
ARTICLE OPEN

Identification of gastric cancer subtypes based on pathway

clustering
Lin Li1,2,3 and Xiaosheng Wang 1,2,3✉

Gastric cancer (GC) is highly heterogeneous in the stromal and immune microenvironment, genome instability (GI), and oncogenic

signatures. However, a classification of GC by combining these features remains lacking. Using the consensus clustering algorithm,

we clustered GCs based on the activities of 15 pathways associated with immune, DNA repair, oncogenic, and stromal signatures in

three GC datasets. We identified three GC subtypes: immunity-deprived (ImD), stroma-enriched (StE), and immunity-enriched (ImE).

ImD showed low immune infiltration, high DNA damage repair activity, high tumor aneuploidy level, high intratumor heterogeneity

(ITH), and frequent TP53 mutations. StE displayed high stromal signatures, low DNA damage repair activity, genomic stability, low

ITH, and poor prognosis. ImE had strong immune infiltration, high DNA damage repair activity, high tumor mutation burden,

prevalence of microsatellite instability, frequent ARID1A mutations, elevated PD-L1 expression, and favorable prognosis. Based on

the expression levels of four genes (TAP2, SERPINB5, LTBP1, and LAMC1) in immune, DNA repair, oncogenic, and stromal pathways,

we developed a prognostic model (IDOScore). The IDOScore was an adverse prognostic factor and correlated inversely with

immunotherapy response in cancer. Our identification of new GC subtypes provides novel insights into tumor biology and has

potential clinical implications for the management of GCs.
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INTRODUCTION

Gastric cancer (GC) is the second leading cause of cancer deaths in
the world1 and particularly prevails in East Asia2. Abundant
evidence indicates that GC is highly heterogeneous3. Based on the
pathohistological classification, GC includes following three
subtypes: intestinal, diffuse, and indeterminate4. Based on
molecular profiles, GC includes four subtypes defined by The
Cancer Genome Atlas (TCGA): Epstein–Barr virus (EBV) associated,
microsatellite instable (MSI), genomically stable (GS), and chro-
mosomal instability (CIN)5. In addition, the four molecular
subtypes defined by the Asian Cancer Research Group (ACRG),
include microsatellite stable (MSS)/epithelial–mesenchymal transi-
tion (EMT), MSI, MSS/p53+, and MSS/p53−6. The high hetero-
geneity in GC brings great challenges to the successful treatment
of this disease3. Traditional treatment strategies, including surgery,
chemotherapy, and radiotherapy, often have limited efficacy for
the refractory or metastatic GCs7. Targeted therapies for GC, such
as targeting HER2, EGFR, FGFR, KIT, c-Met, VEGFR, and CLDN18.2,
are currently under investigation, although most targeted
therapies demonstrated moderate effect or drug resistance8.
Cancer immunotherapies, such as immune checkpoint inhibi-

tors (ICIs)9, have achieved success in treating various refractory
malignancies, including the MSI subtype of GC. Nevertheless, only
a subset of cancer patients displayed a favorable response to
immunotherapies. To improve the immunotherapeutic efficiency,
the discovery of predictive biomarkers for immunotherapy
response is crucial. Some such biomarkers have been identified,
including PD-L1 expression10, DNA mismatch repair deficiency or
MSI11, and tumor mutation burden (TMB)12. Besides, the “hot”
tumors with high immune infiltration often display a more active
response to immunotherapy than the “cold” tumors with inferior
immune infiltration13. Thus, the identification of actionable targets

for intervention to enhance tumor immune infiltration is
significant. Several studies have investigated the molecular
characteristics associated with tumor immunity in GC14–16. Our
recent study revealed that TP53 mutations correlated with
suppressive antitumor immunity in GC by immunogenomics
analysis14. Park et al.15 developed immune gene signatures to
classify GC patients into three immune subtypes, which had
significantly different prognoses. Zeng et al.16 defined three GC
subtypes based on immune cell infiltration patterns in the tumor
microenvironment (TME).
Despite these various molecular classification methods for

GC5,6,15,16, a combination of immune pathways and other GC-
associated pathways for classifying GC remains lacking. Because
GC is heterogenous in the immune microenvironment15, stromal
microenvironment17, genome integrity5, and oncogenic signa-
tures18, a classification of GC based on these features may provide
new insights into the heterogeneity in GC. To this end, we
performed clustering analysis of GCs based on the enrichment
levels of four types of pathways, including immune pathways
(natural killer cell-mediated cytotoxicity, antigen processing and
presentation, T cell receptor signaling, B cell receptor signaling,
and Fc gamma R-mediated phagocytosis), stromal pathways
(ECM–receptor interaction, focal adhesion, and tight junction),
DNA damage repair pathways (p53 signaling, mismatch repair,
and homologous recombination), and oncogenic pathways (PI3K-
Akt signaling, Wnt signaling, TGF-β signaling, and cell cycle). For
each of the four pathway types, we selected several representative
KEGG pathways. For example, among the immune pathways, the
natural killer cell-mediated cytotoxicity pathway represents the
innate immune response, the T cell receptor signaling pathway
represents the adaptive immune response, and the antigen
processing and presentation pathway is crucial for the
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presentation of tumor-specific antigens to T cells to eradicate
tumor cells19. Among the stromal pathways, the ECM–receptor
interaction pathway derives signals that are critically involved in
the regulation of EMT to modulate various behaviors of the tumor
cells and cancer‐associated stromal cells20,21. DNA damage repair
is critical for maintaining genome integrity22. We selected its
representative pathways: p53 signaling, mismatch repair, and
homologous recombination. The p53 signaling pathway plays a
key role in the DNA damage response23, while TP53 mutations
occur in around half of GCs24. Both mismatch repair and
homologous recombination pathways are important for maintain-
ing genome integrity, and their deficiency is the most common
DNA damage repair deficiency in GC5. The deficiency of mismatch
repair is responsible for MSI, a type of small-scale genomic
instability displayed in about 20% of GCs25. In contrast, the
deficiency of homologous recombination is responsible for CIN, a
type of large-scale genomic instability shown in about 50% of
GCs5. Although there are numerous oncogenic pathways asso-
ciated with GC, we selected the four oncogenic pathways from the
KEGG pathway map of “Gastric cancer” (https://www.kegg.jp/
kegg-bin/show_pathway?hsa05226). We evaluated the enrich-
ment levels of pathways using the single-sample gene-set
enrichment analysis (ssGSEA) scores26. The ssGSEA scores-based
clustering method is more robust than the gene expression
values-based method for identifying cancer subtypes and has
been widely used for clustering analysis27–29. Based on the four
types of pathways, we identified three GC subtypes, which were
consistently shown in three different datasets. We comprehen-
sively characterized molecular and clinical features associated with
these subtypes. Our novel classification method may provide new
insights into tumor biology as well as clinical implications for GC
diagnosis and treatment.

RESULTS

Pathway clustering identifies three GC subtypes

Based on the enrichment levels of 15 pathways, which were
immune, stromal, DNA damage repair, or oncogenic pathways, we
clustered GCs in three datasets (TCGA-STAD, ACRG-STAD, and
GSE84437), respectively, using the consensus clustering algo-
rithm30. Interestingly, all three datasets displayed similar clustering
results, with GCs being clearly divided into three subtypes, termed
immunity-deprived (ImD), stroma-enriched (StE), and immunity-
enriched (ImE) (Fig. 1a). Principal component analysis confirmed
that GCs could be clearly separated into three subgroups based on
the pathway scores in all three datasets (Fig. 1b). ImD highly
expressed the pathways of DNA damage repair and cell cycle,
while it lowly expressed the immune, stromal, and other
oncogenic (PI3K-Akt, Wnt, and TGF-β) pathways. In contrast, StE
was characterized by the high enrichment of the stromal, PI3K-Akt,
Wnt, and TGF-β pathways, and the low enrichment of the DNA
damage repair and cell cycle pathways. ImE presented elevated
activities of the immune, DNA damage repair, and cell cycle
pathways and reduced activities of the stromal, PI3K-Akt, Wnt, and
TGF-β signaling pathways.

Immune and stromal signatures and tumor purity of the GC
subtypes

We compared immune scores, immune cytolytic activity, percen-
tages of lymphocyte infiltration, stromal scores, percentages of
stromal cells, activity of EMT, and tumor purity between the three
GC subtypes. The immune and stromal scores were calculated by
the ESTIMATE algorithm31 based on gene expression profiles of
immune signature and stromal signature in the tumor, respec-
tively. We also used ESTIMATE to evaluate tumor purity, which is a
cosine function of the sum of immune and stromal scores31. The
immune cytolytic activity represents the ability of cytotoxic T cells

and natural killer cells to eliminate tumor cells, which was the
average expression level of two marker genes (GZMA and PRF1) in
the tumor32. We obtained percentages of lymphocyte infiltration
and stromal cells from the TCGA GC pathological slides data
(https://portal.gdc.cancer.gov/). The three GC subtypes had
significantly different immune scores: ImD < StE < ImE, in all three
datasets (one-tailed Mann–Whitney U test, P < 0.015) (Fig. 2a). The
expression levels of most human leukocyte antigen (HLA) genes
showed the pattern: ImD < StE < ImE (one-way ANOVA test, P <
0.001) (Supplementary Fig. 1a). The immune cytolytic activity was
the highest in ImE and the lowest in ImD (P < 0.001) (Fig. 2b).
These data confirmed that ImE and ImD had the highest and
lowest antitumor immunity, respectively. We further verified this
result with the TCGA GC pathological slides data, which showed
that ImE had higher percentages of lymphocyte infiltration than
ImD (P= 0.043) (Fig. 2c). In addition, we evaluated the proportions
of 22 immune cells in the GC subtypes using the CIBERSORT
algorithm33. We found that StE had significantly higher propor-
tions of resting CD4 memory T cells, resting mast cells, and
immune-inhibitory M2 macrophages but lower proportions of
activated CD4 memory T cells and immune-stimulatory M1
macrophages than ImE (P < 0.01) (Supplementary Fig. 1b). More-
over, StE had significantly higher proportions of resting mast cells
and M2 macrophages but lower proportions of activated mast
cells than ImD (P < 0.01). Furthermore, the ratios of immune-
stimulatory over immune-inhibitory signatures (pro-/anti-inflam-
matory cytokines and M1/M2 macrophages) were significantly
lower in StE than ImE and ImD (Supplementary Fig. 1c). These
results indicate that StE is likely to display stronger immunosup-
pressive signatures than the other subtypes.
The stomal scores were significantly different between the three

GC subtypes: ImD < ImE < StE (P < 0.001) (Fig. 2d), confirming that
StE had the strongest stromal signatures among the three
subtypes. The TCGA GC pathological slides data also showed that
StE had significantly higher percentages of stromal cells than ImD
and ImE (P < 0.001) (Fig. 2e). The activation of the EMT biological
process may alter the TME to activate stromal signatures34. As
expected, the activity of EMT was significantly higher in StE than
ImD and ImE (P < 0.001) (Fig. 2f). Furthermore, we compared the
expression levels of 194 stromal gene signatures35 between the
three GC subtypes and found that most of them were more highly
expressed in StE than ImD and ImE (two-tailed student’s t test, P <
0.05) (Supplementary Fig. 1d). In contrast, tumor purity displayed
an opposite trend: ImD > ImE > StE (P < 0.05) (Fig. 2g), indicating
that ImD and StE had the highest and lowest tumor purity,
respectively. To correct for the impact of tumor purity on the
associations of GC subtypes with an immune score, stromal score,
and EMT signature, we built logistic regression models with three
predictors (StE, ImE, and tumor purity) to predict the immune
score, stromal score, and EMT signature score in the three
datasets. We found that both StE and ImE were significant positive
predictors for the immune score. Meanwhile, StE was a significant
positive predictor for stromal score and EMT signature (P < 0.05)
(Supplementary Fig. 2). These results suggest that the significant
associations of the GC subtypes with immune and stromal
signatures are independent of tumor purity.

Genomic features of the GC subtypes

Genomic instability (GI) plays a key role in tumor initiation and
progression36. GI includes small-scale GI leading to increased TMB
and large-scale GI leading to increased tumor aneuploidy level
(TAL)37. We found that TMB was significantly higher in ImD and
ImE than StE in TCGA-STAD (P < 0.001), while it showed no
significant difference between ImD and ImE (P= 0.42) (Fig. 3a).
Because MSI tumors have high TMB and were the most prevalent
in ImE, we compared TMB between the three subtypes with MSI
tumors excluded. We found that TMB was still significantly higher

L Li and X Wang

2

npj Precision Oncology (2021)    46 Published in partnership with The Hormel Institute, University of Minnesota

1
2
3
4
5
6
7
8
9
0
()
:,;

https://www.kegg.jp/kegg-bin/show_pathway?hsa05226
https://www.kegg.jp/kegg-bin/show_pathway?hsa05226
https://www.kegg.jp/kegg-bin/show_pathway?hsa05226
https://www.kegg.jp/kegg-bin/show_pathway?hsa05226
https://portal.gdc.cancer.gov/


in ImD and ImE than StE in TCGA-STAD (P < 0.001) and had no
significant difference between ImD and ImE (P= 0.09). Similarly,
TAL was significantly higher in ImD and ImE than StE (P ≤ 0.01)

(Fig. 3a). Moreover, ImD displayed significantly higher TAL than
ImE (P < 0.001). Homologous recombination deficiency (HRD) may
cause large-scale GI38. We found that HRD scores were signifi-

cantly higher in ImD than StE and ImE (Fig. 3a). We further
compared somatic copy number alteration (SCNA) levels between
the three subtypes. As expected, ImD displayed significantly
higher levels of arm- and focal-level SCNAs than StE and ImE (P <

0.001 for comparisons of amplification and deletion in arm-level

SCNAs and total alterations in focal-level SCNAs) (Fig. 3b, c,
Supplementary Fig. 3); ImE tended to have higher levels of arm-
and focal-level SCNAs than StE. In addition, ImE harbored a

significantly higher proportion of MSI cancers than ImD, which in
turn harbored a significantly higher proportion of MSI cancers
than StE (Fisher’s exact test, P < 0.05, odds ratio (OR) > 2) (Fig. 3d).

Collectively, these data indicate that ImD and ImE are more
genomically instable than StE, while ImD and ImE are character-
ized by large-scale and small-scale GI, respectively. GI often causes
intratumor heterogeneity (ITH), which is genetic and phenotypic

variation within tumors and is associated with tumor progression,

Fig. 1 Identification of subtypes of gastric cancer based on pathway clustering. a Consensus clustering of gastric cancer (GC) identifies
three subtypes (ImD, StE, and ImE) based on the enrichment levels of 15 pathways in 3 different datasets (TCGA-STAD, ACRG-STAD, and
GSE84437). The enrichment levels of the pathways were evaluated by ssGSEA26 of all genes involved in them. The 15 pathways are associated
with immune, DNA damage repair, oncogenic, and stromal signatures. b PCA confirms that GCs can be clearly separated into three subgroups
based on the ssGSEA scores of the pathways. ImD immunity-deprived, StE stroma-enriched, ImE immunity-enriched, MSI microsatellite
instable, MSS microsatellite stable, MSI-H high microsatellite instability, MSI-L low microsatellite instability, EMT epithelial–mesenchymal
transition (These also apply to the following figures).
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immune evasion, and drug resistance39. As expected, ImD and ImE
tended to display higher ITH than StE (Fig. 3e). Meanwhile, ImD
had higher ITH than ImE (P < 0.001), suggesting that large-scale GI
is likely to cause higher ITH than small-scale GI.

Mutation profiles of the GC subtypes

The mutation of cancer driver genes may affect various key
cellular functions to drive cancer development40. We compared
the mutation frequencies of 172 driver genes41 between the three
GC subtypes in TCGA-STAD (Supplementary Table 1). Notably, ImD
displayed a significantly higher mutation rate of TP53 than StE and
ImE (P < 0.01, OR > 2), and ImE had a higher TP53 mutation rate
than StE (P= 0.086, OR= 1.6) (Fig. 4a). These results conform to
the significant difference in GI between the three subtypes since
p53 plays a prominent role in the maintenance of genomic
stability42. ARID1A, a component of the ATP-dependent chromatin

remodeling complex SNF/SWI, was more frequently mutated in
ImE than ImD and StE (P < 0.02, OR > 2) (Fig. 4a). This is consistent
with the significant positive association between ARID1A muta-
tions and MSI in gastrointestinal cancers43 since ImE harbored a
significantly higher proportion of MSI cancers than the other
subtypes. PIK3CA, CASP8, and CR1 were also more frequently
mutated in ImE than ImD and StE (P < 0.03, OR > 3) (Fig. 4a).
Previous studies have demonstrated the associations of PIK3CA
mutations44 and CASP845 mutations with increased immune
infiltration in cancer, consistent with the highly enriched anti-
tumor immune signatures in ImE vs. ImD and StE. In addition,
numerous genes showed higher mutation rates in ImE and/or ImD
than StE, including ZBTB20, CSMD1, HLA-B, DCLK1, NWD1, DMXL2,
EAF2, ERBB3, CNTLN, OR2G6, BCLAF1, PLEKHA6, and ZNF676 (P < 0.1,
OR > 2) (Supplementary Fig. 4). Interestingly, we found that the
mutations of several genes (ARID1A, B2M, CASP8, CIC, and RNF43),

Fig. 2 Comparisons of immune and stromal signatures and tumor purity between the three GC subtypes. The immune scores (a), cytolytic
activity (b), and percentages of lymphocyte infiltration (c) are the highest in ImE and the lowest in ImD. The stomal scores (d), percentages of
stromal cells (e), and activity of EMT (f) are the highest in StE and the lowest in ImD. g ImD has the highest tumor purity, and StE has the lowest
tumor purity. The immune and stomal scores and tumor purity were evaluated by ESTIMATE31. The cytolytic activity is the average expression
level of two marker genes (GZMA and PRF1)32. The activity of EMT is the ssGSEA score26 of its marker genes. The one-tailed Mann–Whitney U
test P values are indicated. *P < 0.05, **P < 0.01, ***P < 0.001.
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Fig. 3 Comparisons of genome instability and intratumor heterogeneity between the three GC subtypes in TCGA-STAD. a Comparisons of
TMB, TAL, and HRD scores between the three GC subtypes. b, c ImD and StE have the highest and lowest levels of SCNAs, respectively. The
SCNA levels and G-scores were calculated by GISTIC298. d ImE and StE harbor the highest and lowest proportion of MSI cancers, respectively.
The Fisher’s exact test P values and odds ratios are shown. e ImD and StE display the highest and lowest ITH, respectively. The one-tailed
Mann–Whitney U test P values are indicated in (a) and (e). The MATH96 and DEPTH97 algorithms were used to evaluate ITH at the DNA and
mRNA levels, respectively. TMB tumor mutation burden, TAL tumor aneuploidy level, HRD homologous recombination deficiency, SCNAs
somatic copy number alterations, OR odds ratio, ITH intratumor heterogeneity, ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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which had significantly higher mutation rates in ImE than ImD and
StE, were associated with better overall survival (OS) in the
Samstein cohort (gastrointestinal cancer)46 treated with ICIs (log-
rank test, P ≤ 0.1) but showed no significant correlation with OS in

TCGA-STAD not treated with ICIs (Fig. 4b). These results indicate
that ImE tumors are more likely to respond to ICIs than the other
subtypes. It is justified because ImE has the highest immune

infiltration (Fig. 1a) and PD-L1 expression levels (one-way ANOVA
test, P < 0.001) (Fig. 4c), both of which are the determinants
driving the response to ICIs47.

DNA methylation profiles of the GC subtypes

DNA methylation alterations in tumorigenesis are well recog-
nized48. We found several EMT-promoting genes49–51 showing

significantly lower methylation levels in StE than ImD and ImE in
TCGA-STAD (Fig. 5a). These genes included ZEB1, ZEB2, TWIST1,
VIM, and CDH2. In contrast, CDH1 and CLDN1, which play a role in

repressing EMT, had significantly higher methylation levels in StE
than ImD and ImE. These results reflect that the EMT promoters
are upregulated in StE, while the EMT repressors are down-
regulated in this subtype. It is consistent with the fact that StE has
the strongest EMT signature among the three GC subtypes.
Several DNA repair genes, including MLH1 and MSH3, displayed
significantly lower methylation levels in StE than ImD and ImE (Fig.
5a). As expected, the expression levels of both genes were
inversely correlated with their methylation levels in TCGA-STAD
(Spearman’s correlation ρ <−0.2, P < 0.001) (Fig. 5b). Furthermore,
we found that 17 CpG sites within MLH1 CpG islands had
significantly lower methylation levels in StE than ImD and ImE (Fig.
5c). Also, the methylation levels of these CpG sites had significant
negative correlations with the expression levels of MLH1 in TCGA-
STAD (ρ <−0.3, P < 0.001) (Fig. 5d). These results indicate that StE
has a stronger DNA repair function to maintain its genomic
stability (such as low TMB) compared to the other subtypes.
Indeed, TMB displayed a significant positive correlation with the

Fig. 4 Comparisons of mutation profiles between the three GC subtypes. a Eight genes showing significantly different mutation
frequencies between the three GC subtypes in TCGA-STAD. b Five genes more frequently mutated in ImE than ImD and StE, whose mutations
are correlated with better OS in the Samstein cohort (gastrointestinal cancer)46 receiving immune checkpoint inhibitor treatment (log-rank
test, P ≤ 0.1), but have no a significant correlation with OS in TCGA-STAD without such treatment. Kaplan–Meier curves are used to compare
the survival time, and the log-rank test P values are shown. OS overall survival. c Comparisons of PD-L1 expression levels between the three GC
subtypes. The one-way ANOVA test P values are shown.
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methylation levels of MLH1 (ρ= 0.43, P= 2.74 × 10−16) and a
significant negative correlation with the expression levels of MLH1
(ρ=−0.44, P= 1.77 × 10−18) in TCGA-STAD (Fig. 5e).

Protein expression profiles of the GC subtypes

Based on the TCGA protein expression profiling data, we analyzed
the expression levels of 219 proteins in the GC subtypes
(Supplementary Table 2). We found that several proteins
functioning in the maintenance of genomic stability had
significantly higher expression levels in StE than ImD and ImE
(two-tailed Student’s t test, false discovery rate (FDR) < 0.05) (Fig.

6a). These proteins included BRCA2, p21, and p27_pT157. This

may explain why StE is more GS than ImD and ImE. Besides, many
oncogenic and stromal proteins were more highly expressed in
StE than ImD and ImE, including FOXO3a_pS318_S321, c-Kit,
mTOR_pS2448, PKC-alpha, PKC-alpha_pS657, PKC-delta_pS664,

STAT3_pY705, VEGFR2, MYH11, and Stathmin (Fig. 6a). Several
proteins regulating the Hippo pathway also showed significantly
higher expression levels in StE than ImD and ImE, such as TAZ,

YAP, and YAP_pS127, consistent with the roles of the Hippo
pathway in promoting stromal signatures52 and protecting
genomic stability53. In contrast, several DNA repair proteins

Fig. 5 Comparisons of DNA methylation profiles between the three GC subtypes in TCGA-STAD. a The EMT-promoting, EMT-inhibiting, and
DNA mismatch repair genes displaying significantly different methylation levels between the three GC subtypes. The one-tailed
Mann–Whitney U test P values are indicated. b Correlations between expression levels and methylation levels of the genes whose methylation
levels are significantly different between the three GC subtypes. c 17 CpG sites within MLH1 CpG islands having significantly lower
methylation levels in StE than ImD and ImE. The methylation levels (average β values) are shown. d Spearman correlations between MLH1
expression levels and the methylation levels of its 17 CpG sites, which have significantly lower methylation levels in StE than ImD and ImE.
e Spearman correlations between TMB and MLH1 methylation levels and expression levels. *P < 0.05, **P < 0.01, ***P < 0.001.
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displayed significantly lower expression levels in StE than ImD and
ImE, including MSH2, MSH6, and PCNA (Fig. 6b). Again, this is
consistent with the higher genomic stability of StE relative to the
other subtypes. E-cadherin was also significantly downregulated in
StE vs. ImD and ImE, consistent with its role in promoting cellular
adhesion and inhibiting cellular motility54. In addition, the tumor
suppressor protein Rb_pS807_S811 was more lowly expressed in
StE vs. ImD and ImE. This could lead to poorer clinical outcomes in
StE. Interestingly, we found that p53, a key maintainer of genomic
stability42, was more highly expressed in ImD than StE and ImE
(Fig. 6c), whereas ImD was characterized by large-scale GI.
Compensatory activation of p53 might explain this result since
ImD had a significantly higher mutation rate of TP53 than StE and

ImE. FoxM1, a member of the FOX family of transcription factors,
displayed higher expression levels in ImD vs. StE and ImE and in
ImE vs. StE (Fig. 6c). This result conforms to the fact that FoxM1
upregulation can induce GI in cancer55. HER2 was also more highly
expressed in ImD than StE and ImE (Fig. 6c). It indicates that HER2-
amplified GCs are more likely to belong to the ImD subtype. In
contrast, Annexin-1, an immunomodulatory protein playing
diverse roles in cancer56, was more lowly expressed in ImD than
StE and ImE (Fig. 6d). This result indicated a positive correlation
between Annexin-1 expression and anti-tumor immune response
in GC since ImD was immune-deprived. In fact, the expression
levels of Annexin-1 were positively correlated with immune score
and immune cytolytic activity in GC (Fig. 6d). It is consistent with

Fig. 6 Comparisons of protein expression profiles between the three GC subtypes in TCGA-STAD. a Heatmap showing that the proteins
maintaining genomic stability, correlating with oncogenic and stromal signatures, and regulating the Hippo pathway display significantly
higher expression levels in StE than ImD and ImE (two-tailed Student’s t test, false discovery rate < 0.05). b The DNA repair, cellular adhesion,
and tumor suppression proteins displaying significantly lower expression levels in StE than ImD and ImE. c, d Comparisons of the expression
levels of p53, FoxM1, HER2, Annexin-1, Bax, Caspase-7, GAPDH, and Jak2 between the three GC subtypes, and Spearman correlations between
Annexin-1 expression levels and immune signature scores. The two-tailed Student’s t test P values are indicated in (b–d). *P < 0.05, **P < 0.01,
***P < 0.001.
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the argument that increased expression of Annexin-1 during
pathological conditions may drive hyperactivation of T cells57.
Caspase-7, which is a member of the caspase family of proteins
and plays a crucial role in inducing apoptosis58, was more highly
expressed in ImE than ImD and StE (Fig. 6d). Another apoptosis-
inducing protein Bax also showed significantly higher expression
levels in ImE than ImD and StE (Fig. 6d). These results are
consistent with the positive association between the apoptosis
activity and antitumor immunity in cancer14. Besides, GAPDH, an
enzyme catalyzing the sixth step of glycolysis, was more highly
expressed in ImE than ImD and StE (Fig. 6d). This is accordant with
our previous finding that increased glycolysis promotes anti-
tumor immunity59. Jak2, a member of the Janus kinase family, was
also more highly expressed in ImE than ImD and StE (Fig. 6d).
Again, this is consistent with the stronger antitumor immune
signature in ImE vs. ImD and StE since the JAK-STAT pathway
involving Jak2 is a positive regulator of antitumor immune
signature in cancer14.

Clinical features of the GC subtypes

Survival analyses showed that ImE tended to have the best
survival (OS and disease-free survival (DFS)) prognosis, while StE
had the worst survival among the three GC subtypes (Fig. 7a). The
main reason behind this could be that ImE had the strongest
antitumor immune response, while StE was the most enriched
with stromal signatures. Actually, previous studies have demon-
strated that tumor prognosis had a positive association with
antitumor immune signatures14,60,61 and a negative association
with stromal signatures62–64. Furthermore, we found that StE was
likely to harbor a higher proportion of advanced tumors (large
size/extent (T3–4), lymph nodes involved (N1–3), metastatic (M1),
or late-stage (stage III–IV)) than ImD and ImE (Fig. 7b). For
example, StE harbored 76% late-stage tumors vs. ImD (51%) and
ImE (47%) in ACRG-STAD (StE vs. ImD: P < 0.001, OR= 3.1; StE vs.
ImE: P < 0.001, OR= 3.6). In GSE84437, 94% tumors in StE had
large size/extent vs. 84% in ImD and 86% in ImE (StE vs. ImD: P=
0.004, OR= 3.1; StE vs. ImE: P= 0.025, OR= 2.7). In addition, we

Fig. 7 Comparisons of clinical features between the three GC subtypes. a Kaplan–Meier curves showing that ImE and StE tend to have the
best and worst survival prognosis, respectively. The log-rank test P values are shown. DFS disease-free survival. b StE harbors a higher
proportion of advanced (large size/extent (T3–4), lymph nodes involved (N1–3), metastatic (M1), or late-stage (stage III–IV)) tumors than ImD
and ImE. The Fisher’s exact test P values are shown. c Comparisons of the response (complete or partial response) rates of chemotherapy (30
drugs combined) and four individual chemotherapies (doxorubicin, oxaliplatin, capecitabine, and cisplatin) between the GC subtypes. ImE
showing the highest response rate of chemotherapy (combined), doxorubicin, oxaliplatin, and capecitabine; ImD showing the highest
response rate to cisplatin. d ImE and StE having the highest and lowest response rates to immune checkpoint inhibitors, respectively,
predicted by the TIDE algorithm68. Fisher’s exact test P values are shown.
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compared the response rate of chemotherapy between the GC
subtypes in TCGA-STAD. We found that the response (complete or
partial response) rate of chemotherapy (30 drugs combined)
followed the pattern: ImE (75%) > StE (64%) > ImD (56%), confirm-
ing the positive association between anti-tumor immune response
and chemotherapy65,66. Moreover, we compared the response rate
of four individual chemotherapies (doxorubicin, oxaliplatin,
capecitabine, and cisplatin) between the GC subtypes (the other
26 drugs were not analyzed due to a small sample size associated
with them). We found that almost all the drugs followed the same
pattern: ImE > StE > ImD (Fig. 7c). An exception is a cisplatin, to
which ImD had the highest response rate among the three
subtypes (ImD: 73%; StE: 46%; ImE: 67%). A possible explanation is
the high prevalence of HRD in ImD that promotes its sensitivity to
cisplatin-based chemotherapy67. We further used the TIDE
algorithm68 to predict the response to ICIs of the GCs in the
three datasets. We found that the response rate followed the
pattern: ImE > ImD > StE, consistently in the three GC datasets (Fig.
7d). These results indicate that ImE is likely to respond best to
immunotherapy, while StE is likely to have the worst response.

Gene ontology of the GC subtypes

We identified nine gene modules (gene ontology) significantly
differentiating GCs by the subtypes in ACRG-STAD by using
WGCNA69 (Fig. 8). As expected, the immune response (indicated
by brown, green–yellow, pink, and purple colors) was highly
enriched in ImE, while it was impoverished in ImD. The
extracellular matrix, indicative of stromal signature, was highly
enriched in StE, while the cell cycle was significantly down-
regulated in this subtype. In addition, the organic hydroxy
compound metabolic process was significantly upregulated in
ImD and downregulated in ImE. The blue gene module (synapse),
which showed the strongest positive correlation with StE (r= 0.7),
had significantly inverse correlations with OS and DFS prognosis.
In contrast, the yellow gene module (cell cycle), with the strongest
inverse correlation with StE (r=−0.7), was positively correlated
with OS and DFS. In addition, the green–yellow gene module
(innate immune response) had the strongest positive correlation
with ImE (r= 0.67) and correlated positively with OS and DFS.
These data are accordant with the previous results showing that
StE and ImE had the worst and best survival prognosis among the

three subtypes in ACRG-STAD. Overall, the gene ontology analysis
recaptured the significantly different molecular and clinical
characteristics between these GC subtypes.

Oncogenic signatures of the GC subtypes

We found a number of oncogenic pathways whose activities were
significantly higher in StE than ImD and ImE, including Wnt, mTOR,
PI3K-Akt, JAK-STAT, RAS, MAPK, Hedgehog, Notch, HIF-1, TGF-β,
and VEGF (Supplementary Table 3 and Supplementary Fig. 5).
Among them, the Wnt, JAK-STAT, Hedgehog, and Notch signaling
pathways play key roles in the regulation of development and
stemness and have been associated with cancer70–73. A recent
study showed that Wnt signaling was highly activated in the
diffuse subtype of GC74, consistent with our result that the diffuse
subtype was dominated by StE. The activation of Hedgehog
signaling in tumor stroma has been shown to furnish a favorable
microenvironment for tumor development75,76, supporting our
result of the hyperactivation of Hedgehog signaling in StE. In
addition, the PI3K/Akt/mTOR, RAS, and MAPK signaling pathways
play important roles in driving tumor cell growth77–79, and the HIF-
1, TGF-β, and VEGF pathways play crucial roles in promoting
tumor progression and metastasis by modulating the TME80–82.
Overall, the more active oncogenic signatures in StE may
contribute to the worse clinical outcomes in this subtype, as has
been shown in the previous results. Furthermore, all these
pathways had significantly lower enrichment levels in ImD than
ImE (Supplementary Fig. 5). These results indicate that inhibitors of
these pathways are likely to be most effective for StE and least
effective for ImD.

Relationship between the pathway-based subtyping and
other subtyping methods in GC

We explored the relationship between our method and other GC
subtyping methods4–6 We found that the intestinal histological
subtype was dominated by ImD and ImE, while the diffuse
subtype was dominated by StE (chi-square test, P < 0.001) (Fig. 9).
It indicates that intestinal GCs could be either immune-inflamed or
immune-deprived and that diffuse GCs are enriched with stromal
signatures. In TCGA-STAD, MSI, and EBV-associated GCs were
mainly included in ImE, CIN GCs were mostly included in ImD, and
GS GCs were dominated by StE (P < 0.001). In addition, the EMT
subtype of GCs in ACRG-STAD were mainly included in StE. These
results are consistent with the characteristics of the pathway-
based GC subtypes: ImE is immune-inflamed, ImD is immune-
deprived due to chromosomal/genomic instability, and StE is GS
and stromal signature enriched.

Prediction of the pathway-based GC subtypes

To test the reproducibility and predictability of the pathway-based
GC classification method, we used TCGA-STAD as the training set
and ACRG-STAD and GSE84437 as test sets to predict the three
subtypes with the XGBoost algorithm83. The tenfold cross-
validation (CV) accuracy in the training set was 90.4%, and the
classification accuracies in ACRG-STAD and GSE84437 were 80.3%
and 81.3%, respectively (Fig. 10). The weighted sensitivity,
specificity, and F1 scores were more than 90% in the training
set (tenfold CV) and exceeded 80% in both test sets (Fig. 10).
These results reflect the reproducibility and predictability of the
pathway-based GC classification method.

Associations of pathway-based prognostic scores with survival
prognosis and immunotherapy response

To further prove the relatedness of the four types of pathways’
activities with survival prognosis and immunotherapy response,
we developed a linear model (IDOScore) to assess the prognostic
risk of GCs based on the expression levels of four genes, including

Fig. 8 Nine gene modules significantly differentiating gastric
cancers by the subtypes in ACRG-STAD. WGCNA69 showing that
the immune responses are highly enriched in ImE and are deprived
in ImD; the extracellular matrix is highly enriched in StE, and the cell
cycle is downregulated in this subtype. Survival prognosis has
positive correlations with the cell cycle and innate immune response
and negative correlations with the synapse and extracellular matrix.
The P values are shown in parenthesis.
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TAP2, SERPINB5, LTBP1, and LAMC1. The four genes were involved
in the four types of pathways based on which we clustered GCs,
namely immune (TAP2 in antigen processing and presentation),
DNA damage repair (SERPINB5 in p53 signaling), oncogenic (LTBP1
in TGF-β signaling), and stromal (LAMC1 in ECM–receptor
interaction) pathways. The IDOScore was determined to be an
adverse prognostic factor in terms of the positive association of
immune and DNA damage repair signatures with prognosis and
the negative association of oncogenic and stromal signatures with
prognosis. Indeed, the IDOScore was the highest in StE and the
lowest in ImE (P < 0.015) (Fig. 11a) and was inversely correlated
with OS in all three GC cohorts (log-rank test, P ≤ 0.05) and with
DFS in ACRG-STAD (P < 0.001) (Fig. 11b). Furthermore, we
examined the association between the IDOScore and survival
prognosis in other 29 TCGA cancer cohorts. Interestingly, the
IDOScore was inversely associated with OS in 9 of the 29 cancer
cohorts (ACC, BLCA, BRCA, GBM, KICH, KIRP, LGG, LIHC, and READ)
and with DFS in four cancer cohorts (ACC, GBM, KICH, and LGG) (P
< 0.1) (Fig. 11c). In addition, we investigated the association
between the IDOScore and the response to ICIs in four cancer
cohorts, namely the Hugo cohort (melanoma)84, Riaz cohort
(melanoma)85, Nathanson cohort (melanoma)86, and Ascierto
cohort (renal cell carcinoma)87. We found that lower-IDOScore

(<median) cancers displayed significantly higher response rates
than higher-IDOScore (>median) cancers in these cohorts (69.23%
vs. 35.71% in the Hugo cohort, 70.83% vs. 42.30% in the Riaz
cohort, 58.33% vs. 8.33% in the Nathanson cohort, and 60% vs.
16.67% in the Ascierto cohort) (Fig. 11d). These results are justified
because the immune and DNA damage repair signatures are likely
to have a positive association with PD-1/PD-L1/CTLA-4-directed
immunotherapy11,13.

DISCUSSION

For the first time, we proposed a pathway-based classification
method for GC. We classified GCs based on the enrichment levels
of 15 pathways associated with immune, DNA damage repair,
oncogenic, and stromal signatures. We identified three GC
subtypes, namely ImD, StE, and ImE, and demonstrated that this
classification method was stable and reproducible by testing it in
three different datasets. ImD was characterized by low immune
infiltration, high DNA damage repair activity, large-scale GI, high
ITH, and frequent TP53 mutations; StE was characterized by high
stromal signatures, low DNA damage repair activity, high genomic
stability, low ITH, strong oncogenic signatures, inferior response to
ICIs, and poor prognosis; ImE was characterized by high immune
infiltration, high DNA damage repair activity, small-scale GI, the
prevalence of MSI, frequent ARID1A mutations, active response to
ICIs, and favorable prognosis (Fig. 12). It is interesting to observe
that both ImD and ImE have high TMB but significantly different
immune infiltration. The main reason could be that different from
ImE, ImD has frequent SCNAs that suppress antitumor immune
responses88. This observation could explain why ImE responds
better to ICIs than ImD since high immune infiltration indicates a
more active response to immunotherapy13. The equal level of TMB
but significantly different immunotherapy responses between ImE
and ImD indicate that TMB is not necessarily a perfect determinant
for predicting the response to ICIs. Another interesting observa-
tion was that although StE displayed higher levels of anti-tumor
immune signatures than ImD, it had the worst prognosis among
the three subtypes. The reason behind this could be the strongest
stromal signatures presented in this subtype, which are associated

Fig. 9 Comparisons between the pathway-based subtyping and other subtyping methods in GC. Intestinal and Diffuse are histological
subtypes based on the pathohistological classification. The TCGA subtypes identified by integration of multi-omics data, including somatic
mutations, SCNAs, CpG methylation, mRNA, miRNA, and protein expression. The ACRG subtypes identified based on the gene expression
profiles of EMT, MSI, and TP53 signatures. Intestinal is enriched with ImD and ImE, and Diffuse is dominated by StE. ImD contains CIN, StE
contains GS and EMT, and ImE contains MSI and EBV-associated GCs, respectively. Chi-square test, P < 0.001.

Fig. 10 Prediction performance of the pathway-based GC classi-
fication method. TCGA-STAD as the training set and ACRG-STAD
and GSE84437 as test sets to predict the three subtypes by
XGBoost83. The prediction accuracies and weighted sensitivity,
specificity, and F1-scores in TCGA-STAD (tenfold cross-validation),
ACRG-STAD, and GSE84437 are shown.
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Fig. 11 The prognostic model (IDOScore) developed based on the expression levels of four genes (TAP2, SERPINB5, LTBP1, and LAMC1)
involved in immune, DNA damage repair, oncogenic, and stromal pathways. a Comparisons of the IDOScore values between the three GC
subtypes. The one-tailed Mann–Whitney U test P values are indicated. Kaplan–Meier curves showing that the IDOScore is inversely correlated
with survival prognosis in GC (b) and nine other cancer cohorts in TCGA (c) (log-rank test, P < 0.1). d Lower-IDOScore (< median) cancers
showing significantly higher response rates than higher-IDOScore (>median) cancers in four cancer cohorts receiving immune checkpoint
inhibitor treatment. ACC adrenocortical carcinoma, BLCA bladder urothelial carcinoma, BRCA breast invasive carcinoma, GBM glioblastoma
multiforme, KICH kidney chromophobe, KIRP kidney renal papillary cell carcinoma, LGG brain lower grade glioma, LIHC liver hepatocellular
carcinoma, READ rectum adenocarcinoma. *P < 0.05, **P < 0.01, ***P < 0.001.
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with tumor invasion, metastasis, and drug resistance62,63,89. Also,
although StE had stronger immune signatures than ImD, it had the
worst immunotherapy response among the three subtypes. The
main reason could be that stromal signatures, such as the TGF-β
pathway90, can promote immune evasion in the tumor. Indeed,
our data showed that StE had significantly stronger immunosup-
pressive signatures and lower ratios of immune-stimulatory/
immune-inhibitory signatures than ImE and ImD. The strongest
stromal and immunosuppressive signatures in StE may explain
why this subtype has the worst immunotherapy response and
clinical outcomes. It also indicates that the ratio of immune-
stimulatory/immune-inhibitory signatures could be a better
biomarker for predicting immunotherapy response than sole
immune-stimulatory or immune-inhibitory signatures.
PD-L1 expression10, DNA mismatch repair deficiency or MSI11,

high TMB12, and immune infiltration13 are indicative of an active
response to ICIs. It indicates that ImE is likely to have the best
response to ICIs since it is most highlighted by these features
among the three subtypes. Indeed, we have predicted that ImE
responded best to ICIs by using the TIDE algorithm68. A previous
study demonstrated that TMB and a T cell-inflamed gene
expression profile (T-GEP) were independent predictors for the
response to ICIs and that patients having higher levels of both
biomarkers exhibited the highest rates of response to ICIs91. As
expected, T-GEP scores, which were the ssGSEA scores of 18 T cell-
inflamed genes92, were the highest in ImE (Supplementary Fig. 6).
Previous analyses have shown that TMB was significantly higher in
ImD and ImE than StE. Again, these data collectively indicate the
greatest immunotherapeutic benefit in ImE.
Previous studies have identified molecular subtypes of GC, such

as four subtypes identified by integration of multi-omics data in
TCGA: EBV-associated, MSI, GS, and CIN5, four subtypes defined
based on EMT, MSI, and TP53 signatures in ACRG: MSS/EMT, MSI,
MSS/p53+, and MSS/p53-6, three subtypes defined by the

expression levels of 29 immune genes: immune-high, immune-
intermediate, and immune-low15, and three subtypes defined by
the expression profiles of tumor microenvironment cells16.
Compared to these classification methods, our method exhibits
certain advantages. First, because the pathway enrichment score-
based clustering integrates the expression levels of a set of genes
into a single value, it exhibits higher stability and robustness than
gene expression profiles-based clustering. Second, we used
15 signatures of pathways belonging to four types of pathways
(immune, stromal, DNA damage repair, and oncogenic pathways),
for the identification of GC subtypes. Evidently, our signatures are
more comprehensive than those used in most of the previous
methods, such as EMT, MSI, and TP53 signatures used in ACRG6, an
immune signature used by Park et al.15, immune and stromal
signatures used by Zeng et al.16. As a result, our method captures
better the comprehensive heterogeneity of stromal and immune
microenvironment, genome integrity, and oncogenic signatures in
GC. Furthermore, although TCGA identified molecular subtypes of
GCs based on a comprehensive analysis of distinct data types,
including somatic mutations, SCNAs, CpG methylation, mRNA,
miRNA, and protein expression, this method is difficult to be
applied in clinical practice due to a large cost on generating these
data. Third, we comprehensively characterized molecular and
clinical features associated with the GC subtypes we identified,
including tumor immune microenvironment, stromal signatures,
DNA damage repair activity, genome integrity, ITH, somatic
mutation and SCNA profiles, protein expression profiles, tumor
progression, response to chemotherapy and immunotherapy, and
clinical outcomes. Thus, our identification of new GC subtypes
may provide novel insights into tumor biology and has potential
clinical implications for the precise management of GCs.
Furthermore, although TCGA5 and ACRG6 also comprehensively
characterized molecular and clinical features associated with the
GC subtypes they identified, both studies did not correlate the GC
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Fig. 12 A summary of molecular and clinical features of the three GC subtypes. The three GC subtypes display significantly different
molecular and clinical features. The figure was created with BioRender.com.
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subtypes with response to treatments, such as chemotherapy and
immunotherapy. However, immunotherapy represents a promis-
ing direction in GC therapies. In addition, a recent study defined
two GC molecular subtypes, namely mesenchymal phenotype and
epithelial phenotype, based on genomic and proteomic data93.
The mesenchymal phenotype exhibited shared characteristics
with our StE subtype, including high genomic stability, strong EMT
signature, resistance to standard chemotherapy, and poor
prognosis. The epithelial phenotype had certain common
characteristics with our ImD and ImE subtypes, such as high GI,
high DNA damage repair activity, and response to standard
chemotherapy. However, unlike our classification method, that
classification did not capture the intratumor heterogeneity within
the epithelial phenotype, namely significantly different tumor
immune microenvironment, somatic mutation and SCNA profiles,
response to immunotherapy and chemotherapy, and clinical
outcomes. Finally, the IDOScore defined based on the expression
levels of merely four genes involved in the immune, DNA damage
repair, oncogenic, and stromal pathways, respectively, displayed
excellent prediction power for survival prognosis and immu-
notherapy response in diverse cancers. The simplicity and
effectiveness of IDOScore warrant its potential value in clinical
practice.
In conclusion, we performed a new classification of GCs based

on the activities of 15 immune, DNA damage repair, oncogenic,
and stromal pathways. We identified three stable GC subtypes,
which were distinguished by tumor immune microenvironment,
stromal signatures, DNA damage repair activity, genome integrity,
ITH, somatic mutation and SCNA profiles, oncogenic signatures,
response to chemotherapy, and immunotherapy, and clinical
outcomes. The identification of new GC subtypes provides novel
insights into tumor biology and has potential clinical implications
for the management of GCs.

METHODS

Datasets

We downloaded three gene expression profiling and clinical datasets for
GC, including TCGA-STAD, ACRG-STAD (GSE62254), and GSE84437. The
TCGA-STAD dataset was downloaded from the genomic data commons
(GDC) data portal (https://portal.gdc.cancer.gov/), and the other datasets
were downloaded from the NCBI gene expression omnibus (https://www.
ncbi.nlm.nih.gov/geo/). From the GDC data portal, we also downloaded the
somatic mutation (level 3 and “maf” files), SCNA (“SNP6” files), protein
expression (level 3), and methylation profiling (HM450) datasets for TCGA-
STAD and gene expression profiling (level 3 and RSEM normalized) and
clinical datasets for other 29 cancer cohorts. Besides, we obtained gene
expression or somatic mutation profiling and clinical data for five cancer
cohorts treated with ICIs from their associated publications, including the
Samstein (gastrointestinal cancer)46, Hugo (melanoma)84, Riaz (mela-
noma)85, Nathanson (melanoma)86, and Ascierto cohorts (renal cell
carcinoma)87. The Samstein cohort is a pan-cancer, for which we analyzed
its subset of gastrointestinal cancers, including esophagogastric and
colorectal cancers. A description of these datasets is shown in
Supplementary Table 4.

Quantification of the enrichment levels of pathways, immune
signatures, and biological processes

We quantified the enrichment level of a pathway or biological process in a
tumor sample using the ssGSEA score26 based on the expression levels of
its marker genes and the enrichment level of an immune signature as the
mean expression level of its marker genes. These pathways, immune
signatures, and biological processes and their marker genes are shown in
Supplementary Tables 5 and 6.

Clustering

We clustered GCs based on the enrichment levels of 15 pathways using the
consensus clustering algorithm30 in three GC datasets (TCGA-STAD, ACRG-
STAD, and GSE84437). The 15 pathways were associated with the immune

(natural killer cell-mediated cytotoxicity, antigen processing and presenta-

tion, T cell receptor signaling, B cell receptor signaling, and Fc gamma R-

mediated phagocytosis), stromal (ECM-receptor interaction, focal adhesion,

and tight junction), DNA damage repair (p53 signaling, mismatch repair,

and homologous recombination), and oncogenic signatures (PI3K-Akt

signaling, Wnt signaling, TGF-β signaling, and cell cycle). Consensus

clustering30 evaluates the number of possible clusters and their members

within a dataset. It implements subsampling from a set of samples and

determines specified cluster counts (k). Next, it calculates the pairwise

consensus values and stores them in a symmetrical consensus matrix for

each k. This method has been frequently used for analyzing gene

expression data94. We performed the clustering analyses using the R

package “ConsensusClusterPlus” with the parameters: clusterAlg= “pam”,

distance= “euclidean”, reps = 1000, pItem = 0.8, and pFeature = 1.

Evaluation of immune score, stromal score, tumor purity, TMB,
TAL, ITH, and SCNA

We used ESTIMATE31 to assess the immune score, stromal score, and tumor

purity for each tumor sample. The immune score, stromal score, and tumor

purity represent the immune infiltration level, stromal content, and

proportion of tumor cells in the tumor bulk. TMB is the total count of non-

synonymous somatic mutations in the tumor, and TAL is the tumor

aneuploidy level evaluated by ABSOLUTE95. We used the MATH96 and

DEPTH97 algorithms to evaluate ITH at the DNA and mRNA levels,

respectively. The MATH ITH scores were calculated by using the function

“math.score”96 in the R package “maftools” with the input of “maf” files,

and the DEPTH ITH scores were calculated by using the R package “DEPTH”

with the input of gene expression profiles in tumor and normal tissues.

GISTIC298 was utilized to calculate arm- and focal-level SCNAs and G-scores

with the input of “SNP6” files.

Gene ontology analysis

We used WGCNA69 to identify the gene modules (gene ontology)

differentially enriched in GC subtypes with the input of gene expression

profiles, sample classification, and survival (OS and DFS) status in tumors.

Class prediction

We applied the XGBoost algorithm83 to predict the three GC subtypes by

using TCGA-STAD as the training set and ACRG-STAD and GSE84437 as test

sets. The classification accuracy and weighted sensitivity, specificity, and

F1-score were reported. We performed the class prediction using the R

package “xgboost” with the parameters: booster= “gbtree,” max_depth=

6, subsample= 0.8, objective= “multi:softmax,” and num_class= 3.

The IDOScore model for assessing the prognostic risk of
tumors

In ACRG-STAD, based on the enrichment levels (ssGSEA scores) of the 15

pathways used for clustering analyses, we selected five pathways in the

Cox proportional hazards model by Lasso. The five pathways included

natural killer cell-mediated cytotoxicity, antigen processing and presenta-

tion, TGF-β signaling, p53 signaling, and ECM-receptor interaction. For

each of the five pathways, we identified 20 genes whose expression levels

had the highest Spearman’s correlations with the pathway’s ssGSEA scores.

From the 100 genes, we selected seven genes in the Cox proportional

hazards model by using Lasso. The univariate Cox regression analysis

showed that the expression of all the seven genes was significantly

correlated with OS (P < 0.05). Finally, we selected four of the seven genes

by the multivariable Cox regression model with backward stepwise

selection. The four genes included TAP2, SERPINB5, LTBP1, and LAMC1,

which were involved in the immune, DNA damage repair, oncogenic, and

stromal pathways, respectively. Using the four genes as predictors, we built

the IDOScore prognostic model as follows: IDOScore=−0.497 × Exp

(TAP2)− 0.166 × Exp (SERPINB5)+ 0.154 × Exp (LTBP1)+ 0.571 × Exp

(LAMC1), where Exp (X) denotes the expression level of gene X. We used

the “cv.glmnet” function in the R package “glmnet” for the variable

selection by Lasso in the Cox proportional hazards model and the “coxph”

function in the R package “survival” for the univariate and multivariable

Cox regression analyses. For the backward stepwise selection, we used the

“stepAIC” function in the R package “MASS”.
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Evaluation of proportions of immune cell subsets in the TME

We used CIBERSORT33 to assess the proportions of 22 human immune cell
subsets. We implemented the CIBERSORT algorithm with 1000 permuta-
tions using a threshold of P < 0.05 as the criteria for the success in
deconvolution of a sample.

Survival analysis

We used Kaplan–Meier curves to show the survival (OS and DFS) time
differences between different groups and the log-rank test to assess the
significance of survival time differences.

Logistic regression analysis

We used logistic regression with three predictors (StE, ImE, and tumor
purity) to predict the immune score, stromal score, and EMT signature
score (high (>median) vs. low (<median)), respectively. Three predictors
were binary variables, where tumor purity equals to 1 (high) or 0 (low), StE
equals to 1 (the sample belonging to StE) or 0 (otherwise), and ImE equals
1 (the sample belonging to ImE) or 0 (otherwise). In performing the logistic
regression analyses, we used the R function “glm” to fit the binary model.

Statistical analysis

We used Student’s t test (two-tailed) to compare two classes of normally
distributed data, including gene expression levels, protein expression
levels, and the ratios of immune-stimulatory over immune-inhibitory
signatures. The ratios were then log2-transformed geometric mean
expression levels of the marker genes of immune-stimulatory signatures
over those of immune-inhibitory signatures. In comparisons of two classes
of other data that were not normally distributed, we used Mann–Whitney
U test (one-tailed). In comparisons of three classes of normal and not
normally distributed data, we used the ANOVA and Kruskal–Wallis (K–W)
test, respectively. We utilized Fisher’s exact test or Chi-square test to
analyze contingency tables. The FDR evaluated by the Benjamini-Hochberg
method99 was used to adjust for multiple tests.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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