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South Asians are at high risk of developing type 2 diabetes (T2D). We carried out a genome-

wide association meta-analysis with South Asian T2D cases (n= 16,677) and controls

(n= 33,856), followed by combined analyses with Europeans (neff= 231,420). We identify 21

novel genetic loci for significant association with T2D (P= 4.7 × 10−8 to 5.2 × 10−12), to the

best of our knowledge at the point of analysis. The loci are enriched for regulatory features,

including DNA methylation and gene expression in relevant tissues, and highlight CHMP4B,

PDHB, LRIG1 and other genes linked to adiposity and glucose metabolism. A polygenic risk

score based on South Asian-derived summary statistics shows ~4-fold higher risk for T2D

between the top and bottom quartile. Our results provide further insights into the genetic

mechanisms underlying T2D, and highlight the opportunities for discovery from joint analysis

of data from across ancestral populations.
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Type 2 diabetes (T2D) is a major public health problem that
currently affects 425 million people worldwide1. The bur-
den of diabetes is especially high in South Asia, the most

densely populated region of the world (~1.9 billion people in
2019, ~24.9% of world population)2. India alone is home to 72
million people with T2D1. In urban settings, risk of T2D in South
Asians is four-fold higher than Europeans3, with T2D developing
10 years earlier4. The increased risk of T2D in South Asians is not
accounted for by traditional risk factors such as obesity, diet and
physical inactivity, which has led to the hypothesis that South
Asians may have increased genetic susceptibility5.

To date, sequence variants at more than 400 genetic loci have
been implicated in the aetiology of T2D through genome-wide
association studies (GWAS) that have been carried out pre-
dominantly amongst people of European ancestry6–12. Although
many of these risk relationships are cosmopolitan, population-
specific studies have revealed genetic variants associated with
T2D that are common in their respective ethnic groups, but rare
or absent elsewhere3,13–19. Recent studies have highlighted the
extensive genetic diversity that exists in South Asia20–26, and
which provides the basis for investigating the possibility of dis-
tinct disease relationships, in addition to cosmopolitan effects.
There is a well recognised need for deeper investigation of the
genetic basis for T2D and other chronic diseases in South Asian
populations27.

Results
Genome-wide meta-analysis. As part of the DIAbetes Meta-
ANalysis of Trans-Ethnic association studies (DIAMANTE)
project, we combined data from 16 South Asian case-control and
population-based cohorts, to complete the largest discovery
genome-wide meta-analysis for T2D in this ethnic group to date
(16,677 cases and 33,856 controls). Characteristics of participants,
information on the genotyping arrays and imputation are detailed
in Supplementary Data 1 and 2. We performed two primary
association analyses in body mass index (BMI) unadjusted and
BMI-adjusted models. At a P-value threshold of 5 × 10−8, a total
of 372 and 440 SNPs, distributed across 10 and 14 gene loci,
reached statistical significance in the BMI-unadjusted and
adjusted models, respectively (Supplementary Data 3; Supple-
mentary Figs. 1, 2). All SNPs identified at this stage were from
genetic loci known to be associated with T2D (Supplementary
Data 4), arguing against an important contribution of population-
specific variants to the risk of T2D in South Asians.

Next, we carried out a combined analysis of GWAS data for
South Asians and Europeans to identify genetic effects that are
shared between the populations. To the best of our knowledge at
the point of analysis, we selected all potentially novel SNP-
phenotype associations at P < 1 × 10−3 in either the BMI
unadjusted (N= 17,944) or the BMI-adjusted (N= 17,215)
model amongst South Asians, for further testing. We limited
the analysis to the SNPs with the lowest P-values for association
with T2D in South Asians, to reduce the burden of multiple
testing, and to help prioritise genetic variants that may make a
more important contribution in South Asians. We performed
fixed effects meta-analyses to combine results from South Asians
with data from Europeans within the DIAMANTE consortium
(effective sample size = 231,420 and 157,384 for BMI-unadjusted
and adjusted models, respectively). We chose to combine data
with Europeans, as the major global population group most
closely genetically related to South Asians10,16,28,29. The genetic
correlation between South Asians and Europeans for T2D is 0.89
(SE: 0.06), which is higher than reported between East Asians and
Europeans at 0.62 (SE: 0.09)30, providing further support for this
choice. We found that 218 and 185 novel SNPs across 14 and 11

loci reached genome-wide significance (P= 4.7 × 10−8 to 5.2 ×
10−12) in the BMI-unadjusted and adjusted models, respectively,
(Supplementary Data 5 and 6). Together these represent 21 novel
genetic loci, of which 12 showed a high degree of statistical
stringency (P < 5 × 10−9). Sentinel SNP for each locus was
defined as the SNP with the lowest p-values within a ±500kb
region. Conditional analysis confirms the 21 sentinel SNPs to be
associated with T2D, independent of previously reported T2D
genetic relationships (Supplementary Data 7; Table 1). Regional
plots for the 21 loci are shown in Supplementary Figs. 3–44.
Whilst the majority of our newly identified associations represent
common genetic variants with modest effect size (OR for
T2D < 1.2), we also identify a low-frequency genetic variant
(rs76141923), which has a moderately-high risk on T2D (OR=
1.40; 95% CI: 1.26–1.57, minor allele frequency in SAS: 1%).
There was no evidence for heterogeneity between the results for
the association of the genetic variants with T2D between the
analyses with and without BMI adjustment (all P > 0.003;
Bonferroni corrected for 21 loci; Supplementary Data 8). Sex-
specific analysis did not reveal any additional significant findings
(Supplementary Data 9).

We used Genome-wide Complex Trait Analysis (GCTA) of the
results for South Asians to seek for additional independent signals
at the 21 novel loci; there were no signals that reached a locus-
wide significance threshold of P < 1 × 10−5. The heritability for
T2D in South Asians is estimated at ~12% by GREML in GCTA
using our largest available cohort (LOLIPOP-IA610). The total
T2D (trait) variance explained by the independent T2D-
associated loci (both known and novel) after COJO was estimated
at 10.6%. Taking a genome-wide approach, heritability was
estimated at 35 and 50% in the IA317 and IA610 South Asian
datasets, respectively. This is similar to that reported in
Europeans31,32.

Cross-ancestry comparisons. We next tested our 21 novel
genetic loci for association with T2D in East Asian, African and
Hispanic populations, ethnic groups not included in the discovery
meta-analysis. Effective sample sizes in East Asians were 211,793
and 135,780 for the BMI-unadjusted and adjusted analyses,
respectively, providing high statistical power (>90%) to identify
the effect sizes observed in our South Asian samples, at P= 0.05.
We found that 12 of our sentinel SNPs replicated in East Asians
in the BMI-unadjusted model (P < 0.05 and same direction of
effect, Supplementary Data 10). Amongst the nine sentinel SNPs
that did not replicate, three show evidence for heterogeneity of
effect (Supplementary Figs. 45–48), while four are low frequency
or monomorphic, in East Asians. Findings were similar in the
BMI-adjusted model (Supplementary Data 11; Supplementary
Figs. 46–49). Effective sample sizes in African and Hispanic
populations were lower (BMI unadjusted: N= 36,991 and 32,037;
BMI adjusted N= 36,345 and 20,499, respectively). Although
power to replicate the associations identified in South Asians
ranged from 30 to 95% (mean 51%, Supplementary Fig. 50), we
found that only one of the sentinel SNPs replicated in Africans,
while none replicated in Hispanics (Supplementary Figs. 45–48).

There was limited evidence for heterogeneity of effect on T2D,
between South Asians and Europeans at the 21 novel genetic loci
(Supplementary Data 10 and 11, Supplementary Figs. 45–48); this
is not unexpected in light of our strategy comprising meta-
analysis of data from the two populations as the basis for
discovery. We also find no evidence for heterogeneity of effect on
the risk of sentinel SNPS on risk of T2D between South Asians
and Europeans, at 237 (82%) of the 288 genetic loci reported to be
associated with T2D (Supplementary Data 12 and 13, Supple-
mentary Figs. 51 and 52). Taken together, the above results
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suggest that there is little heterogeneity between Europeans and
South Asians, which supports out approach of meta-analysis
across these population groups, to maximise power for the
identification of shared effects. To extend on this analysis, we
investigated all SNPs at P < 1 × 10−3 in either the BMI unadjusted
(N= 17,944) or the BMI-adjusted (N= 17,215) model in the
South Asians (Supplementary Data 14 and 15).

Functional genomic analyses. We identified potential candidate
genes based upon proximity (genes within 10 kb of the sentinel
SNP), and functional genomic information (gene expression and
regulatory DNA methylation) (Table 1). We searched for cis
expression quantitative trait loci (eQTLs) using eQTL data gen-
erated from whole blood gene expression data from 31,684
individuals by the eQTLGen Consortium33. We found an
enrichment of cis eQTLs among the novel SNPs (P < 1.8 × 10−308,
compared to expectation under the null hypothesis [1-sample
t-test]), with 47 unique significant cis eQTLs present for 16 of the
21 sentinel SNPs or their proxies (r2 ≥ 0.8) at a Bonferroni cor-
rected p-value threshold of <6.8 × 10fto (Table 1; Supplementary
Data 16). To investigate the robustness of the identified eQTLs in
South Asians, we performed lookups in our eQTL dataset derived
from 693 South Asians, where we replicated 37% of the eQTLs
across 9 of the loci (16 out of 43 eQTLs available in the South
Asian dataset). Among the 63% that did not replicate, none of
them were sufficiently powered to detect the effect at 80% power
and 5% significance level. We further supplemented our analysis
by interrogating islet-specific cis eQTLs8,34,35. Here we observed
50 unique significant cis eQTLs with 17 of the novel sentinel SNPs
(P < 0.05; Supplementary Data 17; enrichment [1-sample t-test]
P= 3.0 × 10−132), of which 13 replicated those that were found in
the eQTLGen analysis, suggesting that the novel loci implicates
both generic and tissue-specific eQTLs. In addition, at three of the
novel loci, T2D signals colocalized with respective cis-eQTLs for
CHMP4B, PDHB and LRIG1 in both BMI-unadjusted and
adjusted models (Table 1; Supplementary Data 18 and 19).

To better understand the disturbances in genomic regulation
underlying T2D, we tested the association of the sentinel SNPs
with DNA methylation, in South Asians (N= 1841). DNA
methylation was quantified in peripheral blood by Illumina
HumanMethylation450 array36. We found that 19 of the sentinel
SNPs have one or more cis methylation quantitative trait loci
(methQTL) associations at P < 8.2 × 10−6 (P < 0.05 after Bonfer-
roni correction for the 6,065 SNP-CpG association tests;
Supplementary Data 20), which represents a ~2-fold enrichment
in cis methQTLs observed (enrichment [1-sample t-test]:
P < 1.8 × 10−308). All methQTLs replicated in independent testing
in 1354 South Asians (P < 0.05 with Bonferroni correction and
consistent direction of effect; Supplementary Data 21). We
mapped methQTLs to potential candidate genes using Illumina
annotation files, supplemented by gene proximity, and noted that
at nine loci, although we found both significant eQTLs and
methQTLs with our sentinel SNPs, there was no evidence for
colocalization observed (Table 1; Supplementary Data 22). In
part, this may reflect the lower sample size available for functional
genomic studies in South Asians.

Functional annotation and cross-trait association. Detailed
functional annotation for sentinel SNPs at the 21 novel loci is
provided in Supplementary Data 23. VEP (Variant Effect Pre-
dictor) was used to annotate the sentinel SNPs and their proxies
(r2 > 0.8) for nonsynonymous or splice site variations, and the
presence of transcription factor binding sites (TFBS)37. None of
the SNPs or their proxies was nonsynonymous. Two were splice

site variants, seven SNPs overlap known TFBS and SNPs at four
loci overlap CpG islands (Supplementary Data 23).

We used HaploReg v4.1 (Broad Institute) to identify SNPs
overlapping regulatory regions (protein binding and regulatory
motifs, promoter and enhancer histone marks, and DNase I
hypersensitive sites (DHS))38. There was significant enrichment
for SNPs and/or proxies for promoter histone marks in at least
one tissue (n= 13; P= 1.92 × 10−130), as well as SNPs or proxies
overlapping with enhancer histone marks or DHS in at least one
tissue (n= 19; P= 2.16 × 10−45 and n= 17; P= 1.52 × 10−19,
respectively). PhenoScanner, an on-line tool which searches 88
complex trait GWAMAs and three GWAS catalogues, was used
to annotate the 21 novel loci for association with other complex
traits (P < 1 × 10−5)39,40. As has been observed previously, we
found associations with numerous metabolic phenotypes such as
systolic and diastolic blood pressure/hypertension, waist circum-
ference and BMI (Supplementary Data 24)41–46.

Polygenic risk scores for risk stratification of T2D in South
Asians. Studies in predominantly European populations have
demonstrated the potential for polygenic risk scores to identify
people at high risk of complex disease, who may show greater
benefit from interventions to prevent disease development47,48.
To advance the use of genomic information for risk stratification
in South Asian populations, who are at high risk of T2D and
other major chronic diseases, we used the LDpred algorithm to
derive a polygenic risk score for T2D. We used South Asian
summary statistics from the current meta-analysis to derive a
South Asian specific polygenic risk score (SA-PRS) for T2D. We
compared performance of this model to a polygenic risk for T2D
based on European summary statistics from the DIAMANTE
consortium (EUR-PRS)49. The best-performing SA-PRS was
selected based upon an initial validation dataset (IA610; n= 2019
cases and 3696 controls), and identified as the model with max-
imum area under the receiver-operator curve (AUC; proportion
of causal variants, p= 0.01; Supplementary Data 25). For the
European-derived summary statistics model, we selected the
model previously reported to be optimal with p= 0.0147. We
replicated model performance of the SA-PRS and EUR-PRS in
two independent testing sets (SINDI; n= 974 cases and 1168
controls; LOLIPOP-GSA: n= 1000 cases and controls each).

We found that the SA-PRS model, which is based on
population-specific South Asian summary statistics, shows better
predictive power for T2D than a risk score based on European
summary statistics in both validation and testing (Validation:
AUC: 0.62 [95% CI: 0.60–0.63] vs 0.55 [95% CI: 0.54–0.57],
P= 1.0E−10; Testing: AUC: 0.59 [95% CI: 0.58–0.61] vs 0.55
[95% CI: 0.53–0.56], P= 2.2E−4, Supplementary Data 26). The
prevalence of T2D increased from 19 to 53% across decile bin,
with risk increasing as risk score increases (p= 1.6 × 10−5; trend
test). Indeed, the SA-PRS identified the top quartile of our
validation population as having 4.03 (95% CI:3.36–4.85;
P < 4.5 × 10−50) higher risk for T2D relative to the bottom
quartile (Supplementary Fig. 53). We further showed that there
were no significant improvement in AUC using summary
statistics obtained from meta-analysis of South Asians and
Europeans (Validation AUC: P= 1.000; Testing AUC:
P= 0.356; Supplementary Data 26). Our results confirm the
potential for genomic information to identify South Asian
individuals susceptible to T2D.

Discussion
We carried out a genome-wide association meta-analysis of T2D
in South Asians, leveraging power for discovery by inclusion
of data from additional European samples, thereby revealing
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21 genetic loci newly associated with T2D at the point of analysis.
Leading genetic variants at these genetic loci associated with T2D
are enriched for location in DNA protein-binding sites, regulatory
motifs, DHS, promoter and enhancer histone marks, and for
association with gene regulatory methylation marks in blood, and
with gene expression in blood and pancreatic islets. At three of
the novel loci, we found that T2D signals colocalized with
respective cis-eQTLs for CHMP4B, PDHB and LRIG1.

Genetic variants in LRGI1 have been previously shown to be
linked to birth weight, blood pressure and cardiovascular
endpoints50–53, while methylation of CpG sites in LRIG1 has been
linked to obesity in children, as well as birthweight and maternal
adiposity54–56. Indeed, it has been recently shown that LRIG1
regulates lipid metabolism via BMP signalling, and that LRIG1
variants are strongly associated with increased BMI, but with
lower risk of T2D57. DHB encodes one of the components of
PDH, which catalyses the irreversible oxidative decarboxylation
of pyruvate into acetyl-CoA and reduces NAD+ to NADH.
Levels of PDH impact upon the proportion of energy supplied by
glucose relative to that from other energy-producing molecules
such as lipids and amino acids, thereby playing a key role in the
development of diabetes58. At the same time, variants in PDHB
have been linked to BMI-adjusted waist circumference and LDL
cholesterol levels59,60.

For the nine genes where we found both significant eQTLs and
methQTLs with our sentinel SNPs, we did not observe significant
colocalization. This may reflect the choice of blood as the tissue
for investigation, or poor coverage of the methylation markers,
given that the methylation array is sparse and covers only ~2% of
the methylome, and therefore do not identify the most important
causal methylation site. In addition, despite being one of the
largest DNA methylation datasets available, the sample size for
the DNA methylation analysis is ~3200, which may limit the
power of the colocalization experiment.

Although our observations support the view that the genetic
variants we identify to be associated with T2D are likely to be of
functionally importance, and operate primarily through an effect
on genomic regulation, which is consistent with findings from
other large-scale genetic association studies9,61,62, there is no
direct evidence that DNA methylation is part of the casual chain
leading to T2D.

Our study includes data from 50,533 South Asians; this
represents the largest study of T2D genetics in this population to
date. We leverage discovery through combined analysis of our
leading results with data from a parallel study of 898,130 Eur-
opeans, confirming the utility of combining results from different
ethnic groups through increased sample size. We also used data
from large-scale GWAS of T2D in East Asian, African and His-
panic populations to examine whether our associations are cos-
mopolitan or specific. We show that many of the sentinel SNPs
are not associated with T2D in East Asians, despite their large
sample size and high statistical power. In most instances, the
sentinel SNPs which appear specific to South Asians are low
frequency, rare or even monomorphic in East Asians. Similarly,
only a minority of our sentinel SNPs were associated with T2D in
African and Mexican populations. Our results provide further
support for the presence of population-specific genetic variation
contributing to chronic disease, and the strong rationale for large-
scale studies focused on this ethnic group that have at least
equivalent sample size to current efforts in Europeans. Such
studies will be an important source of discovery, and will help to
reverse the current bias in genomic research towards investiga-
tions of predominantly European populations27.

We also investigate the application of polygenic risk scores for
the prediction of T2D in South Asian populations. We show that
polygenic risk scores based on South Asian specific GWA data are

more predictive for T2D than scores based on results from Eur-
opean specific studies. Our South Asian polygenic risk score
identifies the top quartile of the population to be at ~4-fold higher
risk for T2D relative to the bottom quartile, confirming the
potential for genetic risk scores to identify susceptible individuals.
In addition, we extend previous observations and show that the
polygenic risk scores for prediction of T2D in South Asians, show
improved performance when based on South Asian rather than
European association test results. This inferior performance of the
PRS model based on European data likely reflects heterogeneity of
effect, relative to that observed in South Asians.

In summary, we identify 21 novel genetic loci associated with
T2D at the point of analysis. Whilst many may be cosmopolitan,
several do not appear to be shared by East Asian, African and
Hispanic populations. Our results provide further insights into
the genetic mechanisms underlying T2D, and reinforce the
importance of extending the investigation of susceptibility to T2D
and other chronic diseases to non-European populations.

Methods
Statistics and reproducibility. Sixteen cohorts of South Asians with 50,533 par-
ticipants were included in the analysis (16,677 cases and 33,856 non-prediabetic
normal controls). Effective sample size (Neff) was calculated as 4/(1/N_cases + 1/
N_controls), where N_cases is the number of cases and N_controls is the number
of controls. For genome-wide meta-analyses, two primary models of logistic
regression association analyses were carried out with or without BMI adjustment.
Age, sex, and cohort-specific covariates were included where applicable, with the
first 3–15 study-specific principal components included as covariates to correct for
population substructure. No technical replicates were included in the analysis. The
current sample size allows us to detect significant associations at P-value < 5 × 10−8

for SNPs with MAF ≥ 0.05 and odds ratios (OR) ≥ 1.21, or MAF ≥ 0.20 and
OR ≥ 1.11 at 80% power, taking an additive disease model.

Cohort information, definition of T2D cases and normoglycaemic controls. A
total of 50,533 participants (16,677 cases and 33,856 non-prediabetic normal
controls) across sixteen South Asians cohorts were included in the meta-analysis.
T2D cases were defined as having any one of the following: medical history of T2D
or T2D treatment, fasting plasma glucose concentration ≥7.0 mmol/L, plasma
glucose concentration at 2 h of OGTT ≥ 11.1 mmol/L, or HbA1c ≥ 6.5%. Normo-
glycaemic controls were defined as meeting all of the following criteria (where data
are available): no history of T2D or T2D treatment, fasting plasma glucose
<6.1 mmol/L, plasma glucose concentration at 2 h of OGTT < 7.8 mmol/L, and
HbA1c < 6.0%. Prediabetic participants who are neither T2D cases nor normo-
glycaemic controls were removed from 12 out of 16 cohorts analysed in this study.
All cohort studies were approved by the relevant institutional review boards, and
conducted according to the Declaration of Helsinki. All participants of each study
provided written informed consent. An overview of the study design and number
of novel loci discovered at each analysis stage is available in Supplementary Fig. 54.
The list of participating South Asian cohorts and corresponding sample char-
acteristics are available in Supplementary Data 1.

Genotyping and imputation. All study centres performed genome-wide geno-
typing with standard commercial genotyping platforms. Quality control (QC) of
samples and genetic markers, mainly single nucleotide polymorphisms (SNPs), and
imputation to 1000 Genomes (1KG) Project Phase 3 cosmopolitan reference
haplotypes were conducted at each study centre16, except for UKBB which was
imputed to the Haplotype Reference Consortium (HRC)63. Markers in UKBB that
did not overlap with 1KG were removed from UKBB. Standard QC for samples
included removing samples with low call rate (e.g. <95%), extreme heterozygosity,
mismatch of sex, and those of duplicates, relatedness, and population outliers. QC
for variants included removing variants with low call rate (<95%), Hardy-Weinberg
equilibrium P-value < 1 × 10−6, or minor allele frequency (MAF) < 1%.

Before pre-phasing and imputation, markers were aligned to NCBI build 37
locations of the human genome using the strand files and scripts developed by the
University of Oxford. A further check of variants IDs, alleles, and frequencies
matching with the 1KG Phase 3 reference panel was then applied using a script
developed by the University of Oxford. This stringent QC reduces errors due to
strand misalignment and duplicates by removing and/or updating SNPs that do not
agree in position, allele or frequency with the 1KG relevant ethnic group data.
Standard pre-phasing and imputation approaches were applied including pre-
phasing using SHAPEIT and imputation using IMPUTE2 or MACH/minimac
locally64–66, or using the Michigan Imputation Server for pre-phasing and
imputation. Imputation quality was examined, and allele frequencies were checked
against the 1KG reference panel for South Asian population, and those significantly
deviating from reference population (>0.20) were examined and any quality issue
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solved. All cohorts passed imputation QC. Association analyses were then
performed by each study centre upon satisfactory imputation quality. In total, there
were 32,869,683 SNPs available for analysis after quality control.

Genome-wide meta-analyses. Two primary models of logistic regression asso-
ciation analyses were carried out with SNPTEST (for imputation with IMPUTE2),
mach2dat (for imputation with MACH/minimach), or other appropriate programs
(sex-combined, with or without BMI adjustment)65,66. Age, sex, and cohort-specific
covariates were included where applicable. The first 3–15 study-specific principal
components were included as covariates to correct for population substructure.
Details of genotyping arrays and imputation are summarised in Supplementary
Data 2.

Association summary statistics were filtered for QC before meta-analysis.
Criteria for inclusion of a variant in association meta-analysis included imputation
info ≥ 0.4 for IMPUTE2 and 0.3 for MACH/minimac66–68, minor allele count
(MAC) ≥ 6, P-values for Hardy-Weinberg equilibrium ≥ 1 × 10−6, standard error
(SE) > 0 and <10, and P-values > 0 and ≤1. Meta-analyses combining association
summary statistics from all cohorts were performed using the inverse-variance
weighted fixed-effect model as implemented in the METAL program69. Genomic
control (GC) adjustment was applied in each cohort before meta-analysis when the
GC factor (lambda) was greater than one.

In sex-combined models with or without BMI adjustment, SNPs with
MAF ≥ 0.01, P-values < 1 × 10−3, not in a known T2D loci (>500 kb from the
known variants previously published), and total sample size exceeding half of the
maximum sample size, were included for further testing. This yielded a total of
18,537 and 17,929 potentially novel SNPs for the sex-combined BMI unadjusted or
adjusted model at P-values < 1 × 10−3, respectively (Supplementary Data 3). The
European DIAMANTE consortium data were used for the meta-analyses. Meta-
analyses of summary statistics on the above SNPs in South Asians and in European
DIAMANTE data were performed with METAL using the inverse-variance
weighted fixed effects approach69. SNPs with meta-analysis P-values < 5 × 10−8

were considered statistically significant. Results are summarised in Supplementary
Data 5 and 6. Genetic correlation for T2D between South Asians and Europeans
were calculated using popcorn30.

Conditional analysis. In an effort to investigate if the newly identified variants
were independent of known associations, we performed a conditional regression
conditional on known SNPs associated with T2D in the same loci (±1Mb) using the
-cojo-cond function in the Genome-wide Complex Trait Analysis (GCTA)—con-
ditional and joint analysis(COJO) program70. GCTA version 1.91.0 beta was used
in this study. This approach uses the summary statistics from meta-analysis, and
linkage disequilibrium data from a GWAS study or reference haplotypes, which we
defined as IA610 here. Heritability for T2D was estimated using GREML in GCTA
using the same cohort (IA610) as reference.

Detection of distinct association signals. To detect multiple distinct association
signals at each novel locus (+/−1Mb region), we performed approximate condi-
tional analyses using GCTA with genome-wide meta-analysis summary statistics
from South Asian cohorts in BMI-adjusted or unadjusted models, and with LD
estimated from IA610. The cojo-slct option was used for a stepwise model selection
to select independently associated SNPs in each region. We used cojo-p 1e-5 to set
the threshold p-value to declare a locus-wide significant hit. The default multiple
regression R2 (0.9) on the selected SNPs was used for the cut off value to control
collinearity. SNPs with allele frequency differences >0.2 between association SNP
and the reference SNP were removed from analysis.

Cross-ancestry comparison. We then systematically investigated the association
with T2D for these 21 novel loci in other ethnic-specific studies, including parti-
cipants of East Asian, African-American and Hispanic ancestry. Sentinel SNPs
were looked up in both BMI-unadjusted and adjusted models where possible.
Results are shown in Supplementary Data 10 and 11.

For East Asians, the T2D meta-analyses were performed with studies
participating in the Asian Genetic Epidemiology Network (AGEN), a consortium
of genetic epidemiology studies of T2D and related traits conducted in individuals
of East Asian ancestry. The first phase of the East Asian meta-analysis included
77,418 T2D cases and 356,122 controls from 20 GWAS and three biobanks, China
Kadoorie Biobank (CKB), Korea Biobank Array (KBA), and Biobank Japan (BBJ)
(Neff= 211,793)71–74. In Phase 2 of the meta-analysis, a subset from Phase 1
(56,267 T2D cases and 227,155 controls; Neff= 139,701) were analysed in BMI-
adjusted and sex-specific models. Included studies were genotyped on either
commercially available or customised Affymetrix or Illumina genome-wide
genotyping arrays. Array quality control criteria implemented within each study,
including variant call rate and Hardy-Weinberg equilibrium. The genotype scaffold
for each study was then imputed to the 1000 Genomes Phase 1 or 3 reference panel
using minimac3 or IMPUTEv216,67,75,76. In Phase 1, all studies were imputed to
1000 Genomes Phase 3. In Phase 2, all studies were imputed to 1000 Genomes
Phase 3 except for Biobank Japan (BBJ), which was imputed to the 1000 Genomes
Phase 1 reference panel76. Institutional review boards approved all study protocols

at their respective sites, and written informed consent was obtained from all
participants.

Data of African–American ancestry was based upon the MEDIA (Meta-analysis
of Type 2 Diabetes in African Americans) Consortium, a collaborative effort to
combine T2D GWAS data from individuals of African ancestry. The current study
includes 18 GWAS cohorts (15,043 T2D cases and 22,318 controls), with genotype
data imputed to either 1000 Genomes phase 1 or phase 3.

For the Hispanic/Latino ancestry meta-analyses, 14 studies with a total of
13,151 cases and 21,511 controls were included. The component studies consisted
of the BioMe Biobank77, the Genetics of Latinos Diabetic Retinopathy study78,
Hispanic Community Health Study and Study of Latinos79, the Mexican-American
Hypertension-Insulin Resistance Family Study80–82, Los Angeles Latino Eye
Study83, Mexican-American Coronary Artery Disease Study84,85, Mexico City
studies 1 and 286, Multi-Ethnic Study of Atherosclerosis87, the Non-Insulin-
Dependent Diabetes Mellitus-Atherosclerosis Study84, San Antonio Family Heart
Study88,89, the Slim Initiative in Genomic Medicine for the Americas study17,18,90,
Starr County Health Studies91, and the Women’s Health Initiative study92. All
studies comprised self-reported Hispanic/Latino individuals with varying country
of origin and admixture proportions. Quality control of genome-wide genotype
data, imputation to 1000 Genomes Project reference datasets phase 1 or 316,76, and
association analyses were performed for each study. Results from association
analyses adjusted for sex were provided for all studies, and when available, results
from additional analyses adjusted for both sex and body mass index, and sex-
stratified analyses both with and without adjustment for body mass index were
provided for meta-analyses as well. Association results for each study were filtered
to remove low-frequency variants (minor allele count <14) and low-quality variants
(minimac3 r2 < 0.3 or IMPUTE2 info <0.4)67,75,93. Meta-analysis was performed
using MR-MEGA94, including one axis of genetic variation as captured by study-
level measures of mean allele frequency differences.

To check for heterogeneity between ethnic populations, we performed meta-
analyses of summary statistics on the SNPs with METAL using the inverse-variance
weighted fixed effects approach.

Effects of BMI adjustment and Sex-differentiated meta-analysis. The differ-
ence between BMI-adjusted and unadjusted models was tested using a matched
analysis within the same subset of 15 cohorts, where the Z-score is calculated as
below to account for correlation between the two models6.

ðβ� β1Þ=sqrtðSE2 � SE1
2�2 ´ ρ ´ SE ´ SE1Þ; ð1Þ

where β and β1 are effect sizes for BMI-unadjusted and adjusted models, respec-
tively, SE and SE1 are the corresponding standard errors, and ρ is the estimated
correlation between β and β1 obtained from all SNPs from this study (ρ= 0.96).

Sex-differentiated meta-analysis allowing for heterogeneity of allelic effects
between males and females was conducted to detect sex-differentiated effects with
the GWAMA program95.

Expression quantitative trait loci (eQTL) analysis. Using eQTL data generated
from whole blood gene expression data from 31,684 individuals by the eQTLGen
Consortium33, we examined the cis-associations of the novel variants and their
proxies (r2 ≥ 0.8 in South Asians) with expression levels of nearby genes (±1Mb) in
all tissues to explore the potential functionality of novel variants. Additional eQTL
lookups were performed for (i) whole blood in South Asians from LOLIPOP
(n= 693) and (ii) in pancreatic islets (n= 420) to explore metabolically relevant
tissue-specific relationships96. We also performed permutation testing to determine
the extent of enrichment of cis eQTLs observed. We first determined the number of
our novel sentinel SNPs that showed significant cis eQTLs. Expectation under the
null hypothesis was then determined by permutation testing using a set of matched
background SNPs. SNPs were matched for MAF (±2% in South Asians) and dis-
tance to the nearest gene (±10 kb). P-values were calculated by comparing the
observed number of SNPs that displayed significant cis eQTLs to the mean
expectation under the null hypothesis from permutation testing using a 1-sample t
test (N= 1000 permutations of 21 SNPs).

Expression quantitative trait loci (eQTL) analysis in South Asians.
Transcriptome-wide measurements of gene expression in blood were undertaken in
South Asian (N= 693) participants of the LOLIPOP study, using the Illumina
HumanHT-12 v4 BeadChip array according to manufacturer’s protocol. Expres-
sion values were summarised to gene level estimates by averaging the log2 trans-
formed expression levels of probes mapping to the same gene. To quantify the
relationship between genetic variation and gene expression we first derived resi-
duals for gene expression using linear regression of gene expression levels against
sex, age, RNA integrity number, RNA conversion batch and RNA extraction batch.
Expression residuals were then used as outcome variables in a linear regression
model with SNP dosage as the independent variable, corresponding to the fol-
lowing linear model formulae: Gene ~ SNP+ sex + age + RIN+
RNA_Conv_Batch + RNA_Extract_Batch. Data analysis was performed using
Matrix eQTL97.
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methQTL analysis. For the discovery phase, we measured DNA methylation in
1,841 South Asians using peripheral blood sample collected at baseline from the
London Life Sciences Prospective Population Study (LOLIPOP) (see Cohort
Description—Supplementary Note 1); for the replication phase we studied 1354
South Asians using blood sample collected at the follow-up visit. All participants
were unrelated. DNA methylation was quantified using the Illumina Human-
Methlation450K array according to the manufacturer’s instructions. Bisulfite
conversion of genomic DNA was performed using the EZ DNA methylation kit
according to the manufacturer’s instructions (Zymo Research, Orange, CA). Bead
intensity was retrieved using the minfi software package, and a detection P value of
<10−16 was used for marker calling. Of the 486,427 positions assayed by the array,
we excluded markers with call rates <98% (N= 4,684), or that do not measure
methylation at CpG sites (N= 4006). This left 466,186 autosomal and 11,329 sex
chromosome markers for analysis. Markers reported to be cross-hybridising were
retained but flagged. Samples with gender inconsistency and/or with low marker
call rate (<98%) were filtered98. Genotyping was done with a combination of
Illumina genotyping arrays (HumanHap300, Human-Hap610, OmniExpress and
OmniExomeExpress). Genotypes were called with Illumina Genome Studio and
imputation performed using the IMPUTEv2 software package and 1000 Genomes
Project cosmopolitan reference panel (ALL_1000G_phase1inte-
grated_v3_impute_macGT1). Standard GWAS quality control criteria were
applied, including filtering for call-rate, minor allele frequency, info score and
Hardy–Weinberg equilibrium.

Data normalisation was performed separately within each cohort and
percentage methylation at each CpG site was calculated. Residuals were then
derived from a linear regression of the percentage methylation (outcome) with
technical and clinical predictors. These include age, sex, estimates of white-blood
cell subpopulations and principal components of control-probe intensities.
Residuals were used as outcomes in association testing. Association testing for the
discovery stage was performed separately for each study population and genotyping
platform using QuickTest. Summary statistics were combined by fixed-effect meta-
analysis using METAL69. Statistical significance was set to P < 7.7 × 10−6, which
corresponds to P < 0.05 after Bonferroni correction for the 6,494 SNP-CpG
association tests.

We also performed permutation testing to determine the extent of enrichment
of cis methQTLs observed. We first determined the number of our novel sentinel
SNPs that showed significant cis methQTLs. Expectations under the null
hypothesis was then determined by permutation testing using a set of matched
background SNPs. SNPs were matched for MAF (±2% in South Asians) and
distance to the nearest gene (±10 kb). P-values were calculated by comparing the
observed number of SNPs that displayed significant cis methQTLs to the mean
expectation under the null hypothesis from permutation testing using a 1-sample t-
test (N= 1,000 permutations of 21 SNPs).

Colocalization analysis. We used coloc 2.3-1 to check for colocalization of the
T2D association signals at our 21 loci with eQTL signals from eQTLgen99. For each
locus, we examined all SNPs available in both datasets within 1Mb of the sentinel
SNP identified in our T2D GWAS, and ran coloc.abf with default parameters and
priors. The summary statistics from the joint meta-GWAS of South Asians and
Europeans were used for the SNP-T2D axis. We also checked for colocalization
between eQTL and methQTL associations. We considered there to be sufficient
evidence for colocalization when coloc PP4 > 0.6 (posterior probability for shared
underlying causal variant).

Functional annotation and cross-trait associations. We annotated the sentinel
SNPs and their proxies for regulatory regions (promoter and enhancer histone
marks, DNase I hypersensitivity, protein binding and regulatory motifs) with
HaploRegv4.1 (Broad Institute) using the haploR package in R (version 3.6.0)38.
VEP (Variant Effect Predictor) was used for the identification of transcription
factor binding sites and nonsynonymous and splicing variants37. EpiExplorer and
the UCSC Genome Browser were used to annotate CpG islands100. We performed
permutation testing to determine the degree of enrichment for various regulatory
regions. We first determined the number of novel sentinel SNPs that were anno-
tated for the respective features, followed by generating expectations under the null
hypothesis by permutation testing using a set of matched background SNPs. SNPs
are matched for MAF (±2% in South Asians) and distance to the nearest gene
(±10 kb). P-values were calculated by comparing the observed number of SNPs that
were annotated for the respective features to the mean expectation under the null
hypothesis from permutation testing using a 1-sample t-test (N= 1000 permuta-
tions of 21 SNPs).

Polygenic risk score. For PRS derivation, we applied the LDpred algorithm, a
Bayesian approach that calculates posterior mean effect for all variants based on a
prior (effect size and level of statistical significance in the prior GWAS) and
subsequent shrinkage based on linkage disequilibrium (LD) with other variants
nearby49. DNA polymorphisms with ambiguous strand (A/T or C/G) were
removed from the score derivation.

We developed two models for PRS derivation, one based upon South Asian-
derived summary statistics (current study) and another based upon European-
derived summary statistics for T2D associations (DIAMANTE). For the South
Asian-derived summary statistics, we reperformed our genome-wide meta-analysis
across only 14 cohorts, excluding two cohorts to be utilised as validation and
independent testing series for LDpred (validation: IA610; n= 2,019 cases and 3696
controls and testing: SINDI: n= 974 cases and 1168 controls). A third independent
cohort was also used for testing (LOLIPOP_GSA: n= 900 cases and 919 controls).
South Asians and Europeans from the 1000 Genomes Phase 3 were used as the
reference panel for LD calculation for the South Asian- and European-derived PRS
models, respectively.

LD radius was set to M/3000 (default value in LDpred) in both cases, whereby
M is the total number of SNPs used in the corresponding analysis. For the tuning
parameter p, which refers to the proportion of variants assumed to be causal (non-
zero effects), a range of values were tested (1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001,
0.0003, 0.0001) and the SNP weights generated used to calculate PRS. The optimal
PRS for the South Asian-derived summary statistics model was chosen according to
the area under the receiver-operator curve (AUC) based upon a logistic regression
model47. For the European-derived summary statistics model, we selected the
model with p= 0.01, as previously reported to be optimum47. The proportion of
variance explained was calculated for each model using Nagelkerke’s pseudo-R2
metric. To plot the risk gradient, we first divided the validation population into 10
bins according to decile of the PRS, and plotted the prevalence of T2D within
each bin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Summary statistics data is available via GWAS catalogue. Study Accession IDs are
GCST90093109 and GCST90093110 for the BMI-unadjusted and BMI-adjusted models,
respectively. Full summary statistics for cis eQTL analyses were downloaded from
eQTLGen website (https://eqtlgen.org/cis-eqtls.html).
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