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Abstract

Background: Recent studies have demonstrated the genetic significance of insertions, deletions, and other more

complex structural variants (SVs) in the human population. With the development of the next-generation

sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here

we present split-read identification, calibrated (SRiC), a sequence-based method for SV detection.

Results: We start by mapping each read to the reference genome in standard fashion using gapped alignment.

Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take

into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a

read). All current SV calling methods have multilevel biases in their identifications due to both experimental and

computational limitations (e.g. calling more deletions than insertions). A key aspect of our approach is that we

calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with

realistic error models). This allows us to calculate sensitivity and the positive predictive value under different

parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions). We run our

calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on

chromosome 1 with the calibrations gleaned from the simulations (for different length events) allows us to

construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of

length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs.

Conclusions: Compared with the existing read-depth and read-pair approaches for SV identification, our method

can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the

whole size spectrum for deletions. Moreover, with the advent of the third-generation sequencing technologies that

produce longer reads, we expect our method to be even more useful.
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Background
One important goal in genomics is to determine the

genetic differences among individuals and to understand

their relationships to the phenotypic differences within a

species, such as human beings. These variations consist

of single nucleotide polymorphisms (SNPs) and struc-

tural variations (SVs) including short insertions/dele-

tions (indels) and other more complex ones such as

duplications and translocations. Because of the efficiency

of genotyping methods and the central role they play in

the genome-wide association studies, SNPs are currently

the best catalogued and studied human genetic varia-

tions. Ubiquitous 1-bp indels, expansions of simple

repeats and chromosomal anomalies have long been

observed and acknowledged as the genetic bases for

some human diseases [1,2]. Except for these old discov-

eries, however, indels and SVs have been much less stu-

died due to their wide size range, the multitude in their

types, and the lack of an efficient genotyping method.

After several recent studies, however, their genetic sig-

nificance starts to be appreciated: not only do they exist

in large numbers in the human populations, they may
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also have a more significant impact on phenotypic varia-

tion than SNPs [3-7].

The microarray technology, array CGH, has been

widely used to detect copy number variants (CNVs), a

type of SV, with kilo-bases resolutions [5,8-11]. The

advancement in high throughput sequencing technolo-

gies has enabled a new set of comparative approaches

for CNV calling, such as the read-depth analysis [12-15],

which computes the read coverage of different genomic

regions, the read pair analysis, which focuses on cases

where the distance between the two ends of a reads

deviates more than expected when they are mapped

back to the reference [4,16-18]. Accompanying the

advancement of these experimental approaches, different

computational methods for SV detection and their

breakpoint refinement have also been developed [18-25].

Because indels/SVs come in various sizes, there is an

additional aspect–the size coverage–to their detection.

The aforementioned methods only partially address all

the requirements of indel/SV detection to various

degrees. For sequence insertions and deletions, indels/

SVs are conventionally defined as micro-SVs of 1-10 bp

and large ones over 1 kb, respectively. In the following

text, wherever the context is clear we use SV as the

encompassing term, subsuming small indels. Due to

methodological limitations, SVs of middle lengths have

only been minimally, if not at all, studied. Indeed, over

the full spectrum of the SV size, only several small size

spans are covered by current methods (Figure 1). More-

over, SV detection approaches described above (e.g.

array/read-pair/read-depth based methods) cannot accu-

rately locate the breakpoints of the SV events, nor can

they reveal the actual sequence content of insertions.

Such information can only be gained via the direct ana-

lysis of the read sequences, instead of based on the sta-

tistics of the mappings of such reads.

Here we report the split-read analysis, a sequence-

based method that detects SVs through direct analysis

of the mapping information of how high-throughput

sequencing reads are aligned to the reference genome.

Using alignment of read sequences to reference gen-

omes with gaps, the method allows the precise identifi-

cation of SVs covered by such reads. Building our

method directly upon BLAT, a well-established

sequence alignment program, we take advantage of the

speed and the sensitivity of this popular sequence-to-

genome alignment tool. However, more importantly, by

considering both the sequencing and mapping errors in

our assessment strategy to score each initial SV call, our

method also takes into account the sequencing error

model (especially for next-generation sequencing tech-

nologies, which were not generally available a few years

ago), and distinguishes the different confidence levels in

detecting different SVs based on the characteristics of

supporting reads. Compared with the read-depth and

the read-pair analyses, our sequence-based method can

not only pinpoint the breakpoints of SV events, but also

reveal the actual sequence content of insertions. The

split-read analysis has another advantage–it can cover

the whole size spectrum for deletions (Figure 1). We

expect our method to be more useful in the future as

the sequence reads become longer.

Due to both experimental and computational limita-

tions, there are biases on multiple levels in the call sets

generated by all current SV identification methods. In

addition to their significantly more restricted size range

of identifiable insertions than that of deletions, all cur-

rent SV identification methods are sensitive to SVs of

different length (Figure 1), and as a result studies using

them have reported different numbers of SVs. One

study using the read-pair method reported 241 SVs over

8 kb in a sampled genome [7], while another using the

same approach but with a different molecular construct

reported 422 and 753 SVs over 3 kb in two tested gen-

omes [4]. In a study of whole-genome sequencing and

assembly, 835,926 indels were identified in a diploid

human genome [26]. Currently it is not known how

many SVs, small or large, are in an individual human

genome. Using empirical error models estimated from

sequencing experiments to simulate high-throughput

sequencing reads, we could not only parameterize our

split-read method, but also, more importantly, quantify

both false positive and false negative rates. Knowing

these error rates enables us to estimate the total number

of SVs of a given length in a human genome.

Results
We have developed the split-read identification, cali-

brated (SRiC), a sequence-based method for detecting

structural variants (SVs). It maps reads to the reference

genome with gapped alignment and scores these map-

pings with consideration for sequencing and alignment

errors. SRiC pinpoints exact SV breakpoints, reveals the

sequence content of insertions, and covers the whole

size spectrum for deletions. Simulation is used to cali-

brate SRiC, allowing unbiased estimation of the sensitiv-

ity and proportion of SVs across different length-scales.

Analysis of the simulated sequence data

For sequencing simulations, instead of using the whole

human genome, we use the diploid human chromosome

22 (NCBI36 assembly), which counts for 1% of the

human genome but has a repeat content and a gene

density both representative of the whole genome, to

save computational processing time. To keep the local

sequence environment of indels as found in a genome,

we use indels identified in Venter’s genome [26] in our

sequencing simulation (Additional file 1).
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Determining thresholds used in the analysis

Three thresholds are used in our split-read analysis: tr,

the threshold on the ratio of the score of the best align-

ment to that of the second best as a measure of the

uniqueness of the read, tn, the threshold on the number

of supportive reads for 1-bp SVs, and tc, the threshold

on the maximum centeredness (the maximum ratio of

the smaller length to the bigger one of two flanking

alignments of a read, Additional file 1, Figure S1) for

large SVs.

To determine the score ratio threshold tr for the align-

ment preprocessing, we simulate ~5× sequence coverage

that gives ~0.6 million 454 single-end 400-bp reads and

then identify SVs using different values for the score

ratio threshold tr (= 1.0, 1.25, 1.5, 1.75, and 2.0) while

keeping the other two parameters fixed (tn = 5, tc = 0.1).

The percentage of true positives, false negatives, and

false positives of deletions and insertions identified at

different tr values are plotted in Figure 2A-B. There is a

small decrease in the number of identified SVs when tr
is increased from 1.0 to 1.25. The further increases in tr
from 1.25 to 2.0 only cause negligible changes to the SV

identification results. Over all, the SR method is not

very sensitive to tr when it is in the range of 1.0 and 2.0.

This insensitivity is a result of unique mapping to the

reference genome of most 454 reads, which are much

longer than those produced by other next-generation

sequencing technologies.

Two thresholds, tn and tc, are used for the initial SV

calls (Inequalities 1 and 2). We vary the value of one of

these two thresholds while fix the other to determine

how they affect the accuracy and the sensitivity of the

split-read method. Using the simulated sequence set

with the ~5× coverage, we make SV calls with tn = 1, 2,

..., 9 while tc = 0.1 and tc = 0.1, 0.2, ..., 0.9 while tn = 5,

count the true positive and the false positive calls, and

calculate the percentage of true positives, false negatives,

and false positives at each threshold combination. The

results of this performance analysis as depicted in Figure

2C-F make it clear the effects that theses two thresholds

have on the SV identification show a dichotomous

dependency on the SV length. While tn affects the iden-

tification of short SVs, tc biases that of longer ones. In

practice, we use the sequencing depth for tn (with a

lower bound nmin = 2) and set tc to 0.1. It is also clear

that the method has different sensitivities in the size

range of indels that it can detect: it is less sensitive to 1-

bp indels because 454 sequencing is prone to over- or

Figure 1 The size spectrum of SVs identifiable to different methods. No method can identify SVs of all different sizes. The black bars

indicate the size ranges of discoverable SVs by different methods, which include the dbSNP database, the high-resolution array CGH (hr-aCGH),

the read-pair (RP) method with fosmid, 454, and Solexa sequencing, and the split-read analysis. The range of detectable indels by RP depends

on three values: the mean and the standard deviation between the distances of mapped read pairs and the multiple coefficient of s.d. for

significance. These triple values are (40 kb, 2.8 kb, 3), (1 kb, 0.8 kb, 3), (250 bp, 25 bp, 6) for fosmid, 454, and Solexa sequencing, respectively.
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under-call bases in homopolymers and thus more a

stringent threshold is needed to lower the number of 1-

bp false positives.

Assessing how the read length affects the performance

We first assess how the read length affects the SV iden-

tification by simulating single-end reads of 50, 100, 200,

400, and 800 bp long. For each read length, we generate

sequences with ~5× coverage and analyze five sequence

sets with the same set of method parameters (tr = 1, tn
= 5, tc = 0.1). We compare the true SVs and the ones

that we identified using the split-read analysis. The

numbers of true and false positives of deletions and

insertions identified using reads of different lengths are

plotted in Figure 3A-B.

The general trend, which is expected and depicted in

the figure, is that the SV identification is improved with

longer reads. With 50-bp reads, the SV identification is

the worst with low sensitivity for both short and long

deletions. Because the length of discoverable insertions

is capped by the read length, it is not surprising that at

this read length none of the insertions of 20-bp and

longer are found. When the read length is increased to

200 bp and longer, the sensitivity and the positive pre-

dictive value almost double for longer SVs. For dele-

tions, 200-, 400-, and 800-bp reads seems to give

comparable performance, and longer reads only bring

marginal improvements to the results. The choice of

read length for insertions identification is, however, a

rather open-end question, as longer reads will always

enable better identification of longer insertions.

Assessing the effects of sequence coverage on SV calls

We first simulate ~20× sequence coverage that gives

~2.5 million 454 single-end 400-bp reads. To assess how

the sequencing depth affects the SV calls by the split-

read analysis, we also simulate ~1×, 5×, 10×, and 15×

sequencing coverage by down-sampling the 20×

sequence set with appropriate numbers of reads (Table

1). We then identify SVs using default parameters (tr =

1.0, tn = coverage, tc = 0.1). The numbers of true and

false positives of deletions and insertions identified at

different sequencing coverage are plotted in Figure 3C-

D. The general trend is that SV identification is

improved with higher coverage but with diminishing

returns. Comparing to the low coverage at 1×, there is a

marked improvement to SV identification at higher

coverage.

To assess how sequencing coverage affects the sensi-

tivity of our method, we determine the maximum sensi-

tivity achievable in each simulated sequence set. The

number of ‘seeable’ true SVs is affected by several
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Figure 2 Effect of different thresholds on SV identification. Different sets of indels are called at combinations of different values for

thresholds tr, tn, and tc. Each bar shows the percentages of the true positives, the false negatives, and the false positives of each call set, which

are represented by the colored, the white, and the gray portions, respectively. The bars in different shades of green and red are used for the

true positive calls of deletion and insertion of different length. (A-B) The alignment score ratio threshold, tr. SV are calls for a set of simulated

reads using different tr while tn = 5 and tc = 0.1 are kept unchanged. (C-D) The number of supportive read threshold, tn. SV are calls for the

same set of simulated reads using different tn while tr = 1 and tc = 0.1 are kept unchanged. (E-F) The maximum centeredness threshold, tc. SV

are calls for the same set of simulated reads using different tc while tn = 5 and tr = 1 are kept unchanged.
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factors, including the sequencing depth, the read map-

ping quality/uniqueness, and the minimum number of

supportive reads required for an SV call. After the initial

alignment processing to remove the mapping ambiguity,

we count the number of supportive reads for the true

SVs of different lengths and plot the number of true

SVs with one and two or more supportive reads at dif-

ferent sequencing depth (Figure 4).

The sequencing depth has the most significant effect

on short SVs. At 1× coverage, ~1,000 of true 1-bp dele-

tions and insertions are supported by at least one read.

When the coverage is increased to 2×, these numbers

almost are doubled. As the coverage increases, the per-

centage of supported true SVs also increases but with a

diminishing pace. 80~90% true SVs are supported by at

least one read at 5× to 20× coverage. One supportive

read is the absolutely minimum requirement for an SV

call. To reduce the false positives, we require at least

two supportive reads for every SV call. This global

threshold has a much more significant effect on the

low-coverage sequence set than on the high-coverage

one: while the percentage of true deletions with two or

more supportive reads is about the same as that of true

deletions with one supportive read at 1× coverage, there

are very few true SVs with only one supportive read at

10× or higher coverage.

Performance assessment

Several different approaches have been used to exten-

sively evaluate the performance of our SRiC method
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Figure 3 Effect of sequencing on SV identification. The lengths of the colored, the white, and the gray portions of each bar signify the

percentages of the true positives, the false negatives, and the false positives, respectively. The bars in different shades of green and red are used

for the true positive calls of deletion and insertion of different length. (A-B) Different read length. SV are calls for sets of simulated reads of

different lengths with the same coverage (5×). (C-D) Different coverage. SV are calls for sets of simulated reads of the same lengths (~400-bp)

with different coverage.

Table 1 Number of sequences in simulated and down-

sampled datasets

Sequence type Coverage Number of
sequences

Number of base
pairs

Generated
sequences

20× 2,477,629 994,491,814

Mapped
sequences

20× 2,476,347 993,977,159

Used sequences 20× 2,476,088 993,873,276

15× 1,857,784 745,693,367

10× 1,236,929 496,489,303

5× 619,052 248,478,809

1× 123,633 49,625,857

Notes:

1. We use 49,691,432 bp as the size of human chromosome 22 for calculating

the sequence coverage.

2. For 1~15× target sequence coverage, we sample from the used sequences

in the 20×-coverage dataset.
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(Additional file 1). First, we compare SRiC with Pindel,

the only published method that can detect SV break-

points on the nucleotide level. The comparison between

the numbers of SVs that these two methods can find in

simulated datasets with the same SV placements shows

SRiC has a significantly higher sensitivity than Pindel at

every length simulated, whether it is of deletions or

insertions (Additional file 1, Tables S1 and S2). Second,

we apply our split-read analysis to 454 genomic reads

generated for two individuals (CEU NA12878 sequenced

to 0.5× and YRI NA19240 to 5×) and calculate the posi-

tive predictive values at different thresholds on the

number of supportive reads after validating deletion

calls using two experimental methods, respectively–

array capture followed by sequencing and trio-array

comparative genomic hybridization (CGH). The experi-

mental result shows for the type of SVs under consid-

eration SRiC can achieve 70-80% call accuracy (Tables 2

and 3).

Analysis of the 1000 Genomes Project data

A major sequencing project, the 1000 Genomes Project,

has been launched to resequence the genomes of at

least a thousand people from around the world using

the new sequencing technologies to produce the most

detailed map of human genetic variation for disease stu-

dies. As a proof of concept, we apply our split-read ana-

lysis to a set of 454 sequence reads generated by the

1000 Genomes Project for one individual.

The genome of an individual (NA19240) from the

Yoruba in Ibadan, Nigeria has been sequenced using the

454 single-end method to ~5× sequence coverage. The

sequencing generated ~49 million sequence reads, of

~17.6×109 bp in total. Mapping of the sequence reads

(with a median length of ~400 bp) took ~136 hours of

the wall time with exclusive access to 50 Dell Power-

Edge 1955 nodes (each containing 2 dual core 3.0 Ghz

Xeon 64 bit EM64T Intel CPUs model 5160 and 16 GB

RAM) of a Linux cluster. Applying our SR method, we

identify 13,426 deletions ranging from 1 bp to ~700 kb

and 11,539 insertions ranging from 1 bp to 200 bp on

the chromosome 1. Compared with 494 validated inser-

tions in chromosome 1 from dbSNP (v129), 301 in both

sets are at exactly the same genomic locations, which

indicates a sensitivity of ~60% for validated insertions in

Deletion  Insertion 

A  B 

 

 

 

   

Figure 4 Discoverable simulated SVs. Not all SVs are identifiable, as some of them are not covered by any or enough sequence reads. The

lengths of the gray and the colored portions of each bar signify the log-number of indels covered by only one and more than one read,

respectively. The bars in different shades of green and red are used for the true positive calls of deletion and insertion of different length. A

missing bar indicates a zero count. The counts of simulated deletions (A) and insertions (B) that are covered by at least two reads and by only

one read are plotted as colored and gray bars.

Table 2 Array capture validation of SR called deletions. 1,

2

tn
3 2 3 4 5 6 7

True positive 30 20 15 13 9 7

Positive 115 33 22 18 12 10

Positive predictive value 4 0.26 0.60 0.68 0.72 0.75 0.70

Notes:

1. 0.5× 454 reads for a CEU individual (NA12878) from the 1000 Genomes

Project are used to make the SR deletion calls.

2. Only deletions longer than 500 bp are selected for array capture validation.

3. tn, is threshold on the number of supportive reads.

4. Positive predictive value = True positive/Positive.

Zhang et al. BMC Genomics 2011, 12:375

http://www.biomedcentral.com/1471-2164/12/375

Page 6 of 12



dbSNP. This defines a lower bound on sensitivity as dif-

ferent genomic DNA sources are involved. The simula-

tion used to compare the numbers of insertion and

deletion calls (see above) enables us to determine the

positive predictive values and the sensitivities of our SR

method for indels identified in a sequence set at 5× cov-

erage and subsequently estimate using equation (4) the

total numbers of deletions and insertions of lengths in

continuous ranges separately on chromosome 1 (Table

4). We estimate there are 53,431 SVs in chromosome 1

and extrapolate to 665,684 SVs in the whole genome of

this individual.

Discussion
Mapping reads to the reference genome

The size of the deletions covered by the split-reads can

range up to tens of thousands of bases, and this makes

BLAT well suited for mapping such reads back to the

genome, since it not only allows small gaps and mis-

matches within the alignment like many other alignment

tools, but also takes into account large gaps due to its

initial purpose to handle introns in RNA/DNA align-

ments [27]. In short, unlike the alignment results from

tools such as BLAST which will generate two distinct

partial alignments for a split-read covering a large dele-

tion event, the alignment results of BLAT can directly

reveal the deletion event and its up- and down-stream

alignments at the same time. Recently a new algorithm,

Burrows-Wheeler Aligner’s Smith-Waterman Alignment

(BWA-SW), has been designed and implemented to

align with gaps long reads such as 454 reads (~200 bp

or longer) to the reference genome with higher accuracy

and a faster speed than BLAT [28]. However, BLAT

should be used to align 454 paired-end reads, because

currently the average 454 read length is less than 400

bp and thus, the majority of sequences on both ends

will be shorter than 200 bp.

For the non-split reads, however, using BLAT would

be unnecessarily time-consuming, because their align-

ment results would usually only contain (if any) a small

number of mismatches. Bowtie, a recently developed

alignment tool, incorporates the Burrows-Wheeler trans-

form technique to index and search the genome in a fast

and memory-efficient manner, and is an immediate can-

didate for processing such reads [29].

The two-tiered alignment cascade is used to expedite

the step of aligning reads to the reference genome. The

first assortment step effectively fractions the sequence

reads into two subsets: ones that can be uniquely mapped

and ones that cannot. By limiting the gapped alignment

of the reads in the former subset to their associated chro-

mosomes, the tiered mapping approach removes the

unnecessary mapping attempts and thus speeds up the

alignment step. The speed gain is clearly related to the

size ratio of the two read subsets: the more uniquely

mappable reads, the bigger the speed gain. Because it is

assessed by their 35-bp end tags, the genomic uniqueness

of the reads is limited to the unique mappability of the

35-mers to the human genome. It has been estimated

that 79.6% of the genome is uniquely mappable using 30-

bp sequence tags. Since the human genome consists of

24 chromosomes, it is natural to use them as the bins for

end tag assortment. It is, however, conceivable to fraction

the human genome into large (e.g., 100 Mb) fragments

with small (e.g., 1 kb) overlaps and use them as the

assortment bins to further restrict the search space of the

Table 4 Corrected counts of SVs in the chromosome 1 and the whole genome of a Yoruba individual 1

SV type SV size range (bp)

Deletion 1-5 6-10 11-50 51-100 101-200 201-250 251-500 501-1000 > 1000 Total

Chromosome 1 20,229 3,018 1,619 183 224 156 419 37 101 25,986

Whole genome 2 252,028 37,600 20,171 2,280 2,791 1,944 5,220 461 1,258 323,753

Insertion 1-5 6-10 11-20 21-30 > 30 Total

Chromosome 1 22,187 3,743 1,074 228 213 27,445

Whole genome 276,422 46,633 13,381 2,841 2,654 341,931

Notes:

1. The true number of large SVs will be underestimated. However, this will have only a marginal effect the magnitude of the estimation of the total number of

SVs in a large chromosome or in the whole genome.

2. The true number of SVs in the whole genome is estimated by extrapolation of the corrected number of SVs in chromosome 1 by the fold increase in size from

chromosome 1 to the whole genome.

Table 3 Trio-array CGH validation of result. 1, 2

tn
3 2 3 4 5 6 7

True positive 48 23 17 12 9 7

Positive 76 27 20 15 11 9

Positive predictive value 4 0.63 0.85 0.85 0.80 0.82 0.78

Notes:

1. Only deletions longer than 50 bp called for an YRI individual (NA19240)

from the 1000 Genomes Project are selected (randomly) for the trio-array CGH

validation. Due to the data usage restriction, only validation results for

deletions in chromosome 1 are used.

2. Not every validation test yields definite result. Inconclusive results are

excluded from this table.

3. tn, threshold on the number of supportive reads.

4. Positive predictive value = True positive/Positive.
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subsequent BLAT genomic mapping of the reads whose

end tags are uniquely mapped.

Parameterization of the split-read analysis

Five parameters are intrinsic to our split-read analysis

alone: the alignment score ratio threshold tr, the

threshold on the number of supportive reads for 1-bp

SVs tn, the threshold on the maximum centeredness

for large SVs tc, the minimum number of supportive

reads for every SV identification nmin, and the expo-

nential decay parameter l. For sequence reads that are

mapped to multiple genomic locations, we use tr to

control on what level of distinctiveness such reads can

be used for the SV identification. A higher value of tr
lowers the overall mapping ambiguity and thus reduces

the number of false positives. This will, however, dis-

qualify more correct alignments and in turn increase

the number of false negatives. Small and large false SV

calls have different origins: the former result from

sequencing errors that under- or over-call bases while

the later are mostly generated by misalignments. To

count for such distinct error origins, two different

threshold functions, separately parameterized with tn
and tc using the same exponential base function, are

used to make SV calls. l controls how fast the thresh-

old changes between 1-bp and large SVs and it is set

to 1 in all of our split-read analyses. We require that

there should be at least two supportive reads for every

SV identified regardless of its length. This global

threshold (nmin = 2) dramatically reduces the false

positive SV calls.

Conclusions
Directly building our method upon BLAT, we take

advantage of the speed and the sensitivity of this popu-

lar sequence-to-genome alignment tool. However, more

importantly, we designed an assessment strategy to

score each initial indel/SV call that takes into account

both the sequencing and mapping errors. Compared

with the existing read-depth and read-pair analyses, our

sequence-based method can pinpoint the exact break-

points of indel/SV events, reveal the actual sequence

content of insertions, and cover the whole size spectrum

for deletions. We thoroughly benchmarked and vali-

dated our SRiC method against the best available meth-

ods for detecting structural variants at relevant

resolutions by using several different approaches to

extensively evaluate the performance of our method. We

illustrate the characteristics of our split-read method by

applying it to both synthetic and experimental data sets.

With the advent of the third-generation sequencing

technologies that produce longer reads, we believe the

split-read approach presented here can make a signifi-

cant contribution to the study of indels/SVs.

Methods
Sequence data are analyzed in a stepwise fashion, as

depicted in Figure 5. Below we describe our split-read

analysis in detail.

Data input

The data input for the split-read analysis are genomic

read sequences. For sufficient alignability, these reads

should have a length of hundreds of bases and cur-

rently can be generated by the Sanger sequencing or,

to a much higher throughput, the 454 sequencing.

However, we expect reads from other sequencing plat-

form (e.g., paired Solexa reads with overlap) may also

be used after preprocessing. The current system imple-

mentation only supports the widely used FASTA

sequence format.
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Figure 5 The flowchart of the split-read analysis pipeline.
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Tiered sequence alignment

The sequence reads are first processed to remove any

terminal ambiguous bases (Ns) and then mapped to the

human reference genome (NCBI Build 36.1, UCSC

hg18) using BLAT with parameters tuned for short

sequences with maximum sensitivity (-stepSize = 5, -tile-

Size = 11, -repMatch = 106, and -fine). Certain parts of

the reference genome (such as low complexity regions

and simple sequence repeats) can be masked out by

replacing the sequences with Ns to disallow indel identi-

fication in these regions. When the set of reads is large,

the aforementioned direct approach to sequence map-

ping will be very time-consuming. To enhance the

speed of the alignment step, we use a tiered approach

instead by dividing our alignment process into two

steps: a fast initial assortment of the reads followed by a

complete gapped alignment.

Briefly, we first take 35-mer tags at each end of a read,

map them to the whole reference genome using Bowtie,

a rapid alignment tool for short reads, look for those

end tags that can be mapped uniquely to the genome,

and assort the corresponding reads by their associated

chromosomes. Using BLAT to obtain the gapped align-

ments, we then align the assorted reads only to their

targeted chromosomes and the remaining reads whose

ends cannot be uniquely mapped to the whole genome.

Thanks to the modularity of the implementation, Bowtie

and BLAT used here can be replaced by other alignment

tools, such as MAQ and BLAST, with minor

modifications.

For all uniquely mappable reads, this tiered mapping

approach can speed up the alignment to the human

genome by 24 times on average. The whole process is

parallelized, and for a total of ~3 million reads (~60 GB

in size) it takes less than an hour to finish the assort-

ment step with 80 CPUs of a computer cluster. On

average, ~70% of the single-end reads of a sequenced

individual could be assorted by the aforementioned

algorithm. As a result, we anticipate an overall enhance-

ment of the alignment speed by 3 folds.

Alignment preprocessing

If a read is mapped to the genome uniquely, we keep its

alignment without additional requirements. Otherwise,

its alignments are scored and the alignment ratios calcu-

lated. The alignments are then sorted on their scores,

ratios, and the number of alignment blocks. We only

keep the top alignment when its score is at least tr
times (to be determined by simulation) as big as that of

the second best on the sorted list. Moreover, DNA

amplification as part of the library preparation proce-

dure increases the likelihood that a DNA fragment is

sequenced multiple times. Redundant sequence reads

(the same chromosome, the same strand, and the same

start position) generated from the same DNA fragments

are removed to prevent the inflation of the count of

reads that are supportive of SVs.

For paired-end sequence reads, they are processed to

release the end sequences with the pairing information

preserved for later use after the linker sequence is iden-

tified and removed. The end sequences are then mapped

and processed like the single-end reads as described

above. Because of restriction on how two ends are

mapped relatively to each other on the genome, the

pairing information increases the accuracy of their geno-

mic placement. To avoid excessive assumptions on the

distribution of the insert length, we make the minimum

requirement that two ends of a read should be mapped

to the same strand of the same chromosome. Only read

ends that make unique concordant pairs are used in the

downstream analyses.

Insertion/deletion and rearrangement identification

After sequence alignment and placing reads at their

most likely locations in the reference genome, the split-

read analysis searches these locations for insertions and

deletions in the sample genome by identifying reads that

encompass SV break points (Figure 6). To find deletions

in the sample genome, we search for reads that when

aligned to the reference genome split on the same

strand of a chromosome. Even though a deletion of an

arbitrary size can be detected as long as it is covered by

one or more reads, the size of insertions that can be

directly detected in full is limited by the read length. To

find small insertions that are fully included in the reads,

we search for reads whose terminal sequences can be

aligned next to each other on the reference genome. For

large insertions, we look for their boundaries, which are

found in reads that, except one of their ends, can be

aligned to the reference genome continuously in one

block.

For each identified SV, we count the number of reads

that ‘support’ it, nsr, and measure its centeredness in

each supportive read, ci (i = 1, ..., nsr), the ratio of the

smaller length of its two flanking alignments to the big-

ger one. It is easy to see that 0 <ci ≤ 1 and if there are

multiple supportive reads for an SV it is the maximum

centeredness that matters the most (because the evi-

dence best supportive of presence is the most informa-

tive). Thus, each SV identification is associated with two

scoring quantities: the number of supportive reads, nsr,

and the maximum centeredness, cmax (Additional file 1,

Figure S1).

Considering the lists of deletions and (small) inser-

tions together in conjunction with each other, we

resolve their final SV identities as novel deletions, novel

insertions, duplications, and translocations. To do this,

we first extract from reads the sequences of insertion
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that are at least 20 bp long and then align them to the

reference genome using BLAT. An insertion is classified

as ‘novel,’ if it cannot be aligned perfectly without gaps.

Otherwise, it is a duplication and potentially a transloca-

tion. To be the latter, at least one location of the perfect

alignments to the reference genome needs to be pre-

cisely covered by a read with deletion. The novel dele-

tions are the whole set of deletions excluding those

‘used’ by translocations.

SV call set obtention through SV call filtering and

sequencing error identification

Sequencing errors or spurious sequence alignments can

both lead to SVs calls by the split-read analysis. The

majority of such false positives can be removed by

imposing a simple global threshold that requires every

SV to be found in at least two nonredundant reads. We

further refine the call list, and since the false positives of

the short and the long SVs arise from distinct sequen-

cing and alignment errors, respectively, we treat the

short and the long SV calls differently.

Based on the SV length, false SV calls have different

origins: small sequencing errors, large misalignments,

and a mixture in between. Sequencing errors that

under- or over-call bases manifest as deletions and

insertions in the sequence reads when they are aligned

to the reference genome. False SVs of this origin have

the characteristics that they are very short, mainly 1-bp
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Figure 6 The conceptual diagrams of the split-read analysis. SVs can be detected by sequence reads spanning their break points. The split-
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SVs, and also occur largely in a random fashion. In con-

trast, false large SV calls are mostly generated by misa-

lignments in which the SVs are located very closely to

one end of the reads. False SV calls with lengths in the

narrow middle range are thought to be a mixture of

errors from either of the origins. We use exponential

functions to model such a dichotomy and the quick

transition between small and large SV lengths. Given

their distinct origins, we remove false small and large

SV calls by requiring nsr and cmax to meet the following

two conditions simultaneously:

nsr ≥ Round
[

(tn − nmin) · e−λ(l−1) + nmin

]

(1)

cmax > tc

(

1 − e−λ(l−1)
)

(2)

in which tn is the threshold on the number of supportive

reads for 1-bp SVs, tc the threshold on the maximum cen-

teredness for large SVs, l the length of the SV in base pair,

nmin the minimum number of supportive reads for every

SV identification (effectively the threshold on the number

of supportive reads for large SVs), and l the exponential

decay parameter that controls how fast the threshold

changes between 1-bp and large SVs (Figure 7). nmin = 2

and l = 1 are used in all of our split-read analyses.

The error characteristics of different sequencing plat-

forms are approximated by different error models. The

simplest model, which considers only 1-bp SVs, specifies

the probability, pe, of 1-bp SVs due to sequencing

errors. After the initial call filtering, we perform a signif-

icant test for each 1-bp SV, where the null hypothesis is

that the SV probability is the same as the probability

specified by the error model. Because pe stays the same

for all sequence reads that contain the same 1-bp SV,

we use the binomial distribution to calculate the P-

value, which is the probability of seeing the same num-

ber and more of the reads having this SV out of the

total number of reads covering this site, ncr, given the

SV probability from the error model, pe:

P =

ncr
∑

k=nsr

ncr!

k! (ncr − k)!
pk

e

(

1 − pe

)ncr−k
(3)

After the Bonferroni correction for multiple tests, the

null hypothesis is rejected if P < 0.01.

Because of the increased likelihood of both under- and

over-calling bases in homopolymers by 454 sequencing

technology, for each SV that is a part of a homopolymer

we perform a significant test after the initial call filter-

ing, where the null hypothesis is that the SV probability

is the same as the probability specified by the error

model (Additional file 1, Figure S2). The calculation of

the P-value is described above.

Calibration of the number of SVs in a genomic region

Previous steps will produce a set of SV calls for the

assayed genomic region. Because the performance of

our SR method can be assessed and quantified with the

positive predictive value and the sensitivity by extensive

simulation, we can use these error rates to derive less

biased estimate of the number of SVs in that genomic

region.

Given the number of SVs identified in sequence reads

covering a genomic region (e.g., a chromosome or

indeed the whole genome) to a certain depth, the total

number of SVs of a certain length can be estimated

using the positive predictive value and the sensitivity

determined in a simulation data set with the same

sequencing coverage:

Nest
l,c =

PPVl,c

Sl,c

· Nobs
l,c , (4)

in which Nobs
l,c , PPVl, c, and Sl, c are the number of

SVs, the positive predictive value, and the sensitivity for

SVs of length l (bp) observed in reads giving c-x

sequence coverage. This method is not applicable to

SVs of a certain length that are not observed (i.e.,

Nobs
l,c = 0). For large SVs, it is more sensible to use a

range of length, instead of discrete lengths.

Figure 7 The curves of the threshold functions. Each SV call is

scored by the number of supportive reads and the maximum

centeredness in those reads. The thresholds on these two quantities

are determined by two threshold functions, plotted as the read and

the blue curves, respectively. The gray dashed curve is the threshold

function for the number of supportive reads before rounding. The

parameter values used for the shown functional curves are l = 1, tn
= 8, and tc = 0.7.
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Additional material

Additional file 1: Supplementary materials. PDF file includes

additional Methods and associated references, Tables S1 and S2, and

Figures S1, S2, and S3.
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