model, the stress-like variables being defined by

equations (6) to (12) and the associated flux variables (Dp, _�, _r, and _d) should be defined in such a

manner that the Clausius–Duhem inequality� ¼ � : Dp � X : _�� R_rþ Y : _d � 0 (Dp being the plas-

tic strain rate) is identically satisfied. To achieve this goal, we introduce in the framework of

nonassociative plasticity a yield function f p and a plastic potential Fp (Badreddine et al., 2010),

both positive and convex functions of their main arguments in the stress space. From these func-

tions, the evolution equations are obtained through the normality rule. In this study, a single surface

model is used to describe the damaged elastoplastic behavior using the same yield function and

plastic potential chosen as

f p ¼
� � X

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffi

1� d
p � R

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d�
p � �y ¼ 0 ð13Þ

Fp ¼
� � X

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffi

1� d
p � R

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� d�
p þ 3a

4ð1� d ÞCX : Xþ b

2ð1� d ÞQR2 þ S

sþ 1

Y� Y0

S

� sþ1
1

ð1� d Þ�
ð14Þ

With � � X
�

�

�

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð� � XÞ : H : ð� � XÞ
p

is the anisotropic Hill48 equivalent stress characterized by

an anisotropic operator H having six anisotropic parameters F, G, H, L, M, and N and �y is the

initial yield stress. Applying the well-known normality rule leads to the following flux variables

Figure 1. Effect of microcracks closure parameter h on the plastic equivalent strain at final rupture (d¼ 0.9) as a

function of the triaxiality ratio.
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which define the evolution of the dissipative phenomena (Badreddine et al., 2010; Saanouni, 2012;

Saanouni et al., 1994)

Dp ¼ _l
@f p

@�
¼

_l
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p

H : ð� � XÞ
� � X

�

�

�

�

¼
_l

ffiffiffiffiffiffiffiffiffiffiffi

1� d
p ~n with ~n ¼

H : ð� � XÞ
� � X

�

�

�

�

ð15Þ

_� ¼ �_l
@Fp

@X
¼

_l
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p ð ~n � a ~�Þ ð16Þ

_r ¼ �_l
@Fp

@R
¼ _l

1
ffiffiffiffiffiffiffiffiffiffiffi

1� d
p � br

� �

ð17Þ

_d ¼ _l
@Fp

@Y
¼

_l

ð1� d Þ�
hY� Y0i

S

� �s

ð18Þ

where a and b characterize the nonlinearity of the kinematic and isotropic hardening, respectively,

and S, s, �, and Y0 are the material parameters defining the ductile damage evolution. The plastic

multiplier _l can be determined from the consistency condition _fp ¼ 0: If f p ¼ 0, however it will be

kept as the main unknown at each integration point of each finite element which will be determined

from the FE calculation.

This model is implemented into ABAQUS/Explicit� finite element code through the VUMAT

user routine. This subroutine is developed using a purely implicit numerical iterative integration

algorithm based on the well-known elastic prediction–plastic correction method (Badreddine et al.,

2010; Saanouni, 2012; Saanouni and Chaboche, 2003).

Application to three metallic materials

Experimental setup

In this study, three 1.5mm thickness sheet metals, namely DP1000, CP1200, and AL7020,

which are widely used in automotive industry, are investigated in order to test the reliability

of the proposed identification methodology. For this purpose, adequate experiments, summar-

ized in Table 1, need to be performed for the identification of the overall material parameters

of the proposed model. The tensile load versus global displacement curve in uniaxial tensile

tests (UT, Figure 2(a)) as well as the torsion angle versus the torsion torque curve in the two

bridge torsion tests (TBT, Figure 2(b)) has been used for the identification of elastoplastic

parameters.

For the determination of the damage parameters, prenotched tensile tests (PNT, Figure 3(a)) and

SS tests (Figure 3(b)) are performed until final fracture to observe the ductile damage development

under different loading paths characterized by various triaxiality ratios. With ARAMIS system, 1.0

and 4.0mm away from the central line of cutting section on PNT specimens are chosen as the

reference coordinates for local displacement output. Local displacement versus global force of

PNT is chosen as experimental output for the (S, s, �, Y0) determination, and global displacement

versus global force of SS can test the damage evolution in shear stress state for microcracks closure h

determination. A constant displacement rate of 0.1mm/s is performed to insure the quasi-static

deformation state.
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Firstly, the material parameters related to the plastic behavior without damage are determined.

The elasticity parameters (E, �) are determined from UT with analytical approach. The plastic flow

parameters (�y, F, G, H, L, M, N, C, a, Q, b) are determined from UT and TBT tests. To cover the

anisotropic behavior of materials, the UT specimens are prepared in three directions according to

Figure 2. Specimen geometries for determination of plasticity parameters (a) UT, (b) TBT.

Table 1. Experimental specimens and their association to material parameters.

Test Design Parameters Number of parameters Methodology

Elastoplasticity UT E, �, �y, F, G, H, L, M, N 9 Analytical

TBT C, a, Q, b 4 Inverse

Damage PNT S, s, �, Y0 4 Inverse

SS h 1 Inverse
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the RD 0�, 45�, 90�. The planar anisotropy parameters (F, G, H, N, M¼ 1.5, L¼ 1.5) are calculated

using anisotropy ratios r0, r45, r90, respectively

F ¼ H

r90
; G ¼ H

r0
; GþH ¼ 1; 2 � r45ðFþ GÞ ¼ 2 �N� F � G ð19Þ

The detailed design of TBT tests can be found in Yin et al. (2012). The data outputs in the form of

cyclic torsion angle–moment curves are monitored directly from the testing machine and used to

isolate the kinematic hardening parameters (X, �).
Secondly, the material parameters relative to the damage variable (S, s, �, Y0,�) are determined

from PNT tests. With the increase of notch radius, the damage evolution under different states of

tension stress can be obtained corresponding to various triaxiality ratios (theoretically between

uniaxial tension � ¼ 1=3 and plane strain tension � ¼ 1=
ffiffiffi

3
p

). The test zones of PNT specimens

(see Figure 3(a)) are constructed with two arcs whose horizontal length is 10mm with three notched

radius 5, 10, and 20mm. Local displacement got with ARAMIS optical measurement device and

global force curves are used as the experimental response.

For the sake of determination of the microcracks closure parameter h, SS is proposed corres-

ponding to triaxiality ratio � ¼ 0:0 (theoretically). The SS specimens (see Figure 3(b)) have double

test zones which can efficiently avoid the torque caused by the load imbalance on each test zone

(Shouler and Allwood, 2010). From the zoom of Figure 3(b), when q equals to zero, SS stress state is

obtained in the critical zone. When q value is 1.25 and 2.5mm, and while keeping the connection

band to be constant, a combined tension and shear stress state is created. These two geometries will

be used for the validation of the identified parameters. Considering the unpredictable position of

Figure 3. Specimen geometries for determination of damage parameters: (a) PNT, (b) SS.
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onset fracture, ARAMIS device is not used here, and the global displacement–force curves are used

as experimental response in these tests.

The digital image analysis system ARAMIS used in PNT tests is one among the very efficient

tools to capture the displacement and strain distribution on the specimen surface, which works by

tracking the gray value pattern in small neighborhood during deformation. Figure 4 shows an

example of data dealing process in the tests. The digital system can accurately record the coordinates

of each point on the captured pictures. The frequency of the picture acquisition is set to be 5Hz, and

pixel size is set to be 0.2mm in this study. Due to the loss of speckle pattern of the paint on the

specimen boundaries, it is not possible to accurately keep track of evolution of the curvature at the

edges with deformation. The pixel points on the central line following loading direction, 1.0 and

4.0mm (X1¼ 2 and 8mm, as shown in Figure 4) away from the central line of the cutting section are

chosen as the reference coordinates.

Identification of the fully coupled model

Inverse methodology scheme. As presented in Table 1, in order to determine separately the kine-

matic hardening (parameters C, a) and isotropic hardening (parameters Q, b) as well as the ductile

damage parameters (S, s, �, Y0) and the microcracks closure (parameter h), an inverse methodology

is used. This method enables the usage of unusual test setups or even the forming process itself

(Gelin and Ghouati, 1994; Unger et al., 2008) since the assumption of homogeneous deformation

field is not needed anymore. In this study, for the kinematic hardening parameters (C, a), the

measured moments versus rotation angles obtained from TBT tests are used. In order to form the

objective function, the experimental and numerical curves having different discretizations will be

Figure 4. Referred point output methodology with ARAMIS measurement system.
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linearly interpolated at the same rotation angle values. Fifty integration intervals are used for for-

ward and backward steps, adding up to 100 data points for one loading cycle. There are the same

weighting between the forward and backward curves. The similar scheme is used to determine S, s,

�, Y0 with local node distance versus global force from PNT tests and also determine the h with the

global distance versus the global force from SS tests.

The identification methodology combines, thanks to Python script, the ABAQUS FE software

with the MATLAB-based minimization code by reading the input files, comparing the output results

with the experimental measurements, builds and minimizes the objective function, and deliver the

best set of the material parameters which minimizes the difference between the numerically predicted

and the experimental results (see Appendix 1).

Elastoplastic parameters’ identification. The determined elastoplastic parameters are presented in

Table 2. From UT tests, the elasticity parameters (E,�) and initial yield stress �y can be obtained

directly, and with the Lankford parameters r in three directions (Figure 5(a)) and equation (19), the

anisotropic parameters of Hill 48 can be determined with this analytical approach. The combined

hardening parameters are determined with the TBT experimental response and simulation

responses. Without the damage coupled, the simulations are conducted with ABAQUS/Explicit

using user’s subroutine VUMAT and compared with experimental response before the maximum

value of the load.

Figure 5. (a) The r-value in direction respect to rolling directions, (b) force–displacement curves for uniaxial

tension.

Table 2. Elastoplastic parameters obtained from UT and TBT specimens.

E (GPa) 	 �y(MPa) Q (MPa) b C(MPa) a F G H L M N

DP1000 208.0 0.3 809.0 4000.0 13.0 32,000.0 150.0 0.525 0.546 0.455 1.5 1.5 1.67

CP1200 207.0 0.3 980.0 5848.0 37.0 37,000.0 507.0 0.567 0.610 0.389 1.5 1.5 1.37

AL7020 69.8 0.3 322.0 675.0 8.0 2260.0 75.0 0.631 0.634 0.366 1.5 1.5 1.4
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Normally, the damage just affects the degeneration process of deformation after the maximum

load. For the explicit simulation of the quasi-static deformation process, kinetic energy should be

controlled less than 10% of the internal energy, so the kinetic energy can maintain a minor value

compared with whole internal energy, and the inertia effects can be neglected, so the quasi-static

process is ensured according to the energy conservation principle. The displacement rate is 10mm/s,

and the time increment is fixed to be 2E-6 with mass scaling method.

Figure 5(b) shows the comparison of experimental–numerical responses in monotonic loading

condition in the forms of force–displacement curves before the maximum force value, which can

prove the accuracy of determined parameters in unique loading condition.

Figure 6 shows the results obtained for the three materials when subject to one loading cycle in

torsion (loading–unloading). With the same prestrain 0.6 degree of torsion for DP1000 (Figure 6(a))

and CP1200 (Figure 6(b)), the CP1200 presents less Bauschinger effect and its saturation value is

0.07�y for kinematic hardening can satisfy the requirement, compared to 0.26�y for DP1000. With

prestrain 1.5 degrees of torsion for AL7020 (Figure 6(c)) the saturation value is 0.1�y, the

Bauschinger effect in inverse direction can be obtained using the determined hardening parameters.

Figure 6. Numerical and experimental moment–angle curve comparison using the TBT test loading in rolling

direction of plate with identified kinematic hardening parameters: (a) DP in shear loading, (b) CP in shear loading,

(c) AL in shear loading.
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Damage parameters’ identification. With the elastoplasticity parameters determined earlier, the

PNT and SS are simulated with the same setting conditions in ABAQUS as used above. Since the

present model is fully local and accounts for damage-induced softening, the influence of mesh size on

damage evolution is handled via accounting mesh size as a process parameter as well. A finer mesh

will lead to a faster damage evolution meaning that the numerical solution depends on the mesh size.

In fact, the straightforward way to ensure the mesh independency is to use appropriate nonlocal

formulation as widely discussed in the literature (see for example the recent book by Saanouni

(2012)). Accordingly, a constant minimum mesh size of 0.15mm on the plate surface and in thick-

ness direction is used in the critical deformation zone where the fracture is expected. Figure 7 shows

an example of the mesh conditions for PNT and SS specimens.

The numerical responses of PNT tests (global forces over local info-node displacements) are used

into the optimization program to compare with the experimental responses. For the inverse opti-

mization methodology, the initial values of input damage parameters and normalization method

have strong influence on the convergence of the objective function (more detail presented in

Appendix 1). In order to minimize the objective function, the trust region reflective method is

used. The experimental responses have the linearly interpolated displacements of the local nodes

with equal weighting. The optimization process involves the approximate solution of a large linear

system based on the method of preconditioned conjugate gradients. For the time consuming, the

first guessed input damage parameters can be determined first with local method and then taken into

the optimization program. The critical damage value is fixed to be 0.99 in order to capture the full

process of material degeneration behavior, and � here is fixed to be 4.0. Y0 is the threshold damage

potential value where the bifurcation happens between experimental response and numerical

response without damage effect. The contribution of any other damage parameter to damage

Figure 7. Design FEM mesh: (a) notched specimen, (b) shear specimen.
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evolution is not the same, so the influence of each damage parameter (S, s,�) should be well under-

stood, which has been well described in Saanouni (2012).

By minimizing the error of the objective function of each test simulation with the nonlinear least

squares method, an optimum solution of damage parameters for different geometries is obtained at

last. The optimal results are presented in Table 3, and Figure 8 shows convergence of damage

parameters (S, s,�) of DP1000 during the iterative process.

Figure 9 shows the results of PNT tests in terms of force–displacement curves for each meas-

urement point using ARAMIS. Three figures cover three different notched radii, Figure 9(a) for

5.0mm, Figure 9(b) for 10.0mm, and Figure 9(c) for 20.0mm, and for each simulation the nodes

1.0 and 4.0mm away from the central axis in the notch section are shown, which represent

different displacement fields on the critical deformation zone. It can be found there is a little

discrepancy of the maximum loadings between experimental and numerical responses shown in

Figure 9(a) and Figure 9(b). This discrepancy can be explained by the change of the stress states,

and there are less regards on the effect of stress states on yield surfaces in our model. In Figure

10 which shows the result comparisons of SS tests, each figure includes the diagrams of loading

over displacement. With the addition of h, the limit deformation is enlarged, as shown in

Figure 10(a).

Good agreement of the beginning part of the loading curves between experimental and numerical

responses (Figures 9 and 10) shows a good determination of the elastoplastic parameters.

Figure 8. Convergence of damage parameters of DP1000 during the iterative process.

Table 3. Damage parameters obtained from PNT and SS tests.

S (MPa) s � Y0 (MPa) H

DP1000 12.5 1.15 2.5 2.0 0.25

CP1200 10.2 1.31 1.98 2.0 0.21

AL7020 4.50 1.48 3.4 0.0 0.3
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The degeneration process of the simulation strongly relates to the damage parameters. The simula-

tion results well demonstrate the behavior of the sheets in degeneration process in PNT and SS

tests. Figure 10 also shows the comparisons of experimental responses and numerical responses for

SS tests in two cases: coupled damage and uncoupled damage with the same model parameters,

which can clearly show the damage contribution during the forming. All these results prove

the applicability of this methodology. The model parameters determined above are validated

using SS tests (Figure 3(b)) with q¼ 1.25 and 2.5mm (shown in ‘‘Validation using additional

tests’’ section).

Analysis of the damage effect. With the optimized parameters, the contours of the crack surface of

PNT for AL7020 are shown in Figure 11, the notched radius is 5mm. A constant minimum mesh

size of 0.15mm on the plate surface and in thickness direction is used in the critical deformation

zone where the fracture is expected. During the whole forming process, when d¼ 1, the element will

fail and be deleted from mesh (kill-element technique). The initial failure element locates in the

center of notched zone, and finally extends to the edge of the specimen, that can be explained by the

relationship of triaxiality ratio and equivalent limit plastic strain. Normally in tension states, with

increase of triaxiality ratio, the equivalent limit plastic strain will decrease, in notched tension tests,

the � value in the center is higher than the value on the edge, and also the middle thickness of the

Figure 9. Numerical and experimental responses comparison of PNT tests (the symbol ‘‘X’’ indicates the first fully

damaged integration point in the specimen): (a) radius 5.0mm, (b) radius 10.0mm, (c) radius 20.0mm.
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section indicates to be thinner than the outside part. And also for the specimens with different radii,

the � value changes in the critical zones. Considering the different radii in our tests (5.0, 10.0,

20.0mm), the triaxiality ratio should be �5 4 �10 4 �20, and further the limit equivalent strains

should be �"eq5 5 �"eq10 5 �"eq20, which corresponding to deformation behaviors of different geometry in

Figure 9.

The relationship between equivalent plastic strain and stress triaxiality ratio at the critical point is

shown in Figure 12. During the whole process, the flow tendencies of triaxiality ratios development

at the critical and central point of the specimens are indicated to be different. For the central point of

SS, it shows a constant waving near the 0.1 value, while the value of critical point increases with the

deformation. For PNT, it is found that with the increase of notched radius, the triaxiality ratio

decreases, and the equivalent plastic strain increases. The triaxiality ratio actually affects the deform-

ation capability of the sheet.

Comparison between plane stress and three-dimensional (3D) solid. Besides the brick element

(C3D8R, 3D), PNT and SS tests are also simulated with CPS4R (2D) element. In Figure 13, one

Figure 11. Crack initiation and propagation at the notch region regarding its location on the force–displacement

curve.

Figure 10. Numerical and experimental responses comparison of SS tests.
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comparison of PNT and SS simulations is made with two different elements. Due to the less cap-

ability against necking or localization (the stress in the thickness direction is assumed to be zero),

CPS4R element is difficult to represent the behavior of the sheet after the maximum loading point

even without damage. With the same damage parameters, the damage initiation occurs earlier with

two-dimensional elements. The results of SS test are shown to be more reasonable compared to PNT

test which can be explained by the less localization in the critical zone during the shear deformation.

Figure 13. Numerical and experimental responses comparison: (a) PNT simulation with 2D and 3D brick element,

(b) SS simulation with 2D and 3D brick element.

Figure 12. Evolution of the equivalent plastic strain as a function of triaxiality ratio until fracture for the critical

point for SS and PNT tests.
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Thus, according to this experience, 3D element is recommended to be the best choice for the damage

prediction simulation in future.

Validation using additional tests

In order to validate the identified results, the additional tests (SS tests with q¼ 1.25 and 2.5mm) are

conducted and the geometries are shown in Figure 3(b). Based on the shear test specimen, the length

of the connecting band is constant, and change the angle between band direction and loading

direction, a combined shear and tension loading state is performed in the band region. This geom-

etry is simulated to check the applicability of the material parameters determined earlier, which also

includes the microcracks closure determined by SS. The gap distance 1.25 and 2.5mm is chosen,

which can create various combined tension and shear stress state in the test zone, the final test results

are shown in Figure 14.

From the comparison of the experimental–numerical responses of SS tests with q¼ 1.25 and

2.5mm it can be seen that there is a good agreement between them including elastoplasticity param-

eters (E, �, �y, F, G,H, L,M,N, C, a, Q, b), damage parameters (S, s, �, Y0, Dc, �), microcracks closure

Figure 14. Numerical and experimental responses comparison of SS tests with different band angles.
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(h), although there is no consistent maximum load for DP1000 between experiments and simulations

in Figure 14(a). The problem has been found in Li et al. (2011). That can be explained by the influence

of stress states on yield stress surface. The error ranges of the limit displacements between the simu-

lations and experiments are limited in 5.0%, which can be regarded as the proof that the fully coupled

model with the parameters determined with tests proposed in this study has accurately predicted the

failure in the various combined shear and tension stress states of sheet metal forming.

Damage mechanism (scanning electron microscopy (SEM))

Ductile fracture governed by void growth and coalescence strongly depends on stress triaxiality

(Gao and Kim, 2006; Gao et al., 2009; Zadpoor et al., 2009). In view of the micromechanics, the

Figure 15. Micrography showing the postmortern fracture surface: (a) notched specimen, (b) shear specimen.
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final fracture phase is achieved by the link-void formation. This formation of the fracture can be

divided into three modes: Mode I, II, and III. The ductile failure mechanism of mode I loading is

well known. The modeling of this failure mechanism is also rather established (Gurson, 1977;

McClintock, 1968; Rice and Tracey, 1969). During recent years this process is presented involving

nucleation, growth, and coalescence of voids. This mechanism is induced by the high hydrostatic

stress state and causes a dimple rupture. Here the final link up of the enlarged voids takes place by

necking of the inter-void ligaments. In a mode II or III loading situation, the fracture is described by

the shear stress state ahead of the crack tip which causes the shear localization, and stress state plays

less important role in the fracture development. The formation can be named shear dimple rupture,

which takes place by shearing of the inter-void ligaments (Barsoum and Faleskog, 2007).

In order to identify the fracture mechanism, we used the SEM to examine the fracture surface of

DP1000. Figure 15 shows the damage contour on the fracture surface of the notched part. It is clear

that the critical point of the damage is in the center of the necking part. This element first reaches the

critical damage value and fails. In order to verify this conclusion, we used SEM to observe

the surface of fracture. Figure 15(a) shows the microstructure of the fracture surface. The profile

of the simulation also well fits with the real fracture surface, and from the pictures we can see many

typical void-dimple structures on the surface which is the tensional failure (mode I). Normally, due

to the higher density of microvoids and larger dimension, the size of the microvoids in the center of

the necking part should be larger, that is in accordance with the observed result.

Figure 15(b) clearly shows the sheared or river marking fracture form in the center of the fail-

ure surface. By contrast with the microstructure the fracture shown in Figure 15(a) can be considered

as typically mode II fracture. The feature on the edge of the surface can be considered as the combined

normal and shear fracture, where rather flat dimple formations are observed on the fracture surface.

Conclusions

An involved methodology toward identification of the parameters pertaining to damage coupled

anisotropic plasticity with kinematic and isotropic hardening and crack closure effects is presented.

On the experimental side, in view of stress triaxiality effects on the ductile damage evolution, tests of

UT, TBT, PNT, and SS are conducted which span a large interval of stress triaxiality ratios. The SS is

explicitly used as a means to define crack closure parameter which requires at least one compressive

tensile principal stresses. The optical device ARAMIS is used to measure the relative distance of the

local node pairs on the specimens to eliminate the machine stiffness effects. A number of node pairs are

observed to keep track of the size of the localization zone within the material. Using the possibility of

isolated plasticity and damage concepts at relatively earlier deformation which relies on the physical

facts, the combined kinematic and isotropic plasticity of the sheets are quantified through UT and

TBR tests. An inverse optimization method, relying on the optical measurement results and the

simulations, is developed to characterize the degeneration process of the sheets in different stress

states with PNT and SS tests. The simulation responses coupled with identified damage parameters

of SS (q¼ 1.25 and 2.5mm) show good agreement with the experimental responses, which prove the

applicability of the calibration process and validation of specified parameters. Finally, a qualitative

analysis regarding the fracture modes for different tests and geometries is conducted through SEM

observations. It is seen that the fracture morphologies are in accordance with the simulation results.

The main contribution of the present work is the combined experimental–numerical methodology

proposed for the parameter identification. This methodology is tailored for the selected material model

accounting for anisotropic plastic flow, mixed isotropic and kinematic hardening, and isotropic ductile

damage with microcracks closure effect. Through the comparisons of simulations and experimental
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responses, the present fully coupled CDM model shows good accuracy on the prediction of the cracks

initiation under a wide range of simple stress states. In a coming work, further investigations using this

fully coupledmodel applied to variousmaterials subject tomore complex loading pathswill be performed.
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Appendix 1. About the used inverse approach

The hybrid experimental–numerical methodology used in this paper belongs to the inverse approach

category, where certain input data are deduced from the comparison between the experimental

results and numerical simulation results. Here, the relevant information from experiments can be

the displacement–load responses or full-field surface measurements with optical measurement

system. The inverse method here is narrowed to the optimization of the material parameters includ-

ing hardening parameters and damage parameters. The basic principle of inverse methodology is

almost the same, which is to search the minimum error value between simulation and experiment

responses

gðxiÞ ¼
1

N

X

N

n¼1

Wn

fnðxiÞ � Fn xið Þ
Zarea

� �2

ð20Þ

where gðxiÞ is the objective function expressed in terms of weighted least square form, xi is the

parameter needed to be optimized, N denotes the total number of observations (sample points),

fnðxiÞ is the simulation force response, FnðxiÞ is the objective experimental response, Zarea ¼ �y $ is

residual scale factor, $ denotes the size of loading cross section surface, Wn is the weighting factors,

equal to 1/N here, which means the even weighting factors. For damage parameter identification, six

experimental data in the form of force–point displacement related to local 1.0 and 4.0mm away

from the notched axis of three PNT tests are proposed to identify the damage parameters (S, s, b), so

N value, here is 6.

In this study, in order to minimize the objective function, the trust region reflective method is

used, which suits itself to nonlinear least square optimization problem. The optimization process

involves the approximate solution of a large linear system based on the method of preconditioned

conjugate gradients. The identification procedure requires the definition of bounds for each para-

meter, namely xi
min, xi

max. With the help of the normalized function ni
n (its bound should be in

(0, 1)), the actual value for each unknown parameter can be created, as shown below

xnþ1
i ¼ xmin

i þ ðxmax
i � xmin

i Þ � 
nþ1
i ð21Þ
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Figure 16. Flow chart of inverse optimization process.

Figure 17. The parameters convergence process with initial set of (S, s, �)¼ (0.75, 0.4, 2.2).
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The global criteria of the convergence are that the numerical results must satisfy the following

conditions

gðxiÞ5 �total ð22Þ

where �total is the limit tolerance between the simulation and experiment force.

The whole optimization process works based on a set of MATLAB code which is written linking

ABAQUS/Explicit solver. With ABAQUS script language python, the objective data can be read

from the objective file. The optimization process can be divided in six stages, which include: operate

the ABAQUS simulation, read global data, compare the results with the experimental measure-

ments, build and minimize the objective function, optimize parameters, and update the input file.

The detail of the optimization process is shown in Figure 16. The verification of the developed

optimization scheme is given below.

The verification study depends on uniaxial tension of a single finite element which is free of the

mesh size effects. The analytical expression for the damage development for this stress state is given

in equation (23). Initially, the test is run for a known parameter set of E¼ 200,000MPa and 	¼ 0.3,

�y¼ 900MPa, K¼ 100, and (S, s, �) as (0.5, 1.0, 3.0) and the response is recorded, the (xi
min, xi

max)

here are chosen to be (0–1, 0–3, 0–5) for (S, s, �) with empirical assumption. Then, the target damage

parameters can be identified with different sets of initial values

D ¼ 1� 1� 1þ 	

3ES

� �s �þ 1

ð2sþ 1ÞK �y þ K�
� �2sþ1

��2sþ1
y

� �� �
1

�þ1

ð23Þ

Figure 18. The parameters convergence process with initial set of (S, s,�)¼ (0.3, 1.2, 2.8).
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In order to show the importance of initial value for the convergence, two comparable examples

with different initial set of values are given. The convergence pattern with initial set of (S, s,

�)¼ (0.75, 0.4, 2.2) is given in Figure 17. As it is seen, the scheme locates the optimum value

after 14 iterations. The situation for initial set of (S, s, �)¼ (0.3, 1.2, 2.8) is shown in Figure 18.

It can be found that after 300 iterations the final parameter set comes to (0.55, 1.5, 3) and arrives at

the optimum value after more than 1000 iterations, but it can be seen that the error between the

experimental numerical results can be negligible (less than 1%) compared with initial error after 10

iterations, so this inverse method is applicable for the parameter identification.
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