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Abstract

The Gaussian process state space model (GPSSM) is a non-linear dynamical sys-
tem, where unknown transition and/or measurement mappings are described by
GPs. Most research in GPSSMs has focussed on the state estimation problem,
i.e., computing a posterior of the latent state given the model. However, the key
challenge in GPSSMs has not been satisfactorily addressed yet: system identifica-
tion, i.e., learning the model. To address this challenge, we impose a structured
Gaussian variational posterior distribution over the latent states, which is param-
eterised by a recognition model in the form of a bi-directional recurrent neural
network. Inference with this structure allows us to recover a posterior smoothed
over sequences of data. We provide a practical algorithm for efficiently computing
a lower bound on the marginal likelihood using the reparameterisation trick. This
further allows for the use of arbitrary kernels within the GPSSM. We demonstrate
that the learnt GPSSM can efficiently generate plausible future trajectories of the
identified system after only observing a small number of episodes from the true
system.

1 Introduction

State space models can effectively address the problem of learning patterns and predicting behaviour
in sequential data. Due to their modelling power they have a vast applicability in various domains of
science and engineering, such as robotics, finance, neuroscience, etc. (Brown et al., 1998).

Most research and applications have focussed on linear state space models for which solutions for
inference (state estimation) and learning (system identification) are well established (Kalman, 1960;
Ljung, 1999). In this work, we are interested in non-linear state space models. In particular, we
consider the case where a Gaussian process (GP) (Rasmussen and Williams, 2006) is responsible for
modelling the underlying dynamics. This is widely known as the Gaussian process state space model
(GPSSM). We choose to build upon GPs for a number of reasons. First, they are non-parametric,
which makes them effective in learning from small datasets. This can be advantageous over well-
known parametric models (e.g., recurrent neural networks—RNNs), especially in situation where
data are not abundant. Second, we want to take advantage of the probabilistic properties of GPs.
By using a GP for the latent transitions, we can get away with an approximate model and learn a
distribution over functions. This allows us to account for model errors whilst quantifying uncertainty,
as discussed and empirically shown by Schneider (1997) and Deisenroth et al. (2015). Consequently,
the system will not become overconfident in regions of the space where data are scarce.

System identification with the GPSSM is a challenging task. This is due to un-identifiability issues:
both states and transition functions are unknown. Most work so far has focused only on state
estimation of the GPSSM. In this paper, we focus on addressing the challenge of system identification
and based on recent work by Frigola et al. (2014) we propose a novel inference method for learning
the GPSSM. We approximate the entire process of the state transition function by employing the
framework of variational inference. We assume a Markov-structured Gaussian posterior distribution
over the latent states. The variational posterior can be naturally combined with a recognition model
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based on bi-directional recurrent neural networks, which facilitate smoothing of the state posterior
over the data sequences. We present an efficient algorithm based on the reparameterisation trick for
computing the lower bound on the marginal likelihood. This significantly accelerates learning of the
model and allows for arbitrary kernel functions.

2 Gaussian process state space models

We consider the dynamical system

xt = f(xt�1,at�1) + ✏f , yt = g(xt) + ✏g, (1)

where t indexes time, x ∈ R
D is a latent state, a ∈ R

P are control signals (actions) and y ∈ R
O

are measurements/observations. We assume i.i.d. Gaussian system/measurement noise ✏(·) ∼

N
�

0,�2
(·)I

�

. The state-space model in eq. (1) can be fully described by the measurement and

transition functions, g and f .

The key idea of a GPSSM is to model the transition function f and/or the measurement function g
in eq. (1) using GPs, which are distributions over functions. A GP is fully specified by a mean ⌘(·)
and a covariance/kernel function k(·, ·), see e.g., (Rasmussen and Williams, 2006). The covariance
function allows us to encode basic structural assumptions of the class of functions we want to model,
e.g., smoothness, periodicity or stationarity. A common choice for a covariance function is the radial
basis function (RBF).

Let f(·) denote a GP random function, and X = [xi]
N
i=1 be a series of points in the domain of

that function. Then, any finite subset of function evaluations, f = [f(xi)]
N
i=1, are jointly Gaussian

distributed
p(f |X) = N

�

f |⌘, Kxx

�

, (2)

where the matrix Kxx contains evaluations of the kernel function at all pairs of datapoints in X, and
⌘ = [⌘(xi)]

N
i=1 is the prior mean function. This property leads to the widely used GP regression

model: if Gaussian noise is assumed, the marginal likelihood can be computed in closed form,
enabling learning of the kernel parameters. By definition, the conditional distribution of a GP is
another GP. If we are to observe the values f at the input locations X , then we predict the values
elsewhere on the GP using the conditional

f(·) |f ∼ GP
�

⌘(·) + k(·,X)K�1
xx (f − ⌘)), k(·, ·)− k(·,X)K�1

xx k(X, ·)
�

. (3)

Unlike the supervised setting, in the GPSSM, we are presented with neither values of the function on
which to condition, nor on inputs to the function since the hidden states xt are latent. The challenge
of inference in the GPSSM lies in dually inferring the latent variables x and in fitting the Gaussian
process dynamics f(·).

In the GPSSM, we place independent GP priors on the transition function f in eq. (1) for each output
dimension of xt+1, and collect realisations of those functions in the random variables f , such that

fd(·) ∼ GP
�

⌘d(·), kd(·, ·)
�

, f t = [fd(x̃t�1)]
D
d=1 and p(xt|f t) = N (xt|f t,�

2
fI), (4)

where we used the short-hand notation x̃t = [xt,at] to collect the state-action pair at time t. In this

work, we use a mean function that keeps the state constant, so ⌘d(x̃t) = x
(d)
t .

To reduce some of the un-identifiability problems of GPSSMs, we assume a linear measurement
mapping g so that the data conditional is

p(yt|xt) = N (yt|Wgxt + bg,�
2
gI) . (5)

The linear observation model g(x) = Wgx+ bg + ✏g is not limiting since a non-linear g could be
replaced by additional dimensions in the state space (Frigola, 2015).

2.1 Related work

State estimation in GPSSMs has been proposed by Ko and Fox (2009a) and Deisenroth et al. (2009)
for filtering and by Deisenroth et al. (2012) and Deisenroth and Mohamed (2012) for smoothing
using both deterministic (e.g., linearisation) and stochastic (e.g., particles) approximations. These

2



approaches focused only on inference in learnt GPSSMs and not on system identification, since
learning of the state transition function f without observing the system’s true state x is challenging.

Towards this approach, Wang et al. (2008), Ko and Fox (2009b) and Turner et al. (2010) proposed
methods for learning GPSSMs based on maximum likelihood estimation. Frigola et al. (2013)
followed a Bayesian treatment to the problem and proposed an inference mechanism based on
particle Markov chain Monte Carlo. Specifically, they first obtain sample trajectories from the
smoothing distribution that could be used to define a predictive density via Monte Carlo integration.
Then, conditioned on this trajectory they sample the model’s hyper-parameters. This approach
scales proportionally to the length of the time series and the number of the particles. To tackle
this inefficiency, Frigola et al. (2014) suggested a hybrid inference approach combining variational
inference and sequential Monte Carlo. Using the sparse variational framework from (Titsias, 2009) to
approximate the GP led to a tractable distribution over the state transition function that is independent
of the length of the time series.

An alternative to learning a state-space model is to follow an autoregressive strategy (as in Murray-
Smith and Girard, 2001; Likar and Kocijan, 2007; Turner, 2011; Roberts et al., 2013; Kocijan, 2016),
to directly model the mapping from previous to current observations. This can be problematic since
noise is propagated through the system during inference. To alleviate this, Mattos et al. (2015)
proposed the recurrent GP, a non-linear dynamical model that resembles a deep GP mapping from
observed inputs to observed outputs, with an autoregressive structure on the intermediate latent states.
They further followed the idea by Dai et al. (2015) and introduced an RNN-based recognition model
to approximate the true posterior of the latent state. A downside is the requirement to feed future
actions forward into the RNN during inference, in order to propagate uncertainty towards the outputs.
Another issue stems from the model’s inefficiency in analytically computing expectations of the kernel
functions under the approximate posterior when dealing with high-dimensional latent states. Recently,
Al-Shedivat et al. (2016), introduced a recurrent structure to the manifold GP (Calandra et al., 2016).
They proposed to use an LSTM in order to map the observed inputs onto a non-linear manifold,
where the GP actually operates on. For inefficiency, they followed an approximate inference scheme
based on Kronecker products over Toeplitz-structured kernels.

3 Inference

Our inference scheme uses variational Bayes (see e.g., Beal, 2003; Blei et al., 2017). We first define
the form of the approximation to the posterior, q(·). Then we derive the evidence lower bound
(ELBO) with respect to which the posterior approximation is optimised in order to minimise the
Kullback-Leibler divergence between the approximate and true posterior. We detail how the ELBO is
estimated in a stochastic fashion and optimized using gradient-based methods, and describe how the
form of the approximate posterior is given by a recurrent neural network. The graphical models of
the GPSSM and our proposed approximation are shown in Figure 1.

3.1 Posterior approximation

Following the work by Frigola et al. (2014), we adopt a variational approximation to the posterior,
assuming factorisation between the latent functions f(·) and the state trajectories X . However,
unlike Frigola et al.’s work, we do not run particle MCMC to approximate the state trajectories, but
instead assume that the posterior over states is given by a Markov-structured Gaussian distribution
parameterised by a recognition model (see section 3.3). In concordance with Frigola et al. (2014), we
adopt a sparse variational framework to approximate the GP. The sparse approximation allows us to
deal with both (a) the unobserved nature of the GP inputs and (b) any potential computational scaling
issues with the GP by controlling the number of inducing points in the approximation.

The variational approximation to the GP posterior is formed as follows: Let Z = [z1, . . . , zM ] be
some points in the same domain as x̃. For each Gaussian process fd(·), we define the inducing
variables ud = [fd(zm)]Mm=1, so that the density of ud under the GP prior is N (⌘d,Kzz), with
⌘d = [⌘d(zm)]Mm=1. We make a mean-field variational approximation to the posterior for U , taking

the form q(U) =
QD

d=1 N (ud |µd,Σd). The variational posterior of the rest of the points on the
GP is assumed to be given by the same conditional distribution as the prior:

fd(·) |ud ∼ GP
�

⌘d(·) + k(·,Z)K�1
zz (ud − ⌘d), k(·, ·)− k(·,Z)K�1

zz k(Z, ·)
�

. (6)
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Figure 1: The GPSSM with the GP state transition functions (left), and the proposed approximation with the

recognition model in the form of a bi-RNN (right). Black arrows show conditional dependencies of the model,

red arrows show the data-flow in the recognition.

Integrating this expression with respect to the prior distribution p(ud) = N (⌘d, Kzz) gives the GP
prior in eq. (4). Integrating with respect to the variational distribution q(U) gives our approximation

to the posterior process fd(·) ∼ GP
�

µd(·), vd(·, ·)
�

, with

µd(·) = ⌘d(·) + k(·,Z)K�1
zz (µd − ⌘d), (7)

vd(·, ·) = k(·, ·)− k(·,Z)K�1
zz [Kzz −Σd]K

�1
zz k(Z, ·) . (8)

The approximation to the posterior of the state trajectory is assumed to have a Gauss-Markov structure:

q(x0) = N
�

x0 |m0,L0L
>

0

�

, q(xt |xt�1) = N
�

xt |Atxt�1,LtL
>

t

�

. (9)

This distribution is specified through a single mean vector m0, a series of square matrices At, and
a series of lower-triangular matrices Lt. It serves as a locally linear approximation to an overall
non-linear posterior over the states. This is a good approximation provided that the ∆t between the
transitions is sufficiently small.

With the approximating distributions for the variational posterior defined in eq. (7)–(9), we are ready
to derive the evidence lower bound (ELBO) on the model’s true likelihood. Following (Frigola, 2015,
eq. (5.10)), the ELBO is given by

ELBO = Eq(x0)[log p(x0)] + H[q(X)]− KL[q(U) || p(U)]

+ Eq(X)

h

T
X

t=1

D
X

d=1

−
1

2�2
f

vd(x̃t�1, x̃t�1) + logN
�

x
(d)
t |µd(x̃t�1),�

2
f

�

i

+ Eq(X)

h

T
X

t=1

logN
�

yt | g(xt),�
2
gIO

�

i

, (10)

where KL[·||·] is the Kullback-Leibler divergence, and H[·] denotes the entropy. Note that with
the above formulation we can naturally deal with multiple episodic data since the ELBO can be
factorised across independent episodes. We can now learn the GPSSM by optimising the ELBO
w.r.t. the parameters of the model and the variational parameters. A full derivation is provided in the
supplementary material.

The form of the ELBO justifies the Markov-structure that we have assumed for the variational
distribution q(X): we see that the latent states only interact over pairwise time steps xt and xt�1;
adding further structure to q(X) is unnecessary.

3.2 Efficient computation of the ELBO

To compute the ELBO in eq. (10), we need to compute expectations w.r.t. q(X). Frigola et al.
(2014) showed that for the RBF kernel the relevant expectations can be computed in closed form in
a similar way to Titsias and Lawrence (2010). To allow for general kernels we propose to use the
reparameterisation trick (Kingma and Welling, 2014; Rezende et al., 2014) instead: by sampling
a single trajectory from q(X) and evaluating the integrands in eq. (10), we obtain an unbiased
estimate of the ELBO. To draw a sample from the Gauss-Markov structure in eq. (9), we first sample
✏t ∼ N (0, I), t = 0, . . . , T , and then apply recursively the affine transformation

x0 = m0 +L0✏0, xt = Atxt�1 +Lt✏t . (11)
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This simple estimator of the ELBO can then be used in optimisation using stochastic gradient methods;
we used the Adam optimizer (Kingma and Ba, 2015). It may seem initially counter-intuitive to use a
stochastic estimate of the ELBO where one is available in closed form, but this approach offers two
distinct advantages. First, computation is dramatically reduced: our scheme requires O(TD) storage
in order to evaluate the integrand in eq. (10) at a single sample from q(X). A scheme that computes
the integral in closed form requires O(TM2) (where M is the number of inducing variables in the
sparse GP) storage for the sufficient statistics of the kernel evaluations. The second advantage is that
we are no longer restricted to the RBF kernel, but can use any valid kernel for inference and learning
in GPSSMs. The reparameterisation trick also allows us to perform batched updates of the model
parameters, amounting to doubly stochastic variational inference (Titsias and Lázaro-Gredilla, 2014),
which we experimentally found to improve run-time and sample-efficiency.

Some of the elements of the ELBO in eq. (10) are still available in closed-form. To reduce the
variance of the estimate of the ELBO we exploit this where possible: the entropy of the Gauss-

Markov structure is H[q(X)] = −
TD
2 log(2⇡e)−

PT

t=0 log(det(Lt)); the expected likelihood (last
term in eq. (10)) can be computed easily given the marginals of q(X), which are given by

q(xt) = N (mt,Σt), mt = Atmt�1, Σt = AtΣt�1A
>

t +LtL
>

t , (12)

and the necessary Kullback-Leibler divergences can be computed analytically: we use the implemen-
tations from GPflow (Matthews et al., 2017).

3.3 A recurrent recognition model

The variational distribution of the latent trajectories in eq. (9) has a large number of parameters
(At,Lt) that grows with the length of the dataset. Further, if we wish to train a model on multiple
episodes (independent data sequences sharing the same dynamics), then the number of parameters
grows further. To alleviate this, we propose to use a recognition model in the form of a bi-directional
recurrent neural network (bi-RNN), which is responsible for recovering the variational parameters
At,Lt.

A bi-RNN is a combination of two independent RNNs operating on opposite directions of the
sequence. Each network is specified by two weight matrices W acting on a hidden state h:

h
(f)
t = �(W

(f)
h h

(f)
t�1 +W

(f)
ỹ ỹt + b

(f)
h ) , forward passing (13)

h
(b)
t = �(W

(b)
h h

(b)
t+1 +W

(b)
ỹ ỹt + b

(b)
h ) , backward passing (14)

where ỹt = [yt,at] denotes the concatenation of the observed data and control actions and the
superscripts denote the direction (forward/backward) of the RNN. The activation function � (we use
the tanh function), acts on each element of its argument separately. In our experiments we found that
using gated recurrent units (Cho et al., 2014) improved performance of our model. We now make the

parameters of the Gauss-Markov structure dependent on the sequences h(f),h(b), so that

At = reshape(WA[h
(f)
t ;h

(b)
t ] + bA), Lt = reshape(WL[h

(f)
t ;h

(b)
t ] + bL) . (15)

The parameters of the Gauss-Markov structure q(X) are now almost completely encapsulated in the

recurrent recognition model as W
(f,b)
h ,W

(f,b)
ỹ ,WA,WL, b

(f,b)
h , bA, bL. We only need to infer the

parameters of the initial state, m0,L0 for each episode; this is where we utilise the functionality of the
bi-RNN structure. Instead of directly learning the initial state q(x0), we can now obtain it indirectly
via the output state of the backward RNN. Another nice property of the proposed recognition model
is that now q(X) is recognised from both future and past observations, since the proposed bi-RNN
recognition model can be regarded as a forward and backward sequential smoother of our variational
posterior. Finally, it is worth noting the interplay between the variational distribution q(X) and the
recognition model. Recall that the variational distribution is a Bayesian linear approximation to the
non-linear posterior and is fully defined by the time varying parameters, At,Lt; the recognition
model has the role to recover these parameters via the non-linear and time invariant RNN.

4 Experiments

We benchmark the proposed GPSSM approach on data from one illustrative example and three
challenging non-linear data sets of simulated and real data. Our aim is to demonstrate that we can: (i)
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Figure 2: The learnt state transition function with different kernels. The true function is given by eq. (16).

benefit from the use of non-smooth kernels with our approximate inference and accurately model
non-smooth transition functions; (ii) successfully learn non-linear dynamical systems even from
noisy and partially observed inputs; (iii) sample plausible future trajectories from the system even
when trained with either a small number of episodes or long time sequences.

4.1 Non-linear system identification

We first apply our approach to a synthetic dataset generated broadly according to (Frigola et al.,
2014). The data is created using a non-linear, non-smooth transition function with additive state and
observation noise according to: p(xt+1|xt) = N (f(xt),�

2
f ), and p(yt|xt) = N (xt,�

2
g), where

f(xt) = xt + 1, if xt < 4, 13− 2xt, otherwise . (16)

In our experiments, we set the system and measurement noise variances to �2
f = 0.01 and �2

g = 0.1,

respectively, and generate 200 episodes of length 10 that were used as the observed data for training
the GPSSM. We used 20 inducing points (initialised uniformly across the range of the input data)
for approximating the GP and 20 hidden units for the recurrent recognition model. We evaluate the
following kernels: RBF, additive composition of the RBF (initial ` = 10) and Matern (⌫ = 1

2 , initial
` = 0.1), 0-order arc-cosine (Cho and Saul, 2009), and the MGP kernel (Calandra et al., 2016) (depth
5, hidden dimensions [3, 2, 3, 2, 3], tanh activation, Matern (⌫ = 1

2 ) compound kernel).

The learnt GP state transition functions are shown in Figure 2. With the non-smooth kernels we are
able to learn accurate transitions and model the instantaneous dynamical change, as opposed to the
smooth transition learnt with the RBF. Note that all non-smooth kernels place inducing points directly
on the peak (at xt = 4) to model the kink, whereas the RBF kernel explains this behaviour as a longer-
scale wiggliness of the posterior process. When using a kernel without the RBF component the GP
posterior quickly reverts to the mean function (⌘(x) = x) as we move away from the data: the short
length-scales that enable them to model the instantaneous change prevent them from extrapolating
downwards in the transition function. The composition of the RBF and Matern kernel benefits from
long and short length scales and can better extrapolate. The posteriors can be viewed across a longer
range of the function space in the supplementary material.

4.2 Modelling cart-pole dynamics

We demonstrate the efficacy of the proposed GPSSM on learning the non-linear dynamics of the
cart-pole system from (Deisenroth and Rasmussen, 2011). The system is composed of a cart running
on a track, with a freely swinging pendulum attached to it. The state of the system consists of the
cart’s position and velocity, and the pendulum’s angle and angular velocity, while a horizontal force
(action) a ∈ [−10, 10]N can be applied to the cart. We used the PILCO algorithm from (Deisenroth
and Rasmussen, 2011) to learn a feedback controller that swings the pendulum and balances it in
the inverted position in the middle of the track. We collected trajectory data from 16 trials during
learning; each trajectory/episode was 4 s (40 time steps) long.

When training the GPSSM for the cart-pole system we used data up to the first 15 episodes. We
used 100 inducing points to approximate the GP function with a Matern ⌫ = 1

2 and 50 hidden units

for the recurrent recognition model. The learning rate for the Adam optimiser was set to 10�3. We
qualitatively assess the performance of our model by feeding the control sequence of the last episode
to the GPSSM in order to generate future responses.
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Figure 3: Predicting the cart’s position and pendulum’s angle behaviour from the cart-pole dataset by applying

the control signal of the testing episode to sampled future trajectories from the proposed GPSSM. Learning of

the dynamics is demonstrated with observed (upper row) and hidden (lower row) velocities and with increasing

number of training episodes. Ground truth is denoted with the marked lines.

In Figure 3, we demonstrate the ability of the proposed GPSSM to learn the underlying dynamics
of the system from a different number of episodes with fully and partially observed data. In the top
row, the GPSSM observes the full 4D state, while in the bottom row, we train the GPSSM with only
the cart’s position and the pendulum’s angle observed (i.e., the true state is not fully observed since
the velocities are hidden). In both cases, sampling long-term trajectories based on only 2 episodes
for training does not result in plausible future trajectories. However, we could model part of the
dynamics after training with only 8 episodes (320 time steps interaction with the system), while
training with 15 episodes (600 time steps in total) allowed the GPSSM to produce trajectories similar
to the ground truth. It is worth emphasising the fact that the GPSSM could recover the unobserved
velocities in the latent states, which resulted in smooth transitions of the cart and swinging of the
pendulum. However, it seems that the recovered cart’s velocity is overestimated. This is evidenced
by the increased variance in the prediction of the cart’s position around 0 (the centre of the track).
Detailed fittings for each episode and learnt latent states with observed and hidden velocities are
provided in the supplementary material.

Table 1: Average Euclidean distance between the true

and the predicted trajectories, measured at the pendu-

lum’s tip. The error is in pendulum’s length units.

2 episodes 8 episodes 15 episodes

Kalman 1.65 1.52 1.48
ARGP 1.22 1.03 0.80

GPSSM 1.21 0.67 0.59
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Figure 4: Predictions with lagged actions.

In Table 1, we provide the average Euclidean distance between the predicted and the true trajectories
measured at the pendulum’s tip, with fully observed states. We compare to two baselines: (i) the
auto-regressive GP (ARGP) that maps the tuple [yt�1, at�1] to the next observation yt (as in PILCO
(Deisenroth et al., 2015)), and (ii) a linear system for identification that uses the Kalman filtering
technique (Kalman, 1960). We see that the GPSSM significantly outperforms the baselines on this
highly non-linear benchmark. The linear system cannot learn the dynamics at all, while the ARGP
only manages to produce sensible error (less than a pendulum’s length) after seeing 15 episodes. Note
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that the GPSSM trained on 8 episodes produces trajectories with less error than the ARGP trained on
15 episodes.

We also ran experiments using lagged actions where the partially observed state at time t is affected
by the action at t − 2. Figure 4 shows that we are able to sample future trajectories with an
accuracy similar to time-aligned actions. This indicates that our model is able to learn a compressed
representation of the full state and previous inputs, essentially ‘remembering’ the lagged actions.

4.3 Modelling double pendulum dynamics

We demonstrate the learning and modelling of the dynamics of the double pendulum system
from (Deisenroth et al., 2015). The double pendulum is a two-link robot arm with two actua-
tors. The state of the system consists of the angles and the corresponding angular velocities of the
inner and outer link, respectively, while different torques a1, a2 ∈ [−2, 2]Nm can be applied to the
two actuators. The task of swinging the double pendulum and balancing it in the upwards position
is extremely challenging. First, it requires the interplay of two correlated control signals (i.e., the
torques). Second, the behaviour of the system, when operating at free will, is chaotic.

We learn the underlying dynamics from episodic data (15 episodes, 30 time steps long each). Training
of the GPSSM was performed with data up to 14 episodes, while always demonstrating the learnt
underlying dynamics on the last episode, which serves as the test set. We used 200 inducing points to
approximate the GP function with a Matern ⌫ = 1

2 and 80 hidden units for the recurrent recognition

model. The learning rate for the Adam optimiser was set to 10�3. The difficulty of the task is evident
in Figure 5, where we can see that even after observing 14 episodes we cannot accurately predict
the system’s future behaviour for more than 15 time steps (i.e., 1.5 s). It is worth noting that we can
generate reliable simulation even though we observe only the pendulums’ angles.
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Figure 5: Predicting the inner and outer pendulum’s angle from the double pendulum dataset by
applying the control signals of the testing episode to sampled future trajectories from the proposed
GPSSM. Learning of the dynamics is demonstrated with observed (upper row) and hidden (lower
row) angular velocities and with increasing number of training episodes. Ground truth is denoted
with the marked lines.

4.4 Modelling actuator dynamics

Here we evaluate the proposed GPSSM on real data from a hydraulic actuator that controls a robot
arm (Sjöberg et al., 1995). The input is the size of the actuator’s valve opening and the output is
its oil pressure. We train the GPSSM on half the sequence (512 steps) and evaluate the model on
the remaining half. We use 15 inducing points to approximate the GP function with a combination
of an RBF and a Matern ⌫ = 1

2 and 15 hidden units for the recurrent recognition model. Figure 6
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Figure 6: Demonstration of the identified model that controls the non-linear dynamics of the actuator dataset.

The model’s fitting on the train data and sampled future predictions, after applying the control signal to the

system. Ground truth is denoted with the marked lines.

shows the fitting on the train data along with sampled future predictions from the learnt system when
operating on a free simulation mode. It is worth noting the correct capturing of the uncertainty from
the model at the points where the predictions are not accurate.

5 Discussion and conclusion

We have proposed a novel inference mechanism for the GPSSM, in order to address the challenging
task of non-linear system identification. Since our inference is based on the variational framework,
successful learning of the model relies on defining good approximations to the posterior of the latent
functions and states. Approximating the posterior over the dynamics with a sparse GP seems to be a
reasonable choice given our assumptions over the transition function. However, the difficulty remains
in the selection of the approximate posterior of the latent states. This is the key component that
enables successful learning of the GPSSM.

In this work, we construct the variational posterior so that it follows the same Markov properties as
the true states. Furthermore, it is enforced to have a simple-to-learn, linear, time-varying structure. To
assure, though, that this approximation has rich representational capacity we proposed to recover the
variational parameters of the posterior via a non-linear recurrent recognition model. Consequently,
the joint approximate posterior resembles the behaviour of the true system, which facilitates the
effective learning of the GPSSM.

In the experimental section we have provided evidence that the proposed approach is able to identify
latent dynamics in true and simulated data, even from partial and lagged observations, while requiring
only small data sets for this challenging task.
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