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I. INTRODUCTION

There are many applications for which one
is interested in performing target detection and
classification based on a sequence of high-range
resolution (HRR) radar signals [1—7]. In such
scenarios one implicitly views the target from a
sequence of observations, due to target and/or sensor
motion. One approach to processing such a sequence
of waveforms is to form a synthetic aperture radar
(SAR) or inverse SAR (ISAR) image [5, 6, 8, 18, 19]
with subsequent detection/classification performed
in the image domain. We consider an alternative
approach, in which one processes the sequence of
HRR waveforms directly, without explicitly forming
an image. Since SAR/ISAR are preferable for the
case of fixed targets, the technique presented here is
most appropriate for moving targets. The sequence of
waveforms is processed using a hidden Markov model
(HMM), HMMs having been utilized previously for
processing data from several sequential-scattering
problems [9—11]. The principal contributions of
this paper involve development of techniques for
characterization of the HMM states, for the case
of HRR data. Moreover, algorithm performance is
examined using the MSTAR data set [17]. Below we
review the HMM paradigm, as applied to multiaspect
scattering data, and discuss issues associated with its
application to HRR data.
Before proceeding, however, it is important to

emphasize that the approach presented here is most
appropriate for the case of moving targets, since
the two-dimensional imagery afforded by SAR is
generally preferable when the target is fixed. The
connection between joint sensing of moving and
stationary targets has been discussed in [20]. For the
case of moving targets one will often have a good a
priori estimate of the target pose (e.g. from Doppler
information), while this is clearly unavailable for the
case of a fixed target. We note that in the example
results discussed in Section IV, we consider fixed
targets from the MSTAR data set. This is simply
based on the availability of data, rather than a specific
endorsement of HRR for fixed (stationary) targets.
HRR scattering from complex targets yields

target signatures that are a strong function of the
target-sensor orientation [1—7]. Nevertheless, there
are generally contiguous sets of orientations (aspects)
for which the scattering physics vary slowly, and
for which the associated HRR waveforms can be
approximated as stationary statistically. Each such
set of angles is termed a “state” [9—11]. When one
measures multiple HRR waveforms from a sequence
of target-sensor orientations, one implicitly samples
waveforms from a sequence of target states. Since the
targets of interest are distant and possibly concealed,
both the target identity and pose are unknown,
and therefore the particular set of states that are
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sampled is deemed “hidden.” In many applications
the sequence of sampled states can be characterized
via a Markov process, the overall construct therefore
yielding an HMM. This basic paradigm has been
applied to several scattering problems [9—11], with
characterization of the state-dependent statistics
constituting the most problem-dependent HMM
component. We extend characterization of the
state-dependent statistics to the case of HRR data.
There has been much previous work on

characterizing HRR statistics for individual waveforms
[1—4, 7], with this extended here to the multiaspect
case. Some authors have developed models for the
statistics of the HRR range bins, without performing
feature extraction [4, 12]. In this approach one
typically must make assumptions concerning the
range-bin-dependent statistics. For example, the
constrained quadratic classifier [4, 12] is based on
an uncorrelated-Gaussian model for the range-bin
amplitudes. Alternatively, one can perform feature
extraction, with this often manifesting dimensionality
reduction. Recent HRR studies have considered
“peak-amplitude features” [4]. Other example feature
extractors include the RELAX algorithm [13], from
which waveform constituents are extracted, these
characteristic of the principal target scattering centers.
We consider RELAX feature extraction, and develop
two distinct statistical models. The key novelty of
these statistical models, vis-à-vis previous studies
[1—4, 7], is that the aforementioned HRR models
are used as components in an HMM. In particular, a
distinct statistical model is used for each state of the
HMM, recalling that an HMM state is characterized
by a set of target-sensor orientations over which the
associated scattered waveforms are approximately
stationary. The statistical relationships between a
sequence of HRR waveforms are accounted for via
the HMM probabilities of transitioning from one state
to the next, for a given angular sampling rate [9—11].
The remainder of the text is organized as follows.

In Section II we briefly review the HMM construct,
followed by a detailed discussion on how the
state-dependent HRR statistics are characterized and
employed in the context of the HMM states. The
MSTAR data set is reviewed in Section III, along
with a discussion of how such is used to generate a
sequence of HRR waveforms. Several sets of example
results are presented in Section IV, with conclusions
summarized in Section V.

II. HMM PROCESSING OF SEQUENTIAL HRR DATA

A. HMM Basics

Fig. 1 represents a typical configuration for
airborne interrogation of a ground target. The
airborne radar periodically transmits coherent
pulses of microwave energy, which impinge the

Fig. 1. Schematization of how the HMM is used to process a
sequence of HRR waveforms. (a) Target is viewed from constant
depression angle and multiple azimuthal positions. (b) Azimuthal
variation of scattered fields characterized by set of states (here
three shown), over which scattering physics approximately

stationary.

ground target at depression angle '. Each pulse is
subsequently reflected from the target and received
by the radar. After some preprocessing of these
scattered radar echo pulses, a sequence of HRR
signatures is obtained, each representative of the target
as viewed from a distinct target-sensor orientation
(with particular target-sensor orientations dependent
on the sensor motion and target pose, with the latter
typically unknown). For simplicity, in the studies
presented here the depression angle is assumed
constant, and therefore the variable target-sensor
orientations are modeled as a change in the azimuthal
orientation. The depression angle of the incident
wave can be maintained as constant by controlling
the sensor flight path, although in practice this
constant-depression-angle assumption may have to
be relaxed.
It is well known that HRR signatures exhibit

significant variability as viewed from different
orientations [1—4, 7]. Nevertheless, there are typically
contiguous angular sectors over which the scattered
fields are approximately stationary statistically.
As discussed in the Introduction, each such sector
is termed a “state,” and the sequence of HRR
measurements sample waveforms from a sequence
of target states, with this sequence well characterized
via a Markov model [9—11]. In practice the target
orientation is unknown (or “hidden”), in addition
to the target identity, and therefore the sequence of
scattered waveforms is characterized by an HMM.
In the classification algorithm an HMM is

designed for each target of interest. A given set of
sequential HRR data under test is submitted to all
HMMs, and the data is associated with that target
for which the respective HMM yields the largest
likelihood. If the likelihoods from all HMM classifiers
are below a prescribed threshold, then the sequential
data can be declared not representative of any of the
targets seen while training.
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Assume a target is partitioned into N distinct
states, denoted by the set S = fs1,s2, : : : ,sNg. As
discussed above, here the states constitute an
azimuthal partitioning. The HMM state-transition
probabilities are denoted by the matrix A=
faijg, where aij is the probability of transiting on
consecutive measurements from state i to state j.
Further, the initial-state probabilities are denoted
by the vector ¼ = f¼ig, where ¼i is the probability
of sampling state i on the first measurement
(of the sequence). For the sequence of HRR
measurements, assume that ±µ represents the change
in the target-sensor orientation, upon consecutive
measurements. Let µi represent the angular extent of
state i. We assume ±µ < µi, for all i, implying that on
consecutive measurements one can stay in the same
state or transition into an adjacent state. This yields
a tri-diagonal state-transition matrix A. Based on the
aforementioned assumptions with regard to ±µ and µi,
one can readily demonstrate the following estimations
for the state-transition probabilities:

ai,i¡1 = ai,i+1 = ±µ=(2µi) ai,i = (µi¡ ±µ)=µi: (1)

Moreover, if the initial target pose is uniformly
distributed azimuthally, we similarly have

¼i =
µiPN
i=1 µi

: (2)

As discussed further below, (1) and (2) constitute
initial estimates for A and ¼, with these refined via
Baum—Welch training [14] (see Section IIC).

B. State-Dependent Statistics: RELAX

Consider the frequency-dependent complex
HRR waveform X(!), scattered from a given target
at a particular (generally unknown) target-sensor
orientation. The RELAX algorithm [13] is used to
extract point-scattered wavefronts from X(!), from
which the range (time) dependent HRR waveform is
realized

x(r) =
KX
k=1

Axkw(r¡ rxk ) (3)

where x(r) is the Fourier transform of an
approximation to X(!), with X(!) approximated
from the K wavefronts extracted from RELAX. Each
RELAX-extracted wavefront is representative of a
point scatterer, with Axk = a

x
k exp(jÁ

x
k) constituting the

complex amplitude of the kth wavefront (magnitude
axk), and w(r) is the real window function used
to represent the spatial support of the wavefronts
(defined by system bandwidth). The symbol rxk
represents the time of arrival of the kth wavefront,
extracted via RELAX. In the work presented here w(r)
is a Gaussian with variance consistent with the sensor
bandwidth. For each complex HRR waveform (3) we

define the real and positive function

x̃(r) =
KX
k=1

axkw(r¡ rxk ): (4)

Now consider two HRR signatures x̃(r) and ỹ(r), for
which we wish a distance measure. The distance is
defined in terms of the correlation

C(x,y) =
Z
drx̃(r)ỹ(r) =

KX
k=1

KX
i=1

axka
y
i

£
Z
w(r¡ rxk )w(r¡ ryi )dr

=
KX
k=1

KX
i=1

axka
y
i g(r

x
k ¡ ryi ): (5)

Since w(r) is Gaussian, so is g(r), with twice the
variance. Using matrix notation, (5) can be rewritten
as

C(x,y) = aTxWxyay (6)

with Wxy a K £K matrix representing the functions
g(rxk ¡ ryi ). Superscript T represents transpose of a
column vector. Note that the correlation in (5) can be
computed directly from the RELAX outputs, without
having to explicitly form the range profile (4).
We now define the distance

d2(x,y) = aTxWxxax+ a
T
yWyyay ¡ 2aTxWxyay (7)

which is referred to as the spatially weighted distance
(SWD), in which each element in the weighting
matrix is a function of spatial distance between
scatterers. In (7) Wxx and Wyy are of the same form as
Wxy. Note that if the wavefronts are spaced uniformly,
such that ¢= rxk+1¡ rxk = ryi+1¡ ryi and g(¢) = 0,
then this distance measure reduces to the traditional
Euclidean distance

d2(x,y) = aTx ax+ a
T
y ay ¡ 2aTx ay = (ax¡ ay)T(ax¡ ay):

(8)

The distance measure in (7) plays a pivotal role in
the HRR HMM, as currently designed. In particular,
for the N states S = fs1,s2, : : : ,sNg characteristic of
a given target, we define a codebook of N codes
C = fc1,c2, : : : ,cNg, with code cn associated with state
sn. Recall that the HMM requires a state-dependent
statistical measure. In the context of RELAX feature
extraction, we have implemented this in two ways.
Consider a sequence of M HRR waveforms,

representative of viewing the target from a sequence
of M orientations, with each waveform parsed into
a set of K point-scatter features via RELAX. In
the context of a discrete HMM [11], each set of
RELAX features is mapped into a distinct codebook
element (a code from C), using a nearest neighbor
mapping implemented via the distance measure
in (7). In this context each HRR waveform in
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the sequence of M is mapped to a distinct code
(analogous to vector quantization [15]), and therefore
after quantization the original M HRR waveforms
are represented by a sequence of M codes (each
a member of C). The HMM is used to define the
target for which such a sequence of codes is most
likely. The state-dependent probability of observing a
particular code is characterized via a matrix B= fbijg
where bij represents the probability of observing code
i in state j.
While a discrete HMM is relatively simple, being

characterized by the set of codes C, state-transition
matrix A, initial-state probabilities ¼, and the
state-dependent probability matrix B, such a model
has well-known limitations. In particular, there is
distortion [15] when one performs the aforementioned
vector quantization, thus undermining performance.
Moreover, as the number of targets of interests
increases, the number of codes also increases, making
B a large matrix (this issue is discussed further
below).
To mitigate these problems, we have also

considered a continuous HMM [14]. We again
define a codebook C = fc1,c2, : : : ,cNg, with code cn
associated with state sn. For a given HRR signal x the
likelihood that x is associated with state sn is defined
as

p(x j sn) =
1p
2¼´n

exp
·
¡d

2(x,cn)
2´2n

¸
: (9)

The likelihood in (9) is clearly motivated by a
Gaussian distribution, but here we explicitly utilize
the distance measure d2, which is tied to the RELAX
features extracted from the HRR waveform. Therefore,
the continuous HMM is of the same form as its
discrete counterpart, with the B matrix in the latter
replaced in the former by p(x j sn).
It is worthwhile to emphasize an important

distinction between the continuous and discrete
HMMs. As implemented here both methods employ
a codebook C, but they utilize such in distinct ways.
Considering first the discrete HMM, the HMM matrix
B associated with a given target must include the
codes across all targets of interest. If, by contrast, the
B matrix associated with a given target Ti were only
to use codes associated with Ti, then the quantization
procedure for the associated HMM would map any
HRR profile into a code characteristic of Ti. Therefore,
in B we utilize the complete set of codes for all
targets of interest, accounting for target-dependent
code diversity. Consequently the size of B grows with
the number of targets of interest. On the other hand,
the density function p(x j sn) utilized in the continuous
HMM accounts for waveforms that are not matched to
a given target-dependent codebook by yielding a low
likelihood (ideally, if x is not associated with state sn,
p(x j sn) will be small). Hence, in defining p(x j sn)
for a given continuous HMM, one only employs

codes from the associated target, and therefore the
continuous-HMM complexity does not increase with
the number of targets.
Concerning the design of the state decomposition

S = fs1,s2, : : : ,sNg and the associated set of codes C =
fc1,c2, : : : ,cNg, we initially divide the scattering data
into N states, using a uniform angular decomposition
(for N states, each has angular extent 360±=N). Using
the training data associated with target Ti we perform
RELAX on all HRR waveforms, and the code cn is
the average of the RELAX features from state sn. The
above state decomposition and codes only constitute
an initialization, with this optimized subsequently
via the expectation-maximization (EM) algorithm
discussed in Section IIC.

C. Expectation-Maximization HMM Optimization

The discussions in Section IIB employed
state-dependent statistical models based on an
assumed state decomposition. Moreover, various
averaging procedures have been employed to compute
such HMM components as codebooks (discrete
HMM) and density-function parameters (continuous
HMM), once the state decomposition is defined.
Clearly the quality of the associated HMM is dictated
by the quality of such model-parameter estimations.
We have therefore employed optimization algorithms
to refine the HMM parameters, and therefore the
model-parameter computations discussed in Section
IIB are simply initializations for the model parameters,
followed by the optimization procedure discussed
below.
The EM HMM training algorithm starts by

defining the forward variable

®m(n) = p(o1o2 : : :om,qm = sn j ¸) (10)

and backward variable

¯m(n) = p(om+1om+2 : : :oM j qm = sn,¸) (11)

where O = fo1,o2, : : : ,oMg is representative of the
sequence of M observed HRR waveforms (more
specifically, the components of the M HRR profiles
used in the HMM model), qm is the state sampled by
the mth measurement (this “hidden”), sn represents the
nth state of a given target (with n= 1,2, : : : ,N), and ¸
represents the associated HMM parameters. We define
two intermediate variables

»m(i,j) = p(qm = si,qm+1 = sj jO,¸)

=
p(O,qm = si,qm+1 = sj j ¸)

p(O j ¸)

=
®m(i)aijbj(om+1)¯m+1(j)PN

i=1

PN
j=1®m(i)aijbj(om+1)¯m+1(j)

(12)
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and

°m(i) = p(qm = si jO,¸)

=
p(O,qm = si j ¸)

p(O j ¸)

=
®m(i)¯m(i)PN
i=1®m(i)¯m(i)

=
NX
j=1

»m(i,j): (13)

In (12) the expression bj(Om+1) represents the
likelihood of observing Om+1 in state j. For the
discrete HMM, Om+1 corresponds to a discrete code
(after quantization), while for a continuous HMM
it corresponds to RELAX features (Section IIB).
In particular, for the continuous HMM employing
RELAX features bj(Om+1) is represented by (9).
Given the observation sequence O =

fo1,o2, : : : ,oMg and the current HMM parameters ¸,
the Baum—Welch algorithm reestimates the HMM
parameters as

¼̂i = °1(i) (14)

âij =
PM¡1
m=1 »m(i,j)PM¡1

m=1

PN
j=1 »m(i,j)

: (15)

and the code associated with state n is approximated
as

ĉn =
PM
m=1 °m(n) ¢ omPM
m=1 °m(n)

: (16)

For the case of the continuous HMM, based on
RELAX features, the EM update procedure is more
involved. The associated details are summarized in
Appendix A.
The EM algorithm iterates by using the new HMM

parameters ¸ reflected in (14)—(16) to recompute the
parameters in (10)—(13), with this process repeated
until ¸ converges. Upon convergence the match
between the training data (represented by the training
observation sequences O) and HMM models is
improved, generally increasing the likelihood of the
training data when applied to the final HMM (relative
to the HMM using the original model parameters).
However, we note that the EM algorithm does not in
general yield the global optimal maximum likelihood
(ML) solution, and therefore a good initialization is
important. We here utilize the initialization discussed
in Sections IIA and IIB.
A final point is in order concerning the HMM

training. The EM algorithm is designed to maximize
the likelihood of a given set of training data, as
applied to the associated HMM statistical model.
When training a given HMM, we therefore utilize
no additional information concerning other targets
that may be encountered. If desired, one could design
the HMM for target Ti such that the likelihood of the
training data is maximized when submitted to the
associated model, while simultaneously minimizing

the likelihood for training data associated with all
other known targets Tj 6= Ti. This approach may yield
improved classification performance, but it assumes
knowledge of other targets that may be encountered.
We have not utilized this HMM-design approach,
although in some applications it may be appropriate.

III. DATA SET UNDER CONSIDERATION

We consider the MSTAR data set for testing the
algorithms discussed in Section II. As elucidated
in other papers [5, 6], the MSTAR data consists
of X-band scattering from ten targets. The data
typically consists of image chips. These images have
been converted into a sequence of HRR waveforms,
through several filtering operations. The HRR data
was provided to the investigators by the US Defense
Advanced Research Projects Agency (DARPA), with
the conversion of MSTAR images to HRR waveforms
performed under the DARPA TRUMPETS program.
All ground-based targets are of very similar shape
(most are military vehicles, although there are a few
civilian vehicles [5, 6]).
We provide a brief summary of how MSTAR

images are converted to aspect-dependent HRR
signatures (for more details, see [17]). Consider an
MSTAR image i(z,y), where z reflects the downrange
dimension and y the cross range. The image consists
of bipolar real pixel values. A two-dimensional (2-D)
inverse fast Fourier transform (FFT) is first taken of
i(z,y) to obtain the associated phase-history data. The
original images are weighted and over-sampled, so the
phase history is a convolved and zero-padded version.
We next perform deconvolution of the weighting
and removal of the zero-padding, followed by a 2-D
FFT, to produce a deconvoled and Nyquist-sampled
image ĩ(z,y) that contains both the target and any
surrounding clutter. We now extract that portion of the
resulting image associated with the target of interest
(segmentation). An inverse FFT is now performed
in the y dimension, for all z, from which each
z-dependent waveform, for a fixed y, corresponds
to an HRR profile. Using multiple images i(z,y) for
a given target, corresponding to distinct rotational
positions of the target relative to the sensor aperture,
we extract HRR profiles from numerous target-sensor
orientations. The multiple aspect-dependent HRR
profiles for a given target type and depression are then
placed into contiguous 1± azimuthal bins. The sponsor
segregated the data into distinct training and testing
sets. As discussed below, the size of the training and
testing data was set to be equal. This segmentation
of testing and training data was specified by DARPA
under the TRUMPETS program. The HRR signatures
have a bandwidth of 600 MHz centered at 10 GHz,
and have a range resolution of approximately 0.3 m.
The data is considered at two depression angles

(15± and 17±), and for each the variable azimuthal
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positions are distributed in the full range of 360±,
with azimuthal sampling approximately 0:1± as
discussed above. As described in Section IIA, our
HMM model is valid for any angular sampling
rate ±µ that satisfies ±µ <mini(µi), where µi is the
angular extent of the ith HMM state. With the 0:1±

rate each target is characterized by 3,601 HRR
waveforms over the full 360± aspect range, resulting
in a cumulative total of 36,010 training signatures
and 36,010 testing signatures for the ten targets.
The testing and training data is distinct, as defined
by the aforementioned random partitioning. Due to
the uniform azimuth sampling, an equal number of
training and testing waveforms are obtained. The
depression angle (relative to grazing) is 15± for all
examples considered.

IV. EXAMPLE RESULTS

A. Preliminaries

In the first set of example results, we consider
a 3± angular aperture for the sequential HRR data
under test, which at the angular sampling rate of ±µ =
0:1± corresponds to a sequence of M = 31 scattered
waveforms. Each of the ten MSTAR targets under
consideration is partitioned into 120 states, over a
360 azimuthal angular range, corresponding to an
initialization of 3± state sizes (this is reapportioned in
the HMM training, so that the state sizes subsequently
adjust to account for the scattering physics). The large
number of states is reflective of the target complexity
(as described further below) and the small operating
wavelength (3 cm) relative to characteristic target
dimensions.
In Section IIIA we discussed a discrete HMM,

in which the features associated with each HRR
waveform are mapped to a code, and therefore the
sequence of M HRR profiles is transformed to a
sequence of M codes. We have implemented such
an HMM in the context of RELAX feature parsing
(the codes represent a discretization of the RELAX
feature space). We have found that, for the MSTAR
data set, the discrete HMM yields performance worse
than that of a continuous HMM, and therefore all
results reported here are for continuous HMMs. The
discrete HMM is also undesirable due to the very
large B matrix characteristic of the ten targets under
test (see Section IIB).
One of the significant complicating issues in

multiaspect HRR scattering is the scintillation caused
by relatively small scattering centers that come in
and out of view with relatively small changes in
aspect (target-sensor orientation). By limiting RELAX
wavefront extraction to the relatively large scatterers,
we mitigate scintillation to some extent. In the course
of the work reported here, we have extracted the
K = 15 principal wavefronts (scattering centers) from

Fig. 2. Total likelihood as function of EM-algorithm iteration
number. Results shown for extended Baum—Welch training with
one long forward sequence and one backward sequence covering
clockwise and counterclockwise directions in full 360± azimuthal
range and with 0:1± azimuth sampling. Fixed 15± depression used.

each of the M = 31 scattered wavefrorms in the 3±

angular sequence. For these studies the parameter K
has not been optimized. Such optimization is a subject
of significant interest, in that K should be small
enough to avoid relatively small scattering centers that
may lead to scintillation, while being large enough
to extract the principal scattering centers robustly
and retain sufficient information to aid classification
performance.

B. HMM Training

There are many methods for selecting the training
sequences. Here we train the HMM from a long
forward sequence and a long backward sequence. A
long forward sequence is the sequence of waveforms
with azimuths in the forward order 0± ! 0:1± !
¢¢ ¢ ! 359:9± ! 360± while a long backward sequence
are the same waveforms but with azimuths in
reversed order. These sequences capture all sequential
information and state statistics. The only information
left out is the initial state probability distribution ¼.
However we can easily account for this via geometry,
as implemented in (2). We train a HMM using the
training sequences from each of the ten MSTAR
targets and thus obtain ten distinct HMM models. To
show the convergence of the EM algorithm, in Fig. 2
we plot for each HMM model the total likelihood as
a function of the EM training iteration number. It is
seen that the likelihood exhibits a monotonic increase
over iterations as expected by the EM algorithm. The
likelihood converges after 6—9 iterations. This can
be attributed to the good guess of the initial HMM
parameters and the long-sequence selection scheme.
The EM training can be viewed as an evolution

of the state decomposition, that is, as the training
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Fig. 3. Convergence of state decomposition as function of EM-algorithm iteration number. Results shown for 20± deg of sequential
data, 0:1± angular sampling. Data corresponds to ZSU target (see Table I). (a) Iteration one. (b) Iteration two. (c) Iteration three. (d)

Iteration four. (e) Iteration five. (f) Iteration six.

proceeds, each state has more clearly defined
boundaries. To demonstrate this, we consider a
sequence of 200 HRR profiles from target ZSU234,
over a 20± angular extent (recall the 0:1± sampling).
We plot in Fig. 3 the likelihood that each of the
200 profiles is associated with a given HMM state,
with the states considered encompassing the range
of angles under consideration (here we consider
five states). To be specific, for each iteration of
the EM algorithm, we compute the likelihood that
the mth measurement in the sequence (the mth

HRR waveform) is associated with state si. This is
quantified using °m(i) from (13). Note that initially
the states are defined by a uniform decomposition in
azimuth, and each is 3± in extent (the initialization
described in Section II). As the EM algorithm iterates,
the state partitioning is adjusted, such that the states
are no longer necessarily of the same angular extent.
Moreover, upon convergence, the state decomposition
and the associated parameters are such that each HRR
profile is more clearly associated with a particular
state. We see from Fig. 3 that the EM algorithm
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TABLE I
Confusion Matrix for Ten MSTAR Targets

Note: Classification rate (in percent) shown using 3± aperture and 0:1± azimuthal sampling (a sequence of 31 HRR waveforms).
Photographs shown of each target.

TABLE II
Confusion Matrix for Ten MSTAR Targets

Note: Classification rate (in percent) shown using 6± aperture and 0:1± azimuthal sampling (a sequence of 61 HRR waveforms).

converges after five iterations for ZSU234 and that
the final state decomposition is different from the
initialization. We reiterate that the state decomposition
is dictated by the scattering physics, with each state
representative of approximately stationary scattering
(as a function of target-sensor orientation).

C. HMM Classification

In Table I we present confusion-matrix results for
the ten-target problem, considering all 3± sequences
for all targets. Also shown in Table 1 are photographs
of the ten (similar) targets under consideration. For
the 3± angular data considered, we find that the
RELAX-based HMM yields an average classification
rate of 82%. In the RELAX algorithm there is no
waveform averaging, with scintillation addressed by
limiting the number of scattering centers extracted
(here K = 15 in (3)). We have also tried using other

values of K, but for the data considered the results
are similar. In fact, when K increases to K = 20,
performance actually declines, presumably due to
enhanced scintillation (inclusion of five additional
scattering centers, the characteristics of which
change quickly with variable target-sensor
orientation).
Note that with 120 states per target, each state

initialized at 3± in extent (with this adjusted during
training, see Section IVB), a test sequence of 3±

extent is likely to only realize a single state transition.
Multiple targets may have similar states, but the
character of multiple adjacent states is likely to be
more target dependent. Therefore, by increasing the
angular extent of the test sequence, the additional
state transitions are likely to improve classification.
In Table II we reconsider the RELAX-based HMM,
but now consider sequences of 6± angular extent
(M = 61, with 0:1± angular sampling). We see in
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Table II that classification performance now improves
considerably, to an average of 92%. Note that the
same HMMs applied to the 3± sequences are applied
directly for the 6± sequences. This underscores the
HMM utility, since separate models are not required
for different sequence lengths (image-based classifiers
are dependent on the aperture size used for image
formation).

D. Receiver Operating Curves

The results in Tables I and II considered
classifying all ten targets at once, with a given
sequence of scattered waveforms under test submitted
to the HMMs from all ten targets. The data was
classified as associated with that target for which the
corresponding HMM yielded the largest likelihood.
It is also of interest to consider the binary hypothesis
test, for which one must choose between one of two
events. In this case we assume that the data under test
is representative of one of two hypotheses, where
for our problem a given hypothesis is associated
with a particular target. If HMM1 is associated with
hypothesis one, and HMM2 associated with hypothesis
two, we form the likelihood ratio R =HMM1=HMM2.
A given sequence of scattered waveforms is submitted
to HMM1 and HMM2, from which R is computed.
For a prescribed threshold t the data is associated with
target one if R > t, and otherwise it is associated with
target two. By varying the threshold t, we generate the
probability of detection versus the probability of false
alarm, termed the receiver operating characteristic
(ROC).
In Figs. 4 and 5 we plot ROCs for the case in

which one target is D7 (hypothesis one), and we
consider each of the other nine targets individually
as hypothesis two. This yields nine ROC curves. In
Fig. 4 we consider a sequence length corresponding
to a 3± aperture (as in Table I), while in Fig. 5 we
consider results for the case of a 6± aperture (as in
Table II). We see in Figs. 4 and 5 that we obtain very
good classification within the context of the binary
test. A similar set of examples was considered
in [18].

E. Consideration of Targets Not Seen While Training

In the examples discussed above the training
and testing data were segregated, although all data
was measured from the same particular target (for
example, all the T72 data came from a single,
particular example of a T72). There are often
differences between particular realizations of the same
military target, with such differences complicating
target classification. For example, for the data
considered here we had available scattering data from
eleven realizations of the T72 tank, manifested by
different realizations of the fuel tank, antenna, etc.

Fig. 4. ROC curves for target D7 as compared, one-by-one, with
each of the other nine targets. Total aperture of 3± applied.

Fig. 5. ROC curves for target D7 as compared, one-by-one, with
each of the other nine targets. Total aperture of 6± applied.

We also had three realizations of the BMP2 target.
It is of significant interest to examine algorithm
robustness to such differences in the particular target
realization.
When one examines the scattered waveforms

from different realizations of the T72 (for the eleven
examples available), one often witnesses significant
variation, for the same target-sensor position. This is
reflective of the physical differences in the targets,
as outlined above. We therefore performed the
following test. We trained four distinct T72 HMM
classifiers, using training data from four of the eleven
available realizations of the target. The testing was
then performed using data from all eleven realizations
of the T72. The use of four classifiers for the same
target was motivated by the desire to capture as large
as possible a range in variation of the physical target
realization. For the four T72 examples for which
training data was used, the training and testing data
were segregated in the manner discussed previously.
With regard to the BMP2 target, we trained on two
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TABLE III
Classification Results as in Table II, with Eleven Examples of T72 Target and Three Examples of BMP2 Target

Note: Four T72 and two BMP2 classifiers are designed, based on, respectively, four and two realizations of the target. Horizontal
labels correspond to classifiers (four for T72 and two for BMP2). Vertical labels correspond to all targets considered when testing. Note
that seven examples of T72 and one for BMP2 were not used while training. Total classification performance reflected in right-most
column.

of the target realizations, and tested on all three. We
show results for an example choice of the four T72
and two BMP2 training selections, although we found
in practice this decomposition was not critical (e.g.
which four particular T72 targets were chosen was not
critical, as long as they captured the variation in the
physical makeup of the targets). The TRUMPETS data
associates different “serial numbers” with the eleven
T72 and three BMP2 targets, and these are identified
in the discussion below.
In Table III we present results for a 6± aperture,

using 0:1± sampling, as was considered in Table II.
The classifiers for the T72 and BMP2 targets were
trained as discussed above, while the classifiers for
the other eight targets (each only having one serial
number) were trained as in the previous results. In
Table III we present results in which the horizontal
identifies all classifiers (four for the T72, two for the
BMP2, and one for all other targets). The vertical
axis identifies all testing examples (eleven for the
T72, three for the BMP2, and one for all others).
The right-most column reflects “total” performance,
defined as follows. For the T72 the total performance
is reflective of the percentage of times one of the
eleven T72 testing examples was associated (in a
ML sense) with one of the four T72 classifiers. For
the BMP2 the total performance is reflective of the
percentage of times one of the three BMP2 testing
examples was associated with one of the two BMP2
classifiers. For the remaining eight targets total
performance is reflective of the likelihood that the
training data is associated with the proper classifier

(there is only one source of training and testing data
for these cases).
The results in Table III indicate that the target

complexity, and variation between different
realizations of the same target yields classification
degradation. Nevertheless, the results in Table III do
indicate that the algorithm generally does a reasonable
job of classifying a target, even when the particular
realization of the target was not seen prior to testing.
The degradation in Table III underscores that the
technique developed here is most appropriate for
moving targets, for which a priori pose information
is often available (such information was not used here,
for the fixed targets in this data set).

V. CONCLUSIONS

We have addressed multiaspect target classification
using a sequence of HRR waveforms. The sequence
of waveforms are processed via an HMM, the
states of which reflect a generally contiguous set
of target-sensor orientations for which the wave
scattering is relatively stationary. The sequence of
HRR profiles, from a given target, implicitly samples
HMM states. When performing classification, the
target identity and orientation (pose) are unknown,
and therefore the sequence of states being sampled is
“hidden.” We have characterized the statistics of the
HMM states in the context of feature parsing, with
such performed via RELAX [13]. A state-dependent
statistical model has been devised for the variation of
the RELAX features.
The multiaspect HRR problem is highly

complicated by the size of the radar wavelength
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relative to characteristic target dimensions. The high
degree of resolution offers potential for classification,
but it also leads to scattering that changes very
quickly with aspect. This has led to the large number
of HMM states used in the classifiers. In the results
presented here there are 120 states for each target,
over a 360± azimuthal extent. One can use fewer
states, but classification performance deteriorates.
In future research the model must be extended to
perform the state decomposition over 4¼ steradians,
with states defined by solid angles. This will lead
to a very large number of states, reflective of target
complexity. However, in practice one may limit the
number of states under test. For example, for HRR
sensing of airborne targets, one can use Doppler
processing to estimate the target flight path. Such
information can significantly reduce the number of
states that must be examined when testing the HMM.
This underscore our earlier observations that the
method present here is most appropriate for moving
targets.

APPENDIX A

The ML estimate of the HMM parameters ¸ is
formulated as

¸ML = argmax[logP(O j ¸)] (17)

where recall that O = fo1,o2, : : : ,oMg is the sequence
of M observations. The motivation of the EM
algorithm is that associated with the observation data
O there can be some unobservable or hidden data
such that if the hidden data were made known it
would be easier to fit the observed data to the
model [16]. In our case the states are hidden. The key
to the EM algorithm is to devise an auxiliary
function [16]

Q( ¯̧ j ¸) = EQjO,¸ logP(O,Q j ¯̧ ) (18)

where Q is the hidden data, O is the observed
data, ¸ and ¯̧ are the present and new parameters,
respectively.
The EM algorithm consists of the following

two steps [16]: step 1 (expectation) in which we
compute Q( ¯̧ j ¸k) = EQjO,¸k logP(O,Q j ¯̧ ), and
step 2 (maximization) in which we find ¸k+1 =
argmax¯̧ Q( ¯̧ j ¸k). It can be shown that ¸k will
increase monotonically to a maxima [16], although
not necessarily to a global maxima.
We now apply the EM algorithm to the

HRR-HMM and derive the extended Buam—Welch
algorithm. For training O = fo1,o2, : : : ,oMg there
exist a set of possible states paths, with invalid paths
accounted for by the paths with one or more zero
probability transitions. Denote a state path as Q =

fq1,q2, : : : ,qMg, then
logP(O,Q j ¯̧ )

= log

"
¼̄q1P(o1 j q1, ¯̧ )

M¡1Y
m=1

āqmqm+1P(om+1 j qm+1, ¯̧ )
#

= log ¼̄q1 + logP(o1 j q1, ¯̧ )

+
M¡1X
m=1

[log āqmqm+1 + logP(om+1 j qm+1, ¯̧ )]: (19)

Taking conditional expectation EQjO,¸ of (19) and
using the Markov property of Q, we have

Q( ¯̧ j ¸)

= EQjO,¸[log ¼̄q1 + logP(o1 j q1,
¯̧ )]

+

M¡1X
m=1

EQjO,¸[log āqmqm+1 + logP(om+1 j qm+1,
¯̧ )]

=

NX
n=1

P(q1 = sn j O,¸)[log ¼̄n+ logP(o1 j q1 = sn, ¯̧ )]

+

M¡1X
m=1

"
NX
i=1

NX
j=1

P(qm = si,qm+1 = sj jO,¸) log āij

+

NX
n=1

P(qm+1 = sn j O,¸) logP(om+1 j qm+1 = Sn, ¯̧ )
#

(20)

which is the expectation step. Substituting (12)—(13)
into (20), we have

Q( ¯̧ j ¸) =
NX
n=1

°1(n)P(q1 = sn jO,¸)

£ [log ¼̄n+ logP(o1 j q1 = sn, ¯̧ )]

+
M¡1X
m=1

24 NX
i=1

NX
j=1

»m(i,j) log āij +
NX
n=1

°m+1(n)

£ logP(om+1 j qm+1 = Sn, ¯̧ )
35 : (21)

To accomplish the maximization step, we differentiate
Q(¸ j ¯̧ ) with respect to each parameter and equate the
result to zero.
For the state transition matrix A and initial state

distribution ¼, we must preserve the constraintsPN
j=1 aij = 1 and

PN
j=1¼j = 1. These constraints

are implemented via Lagrange multipliers, as in a
traditional HMM [14], the results from which are
given in (14) and (15).
We now focus on the HMM parameters

required for the RELAX-based density function
in (9), this component unique to the methodology
presented here. For the parameters in (9), i.e., ¸G =
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(ac1 ,ac2 , : : : ,acN ;rc1 ,rc2 , : : : ,rcN ;´
2
1,´

2
2, : : : ,´

2
N) 2 ¯̧ , with

(acn ,rcn) the RELAX features for the code associated
with state n, and ´2n is the associated variance, we
have

@Q( ¯̧ j ¸)
@ ¯̧G

=
MX
m=1

NX
n=1

"
°m(n)

@ logP(om j qm = sn, ¯̧ )
@ ¯̧G

#
:

(22)
From (9) we have

P(om j qm = sn, ¯̧ ) =
1p
2¼ ¯́n

£ exp
"
¡a

T
om
Womom

aom + ā
T
cn
W̄cncn

ācn ¡ 2aTomW̄omcn
ācn

2¯́2n

#
:

(23)
Substituting (23) into (22) yields for ācn

@Q( ¯̧ j ¸)
@ācn

=
¡1
2 ¯́2n

MX
m=1

[°m(n)(2W̄cncn ācn ¡ 2W̄T
omcn

aom)]:

(24)

Equating (24) to zero gives the reestimation formula

ācn =
W̄¡1
cncn

PM
m=1 [°m(n)W̄

T
omcn
aom]PM

m=1 °m(n)
: (25)

Similarly, we obtain for r̄ci

@Q( ¯̧ j ¸)
@r̄cn

=
MX
m=1

°m(i)ācn ± [W̄Omcn
(aOm ± r̄Om )¡ W̄diag!0

cncn
(ācn ± r̄cn )]

¡ r̄cn ±
"

MX
m=1

°(k)m (n)ācn ± (W̄Omcn
aOm ¡ W̄diag!0

cncn
ācn )

#
(26)

where ± denotes the element-wise multiplication of
two vectors of the same dimension, and W̄diag!0

cncn

is W̄cncn
with the diagonal elements set to zero.

Because of the nonlinear functional form of (26)
with respect to r̄cn (note r̄cn appears in W̄Omcn

and
W̄diag!0
cncn

), it is not possible to derive a closed-form
reestimation formula for r̄cn by setting (26) to zero.
We therefore use the gradient method to accomplish
the maximization of Q(¸ j ¯̧ ) with respect to r̄cn . The
re-estimation of r̄cn is accordingly performed via the
following iteration: step 1, let r̄(0)cn = rcn and k = 0;
step 2,

r̄(k+1)cn
= r̄(k)cn + ½k

@Q( ¯̧ j ¸)
@r̄cn

¯̄̄̄
¯
r̄cn=r̄

(k)
cn

, k = k+1;

step 3, if
kr̄(k+1)cn

¡ r̄(k)cn k
kr̄(k)cn k

is small enough, stop. Otherwise go to step 2. Note
½k in Step 2 is the learning coefficient that controls
the convergence speed, and ½k is usually chosen as an
exponentially decreasing sequence.
To obtain ¯́2n , we have

@Q( ¯̧ j ¸)
@´2n

=
MX
m=1

NX
n=1

°m(n)
@

@´2n

"
log

1p
2¼¹2n

¡ d
2(Om,cn)
2¯́2n

#

=
MX
m=1

°m(n)

·
¡ 1
2¹2n

+
d2(Om,cn)
2¯́4n

¸
(27)

where d is the SWD as defined in (7). Equating (27)
to zero, we obtain the re-estimation formula

¯́2
n =

PM
m=1 °m(n)d

2(Om,cn)PM
m=1 °m(n)

: (28)
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