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To gain insight into how genomic information is translated into cellular and developmental
programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project
is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription
factors, replication proteins and intermediates, and nucleosome properties across a developmental
time course and in multiple cell lines. We have generated more than 700 data sets and discovered
protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than
tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these
elements reveal a functional regulatory network, which predicts putative new functions for genes,
reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results
provide a foundation for directed experimental and computational studies in Drosophila and
related species and also a model for systematic data integration toward comprehensive genomic
and functional annotation.

S
everal years after the complete genetic se-

quencing of many species, it is still unclear

how to translate genomic information into

a functional map of cellular and developmental

programs. The Encyclopedia of DNA Elements

(ENCODE) (1) and model organism ENCODE

(modENCODE) (2) projects use diverse genomic

assays to comprehensively annotate the Homo

sapiens (human), Drosophila melanogaster (fruit

fly), andCaenorhabditis elegans (worm) genomes,

through systematic generation and computational

integration of functional genomic data sets.

Previous genomic studies in flies have made

seminal contributions to our understanding of

basic biological mechanisms and genome func-

tions, facilitated by genetic, experimental, compu-

tational, andmanual annotation of the euchromatic

and heterochromatic genome (3), small genome

size, short life cycle, and a deep knowledge of

development, gene function, and chromosome

biology. The functions of ~40% of the protein-

and nonprotein-coding genes [FlyBase 5.12 (4)]

have been determined from cDNA collections

(5, 6), manual curation of gene models (7), gene

mutations and comprehensive genome-wide

RNA interference screens (8–10), and compara-

tive genomic analyses (11, 12).

The Drosophila modENCODE project has

generated more than 700 data sets that profile

transcripts, histone modifications and physical

nucleosome properties, general and specific tran-

scription factors (TFs), and replication programs

in cell lines, isolated tissues, and whole orga-

nisms across several developmental stages (Fig. 1).

Here, we computationally integrate these data

sets and report (i) improved and additional ge-

nome annotations, including full-length protein-

coding genes and peptides as short as 21 amino

acids; (ii) noncoding transcripts, including 132

candidate structural RNAs and 1608 nonstruc-

tural transcripts; (iii) additional Argonaute (Ago)–

associated small RNA genes and pathways,

including new microRNAs (miRNAs) encoded

within protein-coding exons and endogenous small

interfering RNAs (siRNAs) from 3′ untranslated

regions; (iv) chromatin “states” defined by com-

binatorial patterns of 18 chromatin marks that are

associated with distinct functions and properties;

(v) regions of high TF occupancy and replication

activitywith likely epigenetic regulation; (vi)mixed

TF and miRNA regulatory networks with hierar-

chical structure and enriched feed-forward loops;

(vii) coexpression- and co-regulation–based func-

tional annotations for nearly 3000 genes; (viii)

stage- and tissue-specific regulators; and (ix)

predictive models of gene expression levels and

regulator function.

Overview of data sets. Our data sets provide

an extensive description of the transcriptional, epi-

genetic, replication, and regulatory landscapes of

the Drosophila genome (table S1). Experimental

assays include high-throughput RNA sequencing

(RNA-seq), capturing-small and large RNAs and

splice variants; chromatin immunoprecipitation

(ChIP)–chip andChIP followed by high-throughput

sequencing (ChIP-seq), profiling chromosomal

and RNA binding or processing proteins; tiling-

arrays, identifying and measuring replication pat-

terns, nucleosome solubility, and turnover; and

genomic DNA sequencing, measuring copy-

number variation. We conducted most assays in

the sequenced strain y; cn bw sp (13), with mul-

tiple developmental samples (30 for RNA expres-
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sion and 12 for TF and histone studies), and in

cultured cells, predominantly with four lines (S2,

BG3, Kc, and Cl.8; table S2).

Annotation of gene transcripts and their pro-

moter regions. To comprehensively characterize

transcribed sequences, we performed RNA-seq

using poly(A)+ and total RNA, cap analysis of

gene expression, rapid amplification of cDNA ends,

and produced expressed sequence tags (table S1)

(14–16) and cDNAs. These data support more than

90% of annotated genes, exons, and splice

junctions and provide experimental evidence for

a total of 17,000 protein-coding and noncoding

genes, of which 1938 are previously unannotated.

In addition to genes, we discovered 52,914

previously undescribed or modified exons (65%

supported by cDNAs) and 22,965 new splice

junctions in 14,016 distinct alternative transcripts

[35% supported by cDNAs, reverse transcription

polymerase chain reaction products, and long

poly(A)+RNA-seq (14)]. Overall, 74%of annotated

genes show at least one previously undescribed or

modified exon or alternative splice form, despite

extensive previous annotation efforts, illustrating

the importance of probing additional cell types. Of

the 21,071 newly predicted exons expressed in S2

cells, 89% are associatedwith chromatin signatures

characteristic of transcribed regions (17).

We also characterized the shapes and tran-

scription start site (TSS) distributions for 56% of

annotated genes (70% of embryonically expressed

genes). We discovered and validated 2075 al-

ternative promoters for known genes. Of 427

discovered alternative promoters adjacent to

active S2 cell transcripts, 72.5% are supported

by promoter-associated chromatin marks in that

cell type (18), confirming predictions and suggest-

ing that these regions contain regulatory ele-

ments. Similarly, comparison to chromatin marks

in whole animals yielded 1117 additional vali-

dated promoters (19).

We detect all but 1498 (9.9%) of previously

annotatedD. melanogaster genes (4) in either the

poly(A)+ or total RNA-seq samples. Undetected

genes includemembers of multicopy gene families

[e.g., ribosomal RNAs, paralogs, small nucleolar

RNAs (snoRNAs), tRNAs] and those with known

low or constrained expression.We discovered new

snoRNAs, scaRNAs, and pri-miRNA transcripts

in the total embryonic RNA-seq data alone, even

without including larval, pupal, or adult samples.
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Fig. 1. Overview of Drosophila modENCODE data sets. Range of genomic elements and trans factors studied, with relevant techniques and resulting genome
annotations. hnRNA, heterogeneous nuclear RNA.
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Protein-coding, structural, and noncoding

transcripts. We searched for evolutionary sig-

natures of conserved protein-coding DNA se-

quences in alignments of 12Drosophila genomes

(12, 20) and for similarity to known proteins.

Only 57 of 1938 previously undescribed gene

models (17) contain a complete, conserved open

reading frame (ORF) likely to represent uniden-

tified protein-coding genes (Fig. 2A). An addi-

tional 81 genemodels are likely to be incompletely

reconstructed coding genes, because they contain

at least one protein-coding exon but lack clearly

identifiable translation start or stop sites (17).

These 138 genes show nearly sixfold lower aver-

age expression than known protein-coding genes

[fragments per kilobase of transcript per million

fragments sequenced (FPKM) of 6.7 versus 34.8],

and 40% have expression restricted to late larvae,

pupae, and adult males, providing a potential

explanation for why they were missed in previous

annotations. For the remaining 1800 gene models,

we find no evidence of protein-coding selection

using PhyloCSF and no similarity to known pro-

tein sequences using blastx, suggesting that they

are unlikely to represent protein-coding genes (20).

We looked for properties of noncoding RNAs

(ncRNAs) among the 1740 transcripts (excluding

60 snoRNA and miRNA transcripts) detected by

RNA sequencing that do not appear to encode

proteins. We examined folding thermodynamics

and comparative evidence of local secondary

structures in the predicted ncRNAs and in 140

ncRNAs listed in FlyBase (4) that do not belong

to major classes of structural RNAs, such as

miRNAs and snoRNAs. We predicted high-

confidence structures for 132 transcripts (7.6%)

using the RNAz program (21), suggesting con-

served function as structural RNAs, similar to the

fraction (7.8%) of transcripts with predicted

structure observed in FlyBase ncRNAs (4). We

revealed candidate structural RNAs in the newly

predicted transcripts (Fig. 2B), as well as pre-

viously unidentified structural elements in well-

studied ncRNAs, including sex-chromosome

dosage compensation regulator roX2 and heat-

shock regulator HSRw (fig. S1) (17). However,

the lack of highly structured regions in the vast

majority of ncRNAs suggests functions indepen-

dent of secondary structure.

Argonaute-associated small regulatory RNAs.

Our analysis of deeply sequenced ~18- to 28-

nucleotide (nt) RNAs dramatically extended the

catalog of Ago-dependent small regulatory RNAs

(22), including miRNAs, siRNAs, and piwi-

associated RNAs (piRNAs). In the canonical

miRNA pathway, ~21- to 24-nt RNAs are

cleaved from hairpin precursors by Drosha and

Dicer-1 ribonuclease (RNase) III enzymes and

loaded into AGO1 effector complexes to repress

mRNA targets. We annotated 61 additional ca-

nonical miRNAs, 12 of which are derived from

the antisense strands of known miRNA loci (23),

which may provide an efficient route for the

evolution of new miRNA activities. We unex-

pectedly detected miRNAs that overlap mRNAs,

including nine cases where conserved protein-

coding regions harbor RNA hairpins cleaved into

duplexes of miRNA and partner strand miRNA*

species, many of which are found in AGO1 com-

plexes (e.g., Fig. 2C). It remains to be seen

whether these mRNA-resident miRNAs have de-

tectable trans-regulatory activities, affect their host

transcripts in the cis configuration, or are simply

neutral substrates. We identified 15 additional

mirtrons that generate miRNAs by splicing of

short hairpin introns (24), doubling the number

of known cases from 14 to 29. We defined up to

seven hybrid mirtrons bearing 3′ tails, which

appear to require processing by the exosome

before dicing (25). In total, we recognize at least

three miRNA biogenesis strategies, producing

miRNAs from at least 240 genomic loci.

We and others recognized several classes of

endogenous siRNAs (endo-siRNAs), 21-nt RNAs

that are processed by Dicer-2 RNase III enzyme

and preferentially loaded into AGO2 (26–31).

Endo-siRNAs derive from three distinct sources:

(i) diverse transposable elements (TEs), whose

activity they restrict; (ii) seven genomic regions

encoding long inverted-repeat transcripts, which

direct the cleavage of specific mRNA targets; and

(iii) bi-directionally transcribed regions. This last

class mostly comprises convergent transcripts that

overlap in their 3′ untranslated regions (3′UTRs),

termed 3′ cis-natural antisense transcripts (3′ cis-

NATs). Our current analysis doubled the number of

3′ cis-NAT–siRNA regions to 237, including near-

ly one-quarter of overlapping 3′ UTRs (table S4).

Lastly, piRNAs are ~24- to 30-nt RNAs

bound by the largely gonadal Piwi-class Argo-

nautes, Piwi, Aubergine (Aub), and AGO3. The

majority of piRNAs match TEs in sense or an-

tisense orientation and are essential to repress

their activity (32). Though many Drosophila

piRNAs map uniquely to tens of master loci that

serve as genetic repositories for TE defense (32),

we found that the 3′UTRs of hundreds of cellular

transcripts also generate abundant Piwi-loaded

primary piRNAs in somatic ovarian follicle cells

(33–35). This suggests that beyond transposon

control, the piRNA pathway may play a more

general role in cellular gene regulation.

Large-scale organization of the chromatin

landscape. Eukaryotic genomes are organized

into large domains (~10 kb to megabases) that

exhibit distinct chromatin properties, such as het-

erochromatic regions that cover one-third of the

genome and are typically known for transcrip-

tional silencing (36). Our analyses show that the

chromatin composition, organization, and bound-

aries of heterochromatin display surprising com-

plexity and plasticity among cell types (37). We

find surprisingly active heterochromatic regions,

Fig. 2. Coding and noncoding genes and structures. (A) Extended region of
male-specific expression in chromosome 2R including new protein-coding and
noncoding transcripts. MIP03715 contains two short ORFs of 23 and 21 codons,
respectively. ORF multispecies alignments (color coded) show abundant synony-
mous (bright green) and conservative (dark green) substitutions and a depletion
of nonsynonymous substitutions (red), indicative of protein-coding selection
[ratio of nonsynonymous to synonymous substitutions (dN/dS) < 1 for both, P <
10−7 and P < 10−11, respectively, likelihood ratio test]. Surrounding regions
show abundant stop codons (blue, magenta, yellow) and frame-shifted positions

(orange). (B) A transcribed region in chromosome3R (26,572,290 to 26,573,456),
identified by RNA-seq and supported by promoter-specific and transcription-
associated chromatin marks, shows RNA secondary-structure conservation in eight
Drosophila species. (C) Example of a newmiRNA derived from a protein-coding exon
of CG6700, with 21- to 23-nt RNAs indicative of Drosha/Dicer-1 processing and also
recovered in AGO1-immunoprecipitate libraries from S2 cells and adult heads
indicative of Argonaute loading. Evolutionary evidence suggests protein-coding
constraint, no conservation for themature arm, and conservation of the star arm. Red
boxes indicate 8-mer “seed” sequence potentially mediating 3′ UTR targeting.
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with expression of 45% of pericentric hetero-

chromatin genes (compared with 50% for eu-

chromatic genes), and enrichment for both active

and silent marks in active heterochromatic genes.

Conversely, we find that domains enriched for

heterochromatic marks (e.g., H3K9me2) cover a

surprisingly large proportion of euchromatic

sequences (12% in BG3 cells and 6% in S2) (37).

We identified large domains with similar rep-

lication patterns by characterizing theDrosophila

DNA replication program in cell lines, and we

observed that the temporal replication program

is determined by local chromatin environment

(18, 38) and the density of replication initiation

factors (39). We also found that specific euchro-

matic regions up to 300 kb were under-replicated

in a tissue-specific manner in the polytene sali-

vary glands, larval midgut, and fat bodies (40),

which suggests that copy-number variation may

help regulate gene expression levels.

Chromatin signatures characteristic of func-

tional elements. Many genomic regulatory regions

are difficult to identify because of a lack of char-

acteristic sequence signatures, but they are often

marked by specific histone modifications, var-

iants, and other epigenetic factors (41, 42). To

identify such signatures, we assayed 18 histone

modifications and variants by ChIP-chip in mul-

tiple cell lines (18) and developmental stages (19),

and we defined the physical properties of nu-

cleosomes (43, 44). We correlated this informa-

tion with gene annotations, transcriptome data

sets, binding site profiles for replication factors,

insulator-binding proteins, and TFs to character-

ize chromatin signatures of each type of element

(Fig. 3A). TSS-proximal regions were marked by

H3K4me3 enrichment (45), depletion of nucleo-

some density, increased nucleosome turnover,

and enrichment in the pellet chromatin fraction

(43, 44). Gene bodies showed H2B ubiquitination

covering the entire transcribed region and a 3′-

biased enrichment of H3K36me3 and K3K79me1

marks. Moreover, large introns are enriched for

H3K36me1, H3K18ac, and H3K27ac; specific

chromatin remodelers; high nucleosome turn-

over; the H3.3 histone variant; and DNase I

hypersensitive sites, all suggestive of regulatory

functions (18). These features are generally absent

from short genes and from genes with a low

fraction of intronic sequence. Most transcription-

ally silent genes lack pronounced chromatin sig-

natures, except when positionedwithin Pc domains

(H3K27me3) or heterochromatin (H3K9me2/3,

HP1a, H3K23ac depletion) (37).

Positional correlation analysis identified rela-

tionships between histonemarks and nucleosome

physical properties. Active marks [e.g., H3K27Ac,

RNA polymerase II (RNA Pol II), H3K4me3]

correlate with high chromatin solubility and high

nucleosome-turnover rates, whereas marks asso-

ciated with silent chromatin (e.g., H3K27me3,

H1, H3K9me2/3) show the opposite, correlating

with increased nucleosome density (fig. S2).

High chromatin solubility indicates less stable nu-

cleosomes (44), and high levels of nucleosome

turnover are indicative of a dynamic chromatin

structure (43), consistent with the biological func-

tions associated with the corresponding marks.

We mapped origins of replication activated

early in the S phase of the cell cycle and binding

sites of the origin recognition complex (ORC), a

conserved replication initiation factor that ex-

hibits little, if any, sequence specificity in vitro

(46, 47). ORC-associated sequences are often found

at TSSs and depleted for bulk nucleosomes, but

are enriched for the variant histone H3.3 (39) and

undergo active nucleosome turnover (43). These

findings suggest that local nucleosome occupan-

cy and organization are determinants of ORC

binding in Drosophila, as in yeast (48, 49). By

subdividing the ORC sites into TSS-proximal

and -distal sites, we found that local enrichment

for GAGA factor (GAF), and H4Ac tetra,

H3K27Ac, H4K8Ac, and H3K18Ac are com-

mon to both, whereas H3K36me1 appears to be

specific for TSS-distal ORC sites (Fig. 3A). ORC

marks sites of cohesin complex loading in

Drosophila (38); H3K36me1, which is also

enriched at cohesin sites (18), may be required

in the absence of TSS-associated marks to

promote ORC binding and subsequent cohesin

loading (50, 51).

Insulator elements and proteins (e.g., CP190,

CTCF, SUHW, and BEAF) block enhancer-

promoter interactions and restrict the spread of

histone modifications (52). Analysis of the ge-

nomic distributions of insulator proteins showed

that BEAF32, CP190, and ZW5 preferentially

bind upstream of TSSs, whereas SUHW binds

Fig. 3. Chromatin-based annotation of functional elements. (A) Average
enrichment profiles of histone marks, chromosomal proteins, and physical
chromatin properties at genes, origins of replications, insulator proteins, and
TF binding positions. Each panel shows 4 kb centered at a specified location,
either proximal to TSS (prox.) or distal (dist.). (B) Example of a transcript
predicted by chromatin signatures associated with promoter (red trace) and
gene bodies (blue box) and supported by cDNA evidence. Strong RNA Pol II
and H3K4me3 peaks in the promoter region and strong H2B ubiquitination
extending toward the previously annotated luna gene are confirmed by RNA-

seq junction reads that were not used in the prediction. (C) Intergenic
H3K36me1 chromatin signatures predict replication activity. Enrichment of
multiple chromatin marks were used to identify putative large (>10 kbp)
intergenic H3K36me1/H3K18ac domains located outside of annotated genes.
Although these marks generally correspond to long introns within transcripts,
their intergenic domains were enriched for replication activity (fig. S5). In this
example from BG3 cells, such a domain was found upstream of the bi locus
and is associated with early replication, contains an early origin, is enriched
for ORC binding, and is further supported by NippedB binding.
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almost exclusively distal to TSSs, with CTCF bind-

ing both equally (53). Insulator regions displayed

distinct chromatin signatures (Fig. 3A), but most

of the variation is explained by the differences

between TSS-proximal and -distal chromatin con-

texts, suggesting that specific marks are not re-

quired for insulator binding or function. However,

nucleosome depletion is a common feature of both

TSS-proximal and -distal insulator binding sites,

as in mammals (54), a property that may facilitate

insulator binding or reflect the ability of insulator

proteins to displace nucleosomes.

Chromatin-based annotation of functional

elements. Chromatin signatures associated with

TSSs and transcribed regions (45) identified

genes and promoters missed by transcript-based

annotation. We developed a predictive model for

active promoters in cell lines using positional

enrichments of 18 histone marks, ORC complex

localization, and nucleosome stability and

turnover in the 1-kb regions surrounding vali-

dated active promoters. Our logistic regression

classifier achieved 93.7% sensitivity at a 21.5%

false discovery rate (FDR) (fig. S4) and predicted

2203 additional promoter positions at least 500

base pairs (bp) away from annotated TSSs (17).

These included promoters for 10 primarymiRNA

transcripts, of which 7 were also identified by

RNA-seq (14). We also used H3K36me3/H2B-

ubiquitination signatures (fig. S3) to identify 53

transcribed gene bodies outside annotated genes,

11 of which are additionally supported by promoter

predictions (e.g., Fig. 3B). These included four

primary miRNA transcripts, of which three are also

supported by RNA-seq (14) and one is also sup-

ported by our promoter predictions (formir-317).

Chromatin signatures also identify functional

elements involved in other chromosomal pro-

cesses such as duplication and segregation. We

identified 133 sites in BG3 and 78 sites in S2

cells that contained large (>10-kbp) intergenic do-

mains of H3K36me1. In BG3 cells, 90 and 68%

of the intergenic H3K36me1 domains overlapped

with cohesin (18) and early origin activity, re-

spectively, as observed for a 20-kb region upstream

of the bi gene (Fig. 3C and fig. S5). Although

only 15% of early replication origins appear to be

defined by intergenic H3K36me1 domains, the

overlap with cohesion enrichment (18) suggests a

shared mechanism to ensure faithful chromo-

some inheritance.

De novo discovery of combinatorial chroma-

tin states. Multiple histone modifications act in

concert to determine genome functions pro-

ducing combinatorial chromatin states (55). We

used two unsupervised,multivariate hiddenMarkov

models to segment the genome on the basis of the

combinatorial patterns of 18 histone marks in S2

and BG3 cells (Fig. 4 and fig. S6) (18). We did

not seek a true number of distinct chromatin

states; instead, we sought to identify models that

balance resolution and interpretability given the

available chromatin marks, as more states led to

increased enrichment for specific genomic features

but captured progressively smaller fractions of

each type of feature (fig. S7).

From these considerations, we focused on a

9-state, intensity-based model reflecting broad

classes of chromatin function (continuous model

states c1 to c9) and a 30-state model that iden-

tifies combinatorial patterns at a finer resolution

(discretemodel states d1 to d30) (Fig. 4, left panel)

(17). These showed distinct functional and ge-

nomic enrichments (Fig. 4, right panel) associated

with different chromosomes (chromosome 4,male

X), regulatory elements (promoters, enhancers),

gene length and exonic structure (e.g., long first

introns), gene function (e.g., developmental regu-

lators), and gene expression levels (high or

medium, low, or silent).

Intergenic regions and silent genes are as-

sociated with state d30 (c9) in euchromatin (cov-

ering 51% of the genome and lacking enrichments

for any of the marks examined) and with states

d26, d28, and d29 (c7 and c8) in heterochromatin

(characterized by H3K9me2/3 enrichment and

H3K23ac depletion). These states lack enrich-

ments for other mapped factors [e.g., insulators,

histone deacetylases (HDACs), TFs] and exhibit

low levels of chromatin solubility and nucleo-

some turnover.

In contrast, expressed genes display numer-

ous and complex enrichments for several factors

and chromatin properties. Most active TSSs were

associatedwith state c1, defined by knownpromoter-

associated marks H3K4me3 and H3K9ac (45).

Other active TSSs were additionally enriched for

H3K36me1 andmultiple acetylations (d13). Even

within c1, some TSSs showed higher association

with nucleosome turnover, group 1 insulator pro-

teins and HDACs (d1, d3), whereas others were

associated with heterochromatic genes of medium

(d5) or low expression (d6).

The state analysis also captured the correla-

tion between ORC binding and TSSs for both

euchromatin and heterochromatin, as well as the

correlation between early origins and open chro-

matin in euchromatic regions. However, ORC

binding is largely limited to a subset of TSS-

associated states (d1, d5, d6, d13, d17, and not d3

or d24), and some states enriched for ORC bind-

ing are not found at TSSs (d11, d14, d21). Early

origins are primarily associated with states c3

(active intron, enhancer) and c4 (open chromatin)

and often display distinct state enrichments from

ORC binding in accord with the broad domains

they cover, compared with the near nucleotide

resolution of the ORC binding data.

Our states showed some similarities with the

recently published five “colors” of chromatin from

DNA adenine methyltransferase identification–

mapped chromosomal proteins in Kc cells (56), but

even highly specific states were sometimes split

acrossmultiple colors (fig. S8). This suggests amore

complex picture with many highly specific chro-

matin states with specific functional enrichments.

Fig. 4. Discovery and characterization of chromatin states and their
functional enrichments. Combinatorial patterns of chromatin marks in S2
and BG3 cells reveal chromatin states associated with different classes of
functional elements. A discrete model (states d1 to d30) captures the
presence/absence information, and a continuous model (states c1 to c9) also

incorporates mark intensity information (22). States were learned solely
from mapped locations of marks (left) and were associated with
modENCODE-defined elements (right) with most pronounced patterns in
euchromatin (green) and heterochromatin (blue) shown here (additional
variations shown in fig. S6).

www.sciencemag.org SCIENCE VOL 330 24 DECEMBER 2010 1791

RESEARCH ARTICLES

 o
n
 J

u
n
e
 1

2
, 
2
0

1
1

w
w

w
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 f
ro

m
 

http://www.sciencemag.org/


Chromatin and motif properties of high-

occupancy TF binding sites. Extensive overlap in

the binding profiles of multiple TFs has revealed

highly occupied target (HOT) regions or hotspots

(19, 57–61). Using the binding profiles of 41 TFs

in early embryo development, we assigned a TF

complexity score to each of 38,562 distinct TF

binding sites corresponding to the number of

distinct TFs bound (from 1 to ~21), resulting in

1962 hotspots with TF complexity of eight or

greater, corresponding to ~10 overlapping factors

bound (19). We correlated these regions with our

and other data sets to gain insight into the possible

mechanisms of HOT region establishment and

how theymay impact or be affected by chromatin

properties.

We studied the enrichment of regulatory mo-

tifs for 32 TFs for which we have both genome-

wide bound regions andwell-established regulatory

motifs (Fig. 5A). We sorted each TF on the basis

of its average complexity [the average number of

TFs that co-bind (19)], which ranges from 10.8

for KNI to 1.3 for FTZ-F1. We studied the rel-

ative enrichment of each factor’s known motif in

bound regions and found eight factors (KNI,

DLL, GT, PRD, KR, SNA, DA, and TWI) with

average complexity greater than four that showed

significant differences in motif enrichment at

varying complexity levels. In all eight cases, motif

matches were preferentially found in regions of

lower complexity, which is suggestive of non-

specific binding. For an additional 9 TFs, bound

regions were enriched in the known motif, but no

bias for lower-complexity regions was found; for

another 10 factors, the known motif did not show

a substantial enrichment in bound regions, sug-

gesting that either the motif is incorrect, or a larger

fraction of TFs than previously expected binds in

non–sequence-specific ways.

We found a strong correlation between HOT

spots of increasing TF complexity and decreased

nucleosome density (fig. S9A) (19), increased

nucleosome turnover (fig. S9B), and histone

variant H3.3, which is associated with nucleo-

some displacement (fig. S9C), but a surprising

depletion in previously annotated enhancers (19),

suggesting potentially distinct roles for these

elements. We observed enrichment for HOT

regions across a wide range of complexity values

for several chromatin states associated with TSS

and open chromatin regions (d1, d5, d6, d13,

d14, d21), whereas some states (d3 and d24)

were enriched only at lower complexity (fig.

S9D). In contrast, transcriptional elongation (d7

to d9), intergenic (d30), and heterochromatic

states (d26, d27, d29) were strongly depleted

across all complexity ranges. We also found

concordance between HOT regions and ORC

binding sites (Fig. 5B), with the likelihood of

ORC binding increasing monotonically with the

complexity of the TF-bound regions. Coupled

with the lack of a detectable specific sequence for

ORC binding in Drosophila (39), this suggests

hotspots as an alternative mechanism for ORC

localization via nonspecific binding in high-

accessibility regions, as well as widespread inter-

play between chromatin regulation, TF binding,

and DNA replication. Given the high agreement

between embryo and cell-line data sets, we pro-

pose that hotspots are stable genomic regions,

kept open via recruitment of specific chromatin

marks or remodelers, that facilitate binding of

additional TFs at their motifs or nonspecifically.

We looked for potential “driver” motifs that

may be recognized by TFs potentially involved

in establishing HOT regions (Fig. 5C). Applying

our motif-discovery pipelines (19) within bound

regions of varying complexity resulted in seven

distinct motifs associated with hotspots of dif-

ferent complexities. Motifs M2 and M3 were

similar to the BEAF-32 and Trl/GAF insulator

motifs, suggesting interplay between hotspots and

insulator proteins. Motif M1 differed in only one

position from the known Snamotif andwas strong-

ly enriched for high-complexity regions (Fig. 5C),

whereas the Snamotif was depleted in Sna-bound

regions of higher complexity (Fig. 5A), suggest-

ing that the single-nucleotide difference may be

important for recognition. The other four motifs

did not match any known TFs, suggesting that

yet-uncharacterized potential sequence-specific

regulators may be involved in the establishment

of hotspots.

Fraction of the genome assigned to can-

didate functions. We assigned candidate func-

tions to the fraction of the nonrepetitive genome

covered by the data sets, excluding large blocks

of repeats and low-complexity sequences (Fig. 6A).

Protein-coding exons cover 21% of the genome,

and adding Argonaute-associated small regula-

tory RNAs, UTRs, other ncRNAs, bases covered

by Pol II, the binding sites of TFs, and other

chromatin-interacting factors brings the total ge-

nome coverage to 73%. Inclusion of Pc and ORC

binding sites, and derived chromatin states, brings

the total genome coverage to 81.5%, and the ad-

dition of transcribed intronic positions raises the

total coverage to more than 89% (Fig. 6A). Com-

pared with previous annotations [FlyBase (4)],

we have increased coverage of theDrosophila ge-

nomewith putative associated functions by 26.3%

(47 Mb). Euchromatic regions had much higher

coverage than heterochromatic regions (90.6

versus 69.5%) in a comparison of the respective

nonrepetitive portions.

We next determined the overlap between our

predicted functional elements and PhastCons evo-

lutionarily conserved elements across 12 Dro-

sophila species, mosquitoes, honeybees, and beetles

(62). These elements cover 38% of theD.melano-

gaster genome in 1.2 million blocks, over which

Fig. 5. High-occupancy TF binding regions and their relation to motifs, ORC, and chromatin. (A) En-
richment of known motifs for regions bound by corresponding TF, sorted by average complexity, denoting
the number of distinct TFs bound in the same region. For eight TFs, motifs are depleted (blue) for higher-
complexity regions, suggesting non–sequence-specific recruitment. In seven of eight cases, known motifs
were enriched in bound regions (Enrich), suggesting sequence-specific recruitment in lower-complexity
regions. For each factor, binding sites were highly reproducible between replicates (Reprod). (B) ORC
versus TF complexity. The relation between HOT spot complexity (x axis) and enrichment in ORC binding
(y axis). (C) Discovered motifs in high- or low-complexity regions (boxed range) and their enrichment in
regions of higher (red) or lower (blue) complexity. M1 to M5 are candidate “drivers” of HOT region
establishment.
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we repeated our previous individual and cumu-

lative calculations. Thirty-two percent of con-

strained bases are covered by protein-coding exons

alone, increasing to a cumulative total of 80% for

transcribed and regulatory elements and 91.8%

after inclusion of specific chromatin states (Fig. 6A).

Nearly all modENCODE-defined functional ele-

ments were more likely to cover constrained bases

than is expected by chance, providing additional

independent evidence for the predicted elements

(fig. S10). The only exceptions were some less

active chromatin states, as expected, and introns,

UTRs, and ncRNAs (63) providing additional in-

dependent evidence for the predicted elements.

Overlap among the annotations produced by

different types of elements resulted in dense mul-

tiple coverage (Fig. 6B), even for regions that

previously lacked any annotation (Fig. 6C). Even

though the genome coverage average is 2.8 data

sets, 10.8% of the genome is covered by 15 or

more data sets, and coverage peaks at 103 data

sets overlapping a single region on chromosome

3R. We found strong positive correlations be-

tween bound regulators and transcribed element

densities, as well as regulators and chromatin el-

ement densities (fig. S11). In the case of chro-

matin data sets, additional chromatin marks

resulted in higher accuracy in chromatin-state re-

covery (fig. S12), and we expect similar addi-

tional data sets to have an effect on other classes

of functional elements.

TF targets and physical regulatory network

inference. We examined the network of regu-

latory relationships between TFs, miRNAs, and

their target genes. In these networks, “nodes”

represent the transcriptional and posttranscrip-

tional regulators and target genes, and “edges” or

“connections” represent their directed regulatory

relationships. We inferred a physical regulatory

network of TF binding and miRNA targeting,

where connections represent physical contact be-

tween regulators and genomic regions of their

target genes.

The structural properties of the physical

regulatory network were inferred from the ex-

perimentally derived binding profiles of 76 TFs

(table S5) and genome-wide occurrences of 77

distinct evolutionarily conserved miRNA seed

motifs for 105 miRNAs (17). The structure of the

resulting network shows high connectivity and

rapid spread of regulatory information, requiring

traversal of only ~two regulatory connections, on

average, between any two genes and no more

than five connections between any pair of genes.

Target genes are regulated by ~12 TFs, on av-

erage, and can have up to 54 regulatory TFs (17).

The most heavily targeted genes are associated

with increased pleiotropy, as measured by the

number of distinct functional processes and tis-

sues with which they are associated (17).

The physical regulatory network includes both

pre- and posttranscriptional regulators, identify-

ing the interplay between these two types of reg-

ulation. We organized the TFs of the physical

regulatory network into five levels (Fig. 7A and

fig. S13) on the basis of the relative proportion of

TF targets versus TF regulators for each TF (64),

and we augmented this network with the miRNA

regulators most closely interacting with each lev-

el. The presumed “master regulator” TFs at the

top level targeted almost all of the other TFs in

the network,whereas only 8%of lower-level edges

pointed upward to higher levels, supporting a

hierarchical nature and suggesting little direct feed-

back control of master regulators among the TFs

surveyed. We also observed that even though the

number of TF targets decreases for TFs at lower

levels of the hierarchy, the number of theirmiRNA

targets increases (0.58 miRNA targets per TF for

the two topmost levels versus 1.55 for the two

lowest levels, fold enrichment of 2.66). This sug-

gests that at least some feedback from the lower

levels to the master regulators may occur in-

directly through miRNA regulators.

We next searched for significantly overrep-

resented network connectivity patterns, or “net-

workmotifs” (Fig. 7B), likely to represent building

blocks of gene regulation (65). We found eight

network motifs in the physical regulatory net-

work (66), five of which correspond to TF co-

operation (motifs 1, 2, 4, 7, and 8), confirming

observations of cobinding and cotargeting (57–61).

In all five motifs, at least two TFs bind each

other’s promoter regions, suggesting extensive

positive and negative feedback. Two other motifs

correspond to mixed feed-forward loops involv-

ing cooperation of TFs and miRNAs (motifs 3

and 6), which can lead to different delay proper-

ties in the expression of target genes depending

Fig. 6. Genome coverage by modENCODE data sets. (A) Unique (bars) and cumulative (lines) coverage of
nonrepetitive (blue line) and conserved (red line) genomes. (B) Multiple coverage for data sets grouped
into transcribed elements (red), bound regulators (blue), and chromatin domains (green) (17). Across all
three classes (black), 10.8% of the genome is covered 15 or more times, and 69.5% is covered at least
twice. (C) Increased coverage in a Chr2R region with no prior annotation (left half), now showing multiple
overlapping data sets. Coverage by different tracks is highly clustered (fig. S11), with some regions
showing little coverage and others densely covered by many types of data.
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on the activating or repressive action of the TF.

Lastly, one motif (motif 5) corresponds to a

feedback loop of a downstream TF targeting an

upstream TF through a miRNA, which is also

observed as a means for feedback in the hie-

rarchical network layout (17).

Data set integration predicts a functional

regulatory network. We integrated the physical

network with patterns of coordinated activity of

regulators and targets to derive a functional reg-

ulatory network (fig. S14A). Although TF bind-

ing is strongly associated with the true regulatory

targets, binding alone can occurwithout a sequence-

specific TF-motif interaction and does not always

result in changes in gene expression (60). Thus, a

functional regulatory network should consider both

binding and its functional consequences, such as

changes in expression or chromatin, which are cor-

related with gene function (fig. S15). Neither net-

work is a strict subset of the other, as some physical

connections may not lead to functional changes,

and functional connections may be indirect or

simply missing in the physical regulatory map.

We integrated multiple types of evidence in-

cluding conserved sequence motifs of 104 TFs in

promoter regions across the genome (table S5),

ChIP-based TF binding for 76 factors, and the

correlation between chromatin marks and gene

expression patterns of regulators and their target

genes (fig. S16). We combined these lines of

evidence with unsupervised machine learning to

infer the confidence of each regulatory edge be-

tween 707 proteins classified as TFs (17) and

14,444 targets for which at least one line of

evidence was available (17).

We compared the resulting functional net-

work to the physical network inferred from TF

binding, a predicted physical network constructed

frommotif occurrences, and the REDfly literature-

curated functional network (17). The functional

network included a similar number of target genes

as both the binding and motif physical networks

(~10,000 targets each), but more regulators over-

all (576 versus 104 and 76, respectively) and

more regulators per target (24 versus 7 and 13,

respectively) (fig. S14B). The functional network

showed similarity to both the motif and binding

networks, which were both used as input evi-

dence; connections of the functional network

showed more than fourfold enrichment in both

networks, even though the two only showed a

1.6-fold enrichment to each other’s connections

(fig. S14C). Compared with either the motif or

the binding network, the functional network

showed the strongest connectivity similarity to

the REDfly network, even though it was not

specifically trained to match known edges.

The functional regulatory network showed

increased biological relevance compared with

both the motif and binding networks, including

increased functional similarity, increased expres-

sion correlation, and increased protein-protein in-

teractions of cotargeted genes (fig. S14D) (17).

The REDfly network slightly outperformed the

functional network, confirming the relevance of

themetrics. However, the functional network con-

tains 100 times more targets (9436 versus 88) and

1000 times more connections (231,181 versus

233) than the REDfly network, suggesting it will

be more valuable for predicting gene function and

gene expression at the genome scale.

Predicting gene function from the functional

regulatory network. We provided candidate

functional annotations for genes that lack Gene

Ontology (GO) terms on the basis that targets of

similar regulators and with similar expression are

likely to share similar functions. We probabilis-

tically assigned genes to 34 expression clusters

(fig. S15) (17) and predicted likely functional

GO terms for every gene with a guilt-by-

association approach that uses GO terms of anno-

tatedgenes to predict likely functions of unannotated

genes, allowing for multiple annotation predic-

tions for each gene (17). This resulted in a higher

predictive power than the use of expression or

regulators alone (Fig. 8). At FDR < 0.25, we

predicted GO terms for 1286 previously unan-

notated genes and additional terms for 1586 pre-

viously annotated genes (fig. S17, table S6, data

set S15). In general, tissue-specific enrichments of

new GO predictions matched those of known

genes in the same GO terms (fig. S18), providing

an independent validation of our approach.

Predicting stage-specific regulators of gene

expression. We predicted stage-specific regula-

tors of gene expression on the basis of tran-

scriptional changes during development. With

the Dynamic Regulatory Events Miner (DREM)

(67), we searched for splits (a point at which pre-

viously coexpressed genes begin to exhibit diver-

gence into two or three distinct expression

patterns) among a set of more than 6000 genes

with the largest expression changes occurring

during the developmental time course (Fig. 9A

and fig. S19). We mined the physical and

functional regulatory networks to predict stage-

specific regulators from the over-representation

of regulator targets along specific trajectories or

“paths” from each split (17). Several predictions

agreed with literature support. For example, TIN,

a known regulator of organ development (68),

was a predicted regulator of genes with an early

increase in expression and enriched for organ de-

velopment (P < 10–53), and E2F2, a known cell-

cycle regulator (69), was a predicted regulator of

genes with an early decrease in expression and

enriched for cell-cycle function (P < 10–100).

Fig. 7. Properties of the physical regulatory network. (A) Hierarchical view of
mixed ChIP-based/miRNA physical regulatory network that combines transcrip-
tional regulation by 76 TFs (green) from ChIP experiments and posttranscriptional
regulation by 52 miRNAs (red). TFs are organized in a five-level hierarchy on the
basis of their relative proportion of TF targets versus TF regulators. miRNAs are
separated into two groups: the ones that are regulated by TFs (left) and the ones
that only regulate TFs (right). The horizontal position of the TFs in each level shows
whether they regulate miRNAs (left), have no regulation to or from miRNAs

(middle), or do not regulate but are targeted by miRNAs (right). Different shades
of green and red represent the total number of target genes for TFs and miRNAs,
respectively (darker nodes indicate more targets). Ninety-two percent of TF reg-
ulatory connections are downstream connections fromhigher levels to lower levels
(green), and only 8% are upstream (blue). miRNA regulatory connections are red.
(B) Highly enriched network motifs in a mixed physical regulatory network in-
cluding TFs (green), miRNAs (red), and target genes (black). For each motif, five
examples are shown. Known activators, blue; known repressors, red; other TFs, black.
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To provide additional support for regulator

predictions made using the physical network, we

examined the time-course expression profiles of

the regulators, whichwere not directly used in the

prediction scheme. Even though several caveats

could hinder this analysis, the time-course ex-

pression of the regulators was often consistent

with DREM’s predictions. For example, a sharp

decline in SU(HW) expression coincides with sharp

expression increase of its targets (Fig. 9A), con-

sistent with a repressive role (70). We generally

observed a notable correspondence among the

stage-specific expression changes of predicted

regulators at developmental stages that correspond

with concomitant expression changes in their tar-

get genes. Regulators predicted to be associated

with a split had, on average, a significantly great-

er absolute expression change than those not

associated with a split (P < 10−10) (fig. S19) (17).

Predicting cell type–specific regulators of

chromatin activity. We computed enrichments

of conserved regulatory motif instances in cell

type–specific annotations for 22 chromatin fac-

tors in both S2 and BG3 cells. We defined signa-

tures of cell-type–specific activators and repressors

probably involved in establishing the chromatin

differences between S2 and BG3 cells (Fig. 9B)

by comparing these enrichments to the expres-

sion patterns of the TFs that recognize these mo-

tifs in the same cell types (17). Activators were

defined as TFs whose cell type–specific expres-

sion coincided with activation of their predicted

targets, and repressors were defined as TFs whose

cell type–specific expression was correlated

with repression of their predicted targets. This

resulted in one to eight predicted regulators for

each cell, including, for example, CREBA as a

predicted S2 activator, H as a predicted BG3

repressor, and factors with the stereotypical homeo-

box binding motif (HOX-like) as a predicted BG3

activator.

For most regulatory motifs, enrichment in ac-

tivating chromatin marks was coupled with

depletion in repressive chromatin marks. This

coupling leads to more robust predictions of ac-

tivators and repressors and also enables a high-

level distinction between active and repressive

chromatinmarks that agrees with previous studies

and with our chromatin-state analysis (Fig. 4)

(18, 19). For a small number of motifs, however,

the chromatin enrichments did not show a con-

sistent picture of opposite enrichments in activat-

ing versus repressive marks. These could be false

positives and not actually associated with chro-

matin regulation, or they could be active in other

cell types and not relevant to the distinction be-

tween S2 and BG3 chromatin marks.

Fig. 8. Gene function prediction from
coexpression and co-regulation patterns. Re-
ceiver operator characteristic curves for GO
terms with predicted new members and
area-under-the-curve statistics. False neg-
atives for each GO term are predictions for
genes previously annotated for “incompatible”
GO terms, defined as pairs of GO terms that
have less than 10% common genes relative
to the union of their gene sets.

Fig. 9. Predictive models of regulator, region, and gene activity. (A) Dynamic
regulatory map produced by DREM predicts stage-specific regulators
associated with expression changes (y axis, log space relative to first time
point) across developmental stages (x axis) (17). Each path (colored lines)
indicates the average expression of a group of genes (solid circles) and its
standard deviation (size of circle). Predicted bifurcation events, or splits, (open
circles) are numbered 1 through 19. The colored insets show the expression
level of each individual gene going through the split and ranked regulators
from the physical (black) or functional (blue) regulatory network associated
with the higher (H), lower (L), or middle (M) path. The uncolored inset shows
the expression of repressor SU(HW), whose expression decrease coincides with
an expression increase of its targets (red asterisk). (B) Predicted S2 activators

(top group) or repressors (bottom group), based on the coherence between
relative expression of the TF in S2 (yellow) versus BG3 (green) and the relative
motif enrichment (red) or depletion (blue) in S2 versus BG3 for activating (left
columns) or repressive marks (right columns). (C) True (top of shaded area)
and predicted (dotted blue line) expression levels for target genes, from the
expression levels of inferred activators (red) and repressors (green). Only the
top five positive and negative regulators are shown, ranked by their
contribution to the expression prediction (weight of linear-regression model).
Examples are shown from 8 of 1487 predictable genes, ranked by prediction
quality scores (rank in upper right corner), evaluated as the averaged squared
error between predicted and true expression levels across the time course. An
expanded set of examples is shown in fig S23.
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Predicting target gene expression from

regulator expression. Developmental regulatory

programs are defined by multiple interacting reg-

ulators contributing to observed changes in gene

or region activity (71). We sought to predict the

specific expression levels of target genes across

numerous stages and cell lines on the basis of the

expression levels of their regulators. With the 30

distinct measurements of expression levels ob-

tained by RNA-seq across development (14), we

represented the expression level of each target

gene as a linear combination of its regulators, as

defined by the functional regulatory network (Fig.

9C). We split the time course into 10 intervals of

three samples each and learned stable coefficients

for linear combinations of TFs across 9 intervals

to predict expression in the tenth (17).

We predicted the expression levels of 1991

genes better than random control networks (23.6%

of genes), a 2.5-fold enrichment (control net-

works perform better on 9.5% of genes) (figs.

S20 andS21). In contrast, physical networks showed

almost no predictive value over the randomized

networks (table S7), suggesting that they are best

used when combined with additional information

for inferring functional regulatory networks.

Genes whose expression levels are predicta-

ble from the expression levels of their regulators

(those with consistently lower errors than ran-

dom) may be more precisely regulated and, thus,

associated with less noisy expression patterns.

Indeed, the expression correlation between the

30–time-point data set used for expression pre-

diction (14) and an independently generated 12–

time-point data set sampled at longer intervals

(19) was significantly higher for predictable genes

compared with unpredictable genes (Kolmogorov-

Smirnov test P value < 1E–7) (fig. S22). These

results validate our methodology for gene ex-

pression prediction and suggest that unpredict-

able genes may be due to intrinsic variability in

gene expression levels.

We also tested whether the regulatory models

obtained with whole-embryo time-course data

sets can predict gene expression under novel con-

ditions: specifically the Cl.8+, Kc167, BG3, and

S2-DRSC cell lines. For each “predictable” gene,

the expression levels of its regulators were

combined, as dictated by the weights learned in

the time-course experiment, and used to predict

target gene expression. The expression of 932

predictable genes also showed better-than-random

predictions (compared with 296 genes for the

binding network and 214 genes for the motif

network). Overall, 62% of embryo-defined pre-

dictable genes were also predictable in cell lines,

compared with only 10 to 15% for embryo-based

unpredictable genes, providing further validation

of our methodology.

Our results suggest that the primary data sets

are highly relevant for inferring functional reg-

ulatory relations that are predictive of expression

(Fig. 9C and figs. S20 and S23). However, genome-

scale gene expression prediction remains an enor-

mously difficult problem, as only one-quarter of

all genes was predictable, a fraction that we ex-

pect to improve with additional data sets gen-

erated frommore andmore genome-scale projects.

Discussion. This first phase of the mod-

ENCODE project has provided the foundation

for integrative studies of metazoan biology, en-

hancing existing genome annotations; broadening

the number and diversity of small RNAgenes and

pathways; revealing chromatin domains and sig-

natures; and elucidating the interplay between

replication, chromatin, and TF binding in high-

occupancy regions. Together, our resulting anno-

tations cover 82%of the genome, a nearly fourfold

increase comparedwith previously annotated protein-

coding exons, and have important implications

for interpreting the molecular basis of genetically

linked phenotypes.

Our integrative analysis revealed connections

between elements in physical and functional reg-

ulatory networks, enabling the prediction of gene

function, tissue- and stage-specific regulators, and

gene expression levels. Though our initial results

are promising, only one-quarter of all genes showed

predictable expression, suggesting the need for

continued mapping of regulatory interconnec-

tions and functional data sets, as well as new

predictive models.

It remains to be seen how the general reg-

ulatory principles elucidated here will be con-

served across the animal kingdom and especially

in humans, through comparison across the

ENCODE and modENCODE projects. Toward

this end, we are expanding our exploration of

functional elements, cell types, and developmen-

tal stages and prioritizing orthologous assays and

conditions across species. Given the extensive

conservation of biological molecules and pro-

cesses between flies and vertebrates (72), these

will not only improve our understanding of fly

biology, but can also serve as a template for

understanding of human biology and disease.
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