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ABSTRACT: In spite of the success of genome-wide association studies in finding many common variants associated with

disease, these variants seem to explain only a small proportion of the estimated heritability. Data collection has turned toward

exome and whole genome sequencing, but it is well known that single marker methods frequently used for common variants

have low power to detect rare variants associated with disease, even with very large sample sizes. In response, a variety of

methods have been developed that attempt to cluster rare variants so that they may gather strength from one another under

the premise that there may be multiple causal variants within a gene. Most of these methods group variants by gene or

proximity, and test one gene or marker window at a time. We propose a penalized regression method (PeRC) that analyzes

all genes at once, allowing grouping of all (rare and common) variants within a gene, along with subgrouping of the rare

variants, thus borrowing strength from both rare and common variants within the same gene. The method can incorporate

either a burden-based weighting of the rare variants or one in which the weights are data driven. In simulations, our method

performs favorably when compared to many previously proposed approaches, including its predecessor, the sparse group lasso

[Friedman et al., 2010].

Genet Epidemiol 37:592–602, 2013. C© 2013 Wiley Periodicals, Inc.
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Introduction

Although genome-wide association studies have been suc-

cessful at identifying many common variants as contributors

to complex diseases, most of these variants seem to have very

small estimated effect sizes and explain only a small propor-

tion of the heritability of complex diseases [McCarthy and

Hirschhorn, 2008]. Attention has turned to the analysis of

rare variants, where the suggestion by previous studies that

multiple rare variants within the same gene can contribute

to largely monogenic disorders (for a summary, see Bansal

et al. [2010]) has led to the development of a variety of meth-

ods that group or collapse variants within a region, gene, or

gene pathway. Testing individual rare variants within a gene

is likely to be highly underpowered unless the effect sizes are

huge. Collapsing or grouping variants together capitalizes on

the fact that the gene is the relevant functional biological

unit that may be expected to have some relationship with

phenotype. Burden tests (such as CAST [Morgenthaler and

Thilly, 2007], GRANVIL [Morris and Zeggini, 2009], and the

variable threshold (VT) method [Price et al., 2010]) collapse

the rare variants into a single variable, such as an indicator

or count, for analysis, ignoring the effects from the com-

mon variants that may contain additional information. These
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methods require the use of a minor allele frequency (MAF)

threshold cutoff to define what constitutes a rare variant and

difficulties arise when the number of rare variants in the re-

gion is so small or so large that either none or all of the

individuals within a phenotype group (e.g. cases or controls)

carry rare variants. The combined multivariate and collaps-

ing (CMC) method allows rare variants to be simultaneously

analyzed with common variants in a multivariate test [Li and

Leal, 2008]. The problem of defining and separating com-

mon and rare variants was avoided with the introduction

of weighting methods that compute a weighted sum statis-

tic (WSS), such as that proposed by Madsen and Brown-

ing [2009]. Most methods use weights inversely related to

the MAF (resulting in rarer variants having higher weights).

All of these methods suffer when there are protective vari-

ants in addition to risk variants, as they sum over variables

with effects in potentially opposite directions. To overcome

this problem, methods such as C-alpha were introduced that

compare the expected variances of the distribution of the al-

lele frequencies within the cases and controls to the actual

variance [Neale et al., 2011]. SKAT, the sequence kernel as-

sociation test, is a generalized version of C-alpha that allows

for weights [Wu et al., 2011]. Since burden tests have been

shown to be more powerful when most variants in a region

are causal and have effects in the same direction, Lee et al.

[2012] have developed the method SKAT-O, an extension of

the SKAT test, which optimally combines a burden test and

the nonburden SKAT test. Han and Pan [2009] developed the

C© 2013 WILEY PERIODICALS, INC.



adaptive sum method (aSum) that determines the direction

of the variant weights from the data and incorporates them

into the burden test. The VW-TOW method, which estimates

weights from the data, places large weights on variants that

have strong associations with the trait and on rare variants

[Sha et al., 2012]. To allow larger weights on common vari-

ants, the authors propose dividing the variants into common

and rare variants, applying their score test to each group sep-

arately, and finding the optimal combination of the two test

statistics.

All of the methods above operate on a single region or gene

at a time, and, since multiple genes can contribute to disease

risk, we propose instead to analyze all genes simultaneously

in a regression framework. Analyzing variables together in a

regression model allows one to consider the impact of one

variable on another, the hope being that a weak effect may

become more visible when other causal effects are already ac-

counted for. Previous studies have shown that joint modeling

may improve power in certain situations for both quantita-

tive and qualitative traits [Ayers and Cordell, 2010; Clayton,

2012; Hoggart et al., 2008; Pirinen et al., 2012]. Currently,

many sequencing studies are underway, resulting in enor-

mous amounts of detected variants. However, sample sizes

remain limited to several hundred up to a thousand, and con-

sequently, we have many more predictors than the number of

test subjects, overwhelming standard regression methods. In

genetic studies, we expect that only a handful of our genes will

have true effects on our trait. Penalized regression methods

can be used on these underdetermined problems, shrinking

the size of the coefficients, pushing the coefficients of vari-

ants with little or no apparent effect on a trait down toward

zero and performing model selection. With the aim of find-

ing the subset of genes most associated with the disease, we

propose PeRC (Penalized regression of Rare and Common

variants), a method that groups SNPs by genes, and collapses

the rare variants in the gene into a single variable where the

rare variants are allowed to contribute different effects. This

approach capitalizes on the recent success of genome-wide

association studies (GWAS) that shows there will generally be

adequate power to detect/select common variants associated

with phenotype.

Methods

Penalized Regression Approach

Regression methods can be used to analyze both qualitative

and quantitative traits. Logistic regression is often used to

analyze binary phenotypes such as case/control status. Given

a phenotype vector y of 0’s and 1’s for m observations and a

matrix of SNP genotypes X , if we let p = P (y = 1|X = x), our

logistic regression equation for individual i may be written

as:

log

(

p i

1 – p i

)

= ηi = β0 + βTX i. (1)

where β is our vector of regression coefficients. The likelihood

may be formulated as a product over all individuals i:

L =

m
∏

i=1

p
y i

i (1 – p i)
1–y i .

With some rearranging, the log likelihood may be written as

a sum over the m individuals:

log L =

m
∑

i=1

y iηi – log(1 + exp(ηi)). (2)

For a quantitative trait, we maximize the negative sum of

squares of differences (RSS) between observed and predicted

trait values, rather than maximizing the above likelihood:

log L = –RSS(β|X , Y) = –

m
∑

i=1

(y i – ηi(β|X ))2. (3)

With current genotyping and sequencing studies, the num-

ber of markers is typically on the order of hundreds of thou-

sands to millions, while sample size is on the order of hun-

dreds to thousands, leading to underdetermined problems

where standard regression methods cannot produce a unique

interpretable model. Penalized likelihood methods can be

applied to these high dimensional regression problems to

perform model selection. We maximize the log likelihood

subject to a penalty that is dependent on the magnitude of

the estimated parameters. A penalty on the log likelihood will

penalize models that have a large number of large regression

coefficients more heavily, and thus the penalized likelihood

will be optimized with a sparser model. In genetics, we sus-

pect that there are only a modest number of underlying causal

variants compared to the total number of variants, and our

ideal penalty would quickly exclude variables with little ef-

fect, retaining only the most relevant variables in the model.

Thus, we choose to maximize the penalized log likelihood:

log L (X , Y, β) – f (β, λ)

where the penalty f is a function of the regression coeffi-

cients and penalty parameters. Many different penalty func-

tions have been proposed such as the L 1 norm (or Lasso)

[Tibshirani, 1996], the L 2 norm (or ridge) [Hoerl and Ken-

nard, 1970; Le Cessie and van Houwelingen, 1992], and the

combination of these two norms, the elastic net [Zou and

Hastie, 2005]. The elastic net penalty may be written as:

f (λ, β) = λ1‖β‖1 + λ2‖β‖2
2

where ‖β‖1 =
∑

j |βj | and ‖β‖2
2 =

∑

j β2
j are the L 1 and L 2

norm, respectively (with j indexing variables) and λ1 and λ2

are fixed parameters controlling the penalty strengths. The

elastic net penalty above is reduced to the Lasso if we let

λ2 = 0 and to the ridge if λ1 = 0. The L 1 norm imposes heavy

shrinkage and drives the coefficient of many variables to zero

and generally includes only one of a group of highly corre-

lated variables [Bondell and Reich, 2008]. Ridge regression

in contrast results in similar coefficients for highly corre-

lated variables. The elastic net is somewhere in the middle,
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encouraging correlated variables to enter the model together.

The penalty functions also have Bayesian interpretations: the

lasso penalty corresponds to a double exponential or Laplace

prior on β, the ridge penalty corresponds to a zero mean

Gaussian or normal prior, and the elastic net is a mixture of

Gaussian and Laplace priors. As most of the mass of these

priors is around zero, most of the coefficient estimates will be

near zero. Penalized regression and Bayesian selection meth-

ods have previously been applied to a variety of problems

in human genetics [Ayers and Cordell, 2010; Hoggart et al.,

2008; Li et al., 2010; Malo et al., 2008; Yi and Zhi, 2011] and

in animal and plant genetics [Mutshinda and Sillanpää, 2010,

2011; Sun et al., 2010; Xu, 2010; Yi and Xu, 2008]. The focus

in the animal and plant literature has been in prediction of

phenotype or genetic breeding value, rather than in variable

selection per se.

In disease association studies, if we suspect that there may

be several genes causing a disease, and that there may be more

than one causal variant within a gene, we can take advantage

of multiple signals within a gene by analyzing our variables

in groups. This is consistent with the idea that the gene is the

functional biological unit, and so evidence for the existence

of effects at some variants within the gene should effectively

upweight the prior for other variants within the same gene.

To force variables to be grouped by (a) encouraging variables

within a group to enter a model together, and (b) encourag-

ing sparsity between groups, we can use the group lasso or

the sparse group lasso [Friedman et al., 2010a; Meier et al.,

2008; Yuan and Lin, 2006]. The sparse group lasso encourages

sparsity between and within groups, and has been previously

applied to GWAS for variants with frequencies > 1% [Zhou

et al., 2010]. If g indexes the G groups, this penalty function

may be written as:

f (λ, β) =

G
∑

g =1

⎡

⎣λ1

⎛

⎝

∑

j ∈g

β2
j

⎞

⎠

1/2

+ λ2

∑

j ∈g

|βj |

⎤

⎦

where λ1 is a parameter that controls the strength of the group

penalty and λ2 is a parameter that controls the strength of

the sparsity penalty. If one variable within a group enters the

model, then this penalty does not strongly discourage another

variable within that group from also entering the model.

Zhou et al. [2010] recommend setting λ1 = λ2 as it performed

well in simulations. The group lasso penalty corresponds to

a multivariate p g dimensional, multi-Laplacian prior over

each group, where p g is the number of variables in group g .

In PeRC, we choose to use a combination of these two

penalties to group both rare and common variants within

a region, such as a sliding window, gene, or gene network.

We propose to first collapse/cluster the RVs within a group

into a single variable to model a common effect. However,

we allow rare variants to contribute differently to this effect

by allowing the weights of the rare variants (denoted as αr

below) to be estimated as we optimize. We can replace ηi in

our likelihood with:

ηi = β0 +
∑

g

{

∑

c∈g c

xicβc + γg

∑

r∈g r

xirαr

}

.

Here γg > 0 is the coefficient for the linear combination of the

rare variants in group g , αr are the estimated weights for each

rare variant in g r (the set of rare variants with MAF ≤ τ), and

g c is the set of common variants (MAF > τ) in g . If we force

all αr to be constant, we are performing a procedure similar

to a burden test. Otherwise, we have an unidentifiable model

unless restrictions are placed on the weights αr . We can do

this via a penalty, restricting the rare variants to have weights

in the approximate range of (–1,1) by using a penalty that

penalizes variables little inside this range, and heavily outside

this range. This prevents the influence of any particular rare

variant from becoming too large and keeps the grouped rare

variants coefficient γg on the same scale as the coefficients βc

for the common variants. These properties can be achieved

with a fourth order polynomial penalty, which is a form of

bridge regression (equivalent to a prior from the exponential

power family) that does not provide sparse solutions and is

similar to a uniform prior in the range (-1,1). This idea is

similar to the hierarchical prior used by Yi et al. [2011], who

place an informative prior on αr and a weakly informative

prior on the γg , and model all variables in the likelihood as

we model our rare variables. The method is used to group

synonymous and nonsynonymous rare variants and com-

mon variants into four separate groups within a gene. Here,

we encourage rare and common variants in the same gene or

window to be in the model together via a group penalty. The

penalty structure imposed in our approach allows an individ-

ual regression coefficient to be estimated for each common

variant, effectively allowing individual common variants to

be selected, while our grouping penalty allows a borrowing of

strength between common and rare variants within the same

gene.

Our generalized penalty function can be written as:

f (λ, β) =

G
∑

g =1

[

λ1sg

(

∑

c∈g c

wcβ
2
c

+ rg γ
2
g

)1/2

+ λ2

(

∑

c∈g c

wc |βc | + rg |γg |

)

+ λ3

(

∑

c∈g c

wcβ
2
c

+ rg γ
2
g

)

+ λ4

∑

r∈g r

drα
4
r

]

.

The first term groups the rare and common variants within

our region of interest, the second and third terms correspond

to the elastic net and promote sparsity of the individual com-

mon variants and the groups of rare variants, while the final

term prevents the coefficients for the rare variants from be-

coming too large and promotes a small amount of sparsity

in the rare variants. If λ = (λ1, λ2, λ3, λ4), then when τ = 1,

λ = (λ1, λ2, 0, 0) corresponds to a sparse group lasso, and

(0, λ2, λ3, 0) corresponds to the elastic net. We realize that

using a ridge penalty with a group penalty may be slightly

redundant as the sparse group lasso gives an elastic net fit

within each nonzero group, but this addition makes PeRC

more flexible in terms of the analyses one can perform. To

perform a burden-based procedure, we simply set λ4 = 0, and
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Figure 1. The first plot is the penalty function for the weights on the rare variants which applies little penalty between 0 and 1 and a large penalty
elsewhere. The second plot is the elastic net penalty function vs. β .

force αr = 1 for all r. We could also force αr = 2/|g r| (to give

a proportion of rare variants on a scale of 0–2 rather than

a count), but we found that this did not perform as well in

practice. We will refer to the weighted procedure as PeRC W

and the burden procedure as PeRC B. For our weighted anal-

ysis, we keep λ4 constant at 0.5 to maintain the shape of that

part of the penalty function (although we could choose in-

stead to make it slightly higher to encourage more sparsity).

We place a weight sg on each group dependent on its size,

for example,
√

(lg /max(lg )), where lg is the total number of

common variants in the group plus one to account for the

rare group coefficient. This prevents the preferential selec-

tion of large groups solely for their ability to explain a larger

proportion of phenotype variance due to increased degrees of

freedom. Additionally, we can assign individual weights to the

penalty terms for each variable. For instance, we may choose

to penalize the common variants based on their MAF and

set wc equal to 2
√

MAF c (1 – MAF c ), which results in wc = 1

when MAF c = 0.5, as implemented in the software Mendel

[Zhou et al., 2010, 2011]. This downweights the penalty of

less common variants relative to more common variants. We

also place a weight rg on the rare group coefficient of similar

form, where the MAF is replaced by the average MAF of

the variants in the rare group, or for the case of the burden

procedure, the MAF of the collapsed locus. With weights

rg = wc = 1 and unstandardized genotypes, the method pref-

erentially selects mostly common variants. For each rare vari-

ant, we place weight dr =
√

MAF r(1 – MAF r)/
√

τ(1 – τ) to

allow little penalty to be placed on very rare variants with fre-

quencies much smaller than τ. After some experimentation,

we have currently set (λ1, λ2, λ3) = κ(1, 1, 1) for the bur-

den procedure, and (λ1, λ2, λ3) = κ(4, 1, 1) for the weighted

procedure, where κ is a penalty strength to be determined

by permutation testing for both the weighted and burden

tests. This choice of penalty parameters allows for strong

grouping, leading to heavy group sparsity and intermediate

sparsity within a selected gene, yet has the ability to select a

wide range of causal gene configurations. The log likelihood

is maximized using cyclic coordinate ascent. See Figure 1 for

a pictorial representation of the resulting penalty function

shapes.

Cyclic Coordinate Ascent

The log likelihood and the negative penalty functions

are concave, and since the sum of concave functions is

Genetic Epidemiology, Vol. 37, No. 6, 592–602, 2013 595



Table 1. The distribution of the causal variants for each causal gene

Minor allele frequency range

Causal Variant MAF
Causal Total > 0.08 0.03 – 0.08 0.01 – 0.03 .005 – 0.01 0.005 – 0.001 < 0.001

gene # Variants (causal) Count Count Count Count Count Count Sum Average

1 35 (11) 0 1 0 0 7 3 0.063 0.0058

2 40 (13) 1 0 2 1 5 4 0.175 0.0135

3 10 (2) 1 1 0 0 0 0 0.255 0.1276

4 86 (18) 0 0 3 1 4 10 0.066 0.0037

5 50 (13) 0 0 1 2 1 9 0.033 0.0045

6 80 (5) 0 0 1 0 2 2 0.023 0.0025

7 168 (36) 0 1 0 2 8 25 0.107 0.0029

8 5 (3) 0 0 1 0 0 2 0.012 0.0040

9 290 (24) 0 1 0 4 8 11 0.078 0.0032

10 20 (7) 0 1 1 0 3 2 0.080 0.0114

concave, we can use the CLG algorithm [Genkin et al., 2005]

for optimization. We maximize the penalized log likelihood

via Newton’s method and cyclic coordinate descent [Fried-

man et al., 2007; Friedman et al., 2010b; Wu and Lange, 2008;

Wu et al., 2009]. The coefficient update is:

βn+1
j = βn

j
–

O ′(βn)

O ′′(βn)

where n is the iteration number. The derivative of the penalty

function is not continuous nor differentiable at zero. When

the current coefficient estimate βn
j is zero, special steps must

be taken. The elastic net penalty has continuous first and

second derivatives, but the derivative is discontinuous at zero

due to the absolute value term. Additionally, the derivative

of the group penalty has a singularity when all coefficients

in a group are zero. We attempt a move in the direction that

improves the penalized log likelihood given the other penalty

parts, but this move is not accepted if the derivative of the

objective function changes sign (we pass the local maximum).

We do not allow coefficients to take large steps or to change

signs in one iteration. If our Newton update is 	β = βn+1
j

– βn
j ,

then let

βn+1
j

– βn
j =

⎧

⎨

⎩

–δ if	β < –δ

	β if – δ ≤ 	β ≤ δ

δ if	β > δ

where δ is currently set at 0.1. This is the proposed new value

for βn+1
j . If this value does not improve the objective function,

we halve δ and reattempt. For the weighted procedure, the

coefficient γg is restricted to be nonnegative. One potential

problem occurs when the group coefficient γg is zero. At this

point, changing the value of αr∀r ∈ g r cannot improve the

likelihood, it can only change the penalty, thus we would ex-

pect all αr to be driven to zero, causing γg to remain at zero. To

overcome this, we perturb γg , allow the αr and subsequently

γg be reestimated , and cycle through again, making sure the

surrogate is improved. Similar issues occur with the fused

lasso [Friedman et al., 2007].

Simulation Study

Using FREGENE [Hoggart et al., 2007], we simulated five

chromosomes consisting of 50 Mb of sequence data for

approximately 20K individuals. Gene regions were simulated

for each of the chromosomes as follows, with each chromo-

some having a different gene density of between 250 and

1,150 genes per chromosome, for a total of 3,600 genes. First,

the number of variants within a gene was simulated from

a log normal density and restricted to between 3 and 300

variants per gene. A region of SNPs of this size was then ran-

domly selected to be a gene. If the selected region had a length

greater than 50 kb, another region was selected. This was re-

peated until we had 3,600 genes. Second, we chose two causal

genes per chromosome for a total of 10 causal genes. For each

causal gene, a fixed number of causal variants from given

frequency ranges were randomly selected. Table 1 shows the

distribution of causal variant MAFs for each gene along with

the gene size, the sum of the causal variant MAFs, and the

average causal variant frequency of that gene. Although there

are a large number of causal variants in some genes, many are

quite rare and thus unlikely to occur in a given population

sample.

Case/control status was simulated 100 times for the entire

population using logit(P (y i = 1)) = α0 + β1xij 1
+ · · · + βnxij p

,

where j indexes the causal variants, and p is the number of

causal variants. The regression coefficient βj for each causal

variant was set to ln 5
4
|log(MAFj )|, as implemented in the

simulations performed by Wu et al. [2011] when evaluat-

ing the software SKAT. α0 was adjusted to give a population

prevalance around 11%. For each of the 100 population repli-

cates, we randomly selected 1,000 cases and 1,000 controls

to analyze. In Scenario 1, all causal variants were risk vari-

ants. In Scenario 2, 1/3 of the causal variants were selected to

be protective. Although we are only considering two differ-

ent scenarios of 100 replicates each, in actuality, this design

generates 20 different causal variant structures, for a total of

2,000 tests on causal genes, and approximately 72K tests on

null genes, the results of which can be used to assess true and

false detection rates.

Analysis was performedusing our penalized regression ap-

proach PeRC with rare variant threshold τ = .01. Analysis

was also performed in the R package SKAT [Wu et al., 2011]

and in the Score-seq software [Lin and Tang, 2011]. In SKAT,

we performed four analyses with different prechosen weights

based on MAFs drawn from the Beta(MAF; a1, a2) distri-

bution: (1) a1 = 1 and a2 = 25, the SKAT default, (2) a1 = 1
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and a2 = 1, equivalent to C-alpha, (3) a1 = 0.5 and a2 = 0.5,

equivalent to the weights used in Madsen and Browning

[2009], which we will refer to as MB, and (4) SKAT-O

with defaults. In Score-seq, we considered several different

analyses: (1) the VT test, (2) T1 with rare variants < 1%,

(3) T5 with rare variants < 5%, and (4) the Fp test (which

also uses MB weights). We attempted to use the Score-seq

EREC test, which is a permutation test, but found it to be

too slow for this size of analysis. We also compared our re-

sults to those obtained using GRANVIL [Morris and Zeggini,

2009] (with default rare variant threshold τ = .05), single

marker (SM) analysis in PLINK [Purcell et al., 2007] with

an additive model, the sparse group lasso as implemented in

Mendel (ML) [Zhou et al., 2010, 2011] with nonuniform

weights based on the MAFs, and VW-TOW with τ = .01

and 10,000 permutations as recommended by the authors

[Sha et al., 2012]. Although some of these methods use very

similar statistics, they are implemented in slightly different

ways.

Results

The different methods have their own strengths and weak-

nesses, as they have been tailored to perform well in different

situations. For example, by design, C-alpha should be more

likely to detect common causal variants than SKAT, and SKAT

should be better at detecting rare variants than C-alpha. Thus,

we expect the best performing method to depend on the type

of data simulated.

We implemented each method over a range of P-value

cutoff thresholds and penalty parameters and counted the

number of true and false detections of genes at each cutoff.

To our knowledge, Mendel v12.0 does not allow selection of

the penalty parameter, but instead allows one to set the num-

ber of desired predictors, which we will use as a defined cutoff

point. We calculated average per gene empirical true detec-

tion rates (power) and false positive detection rates (type I

error) by summing the number of true and false positives

for a given P-value/penalty parameter over all replicates.

For all methods and each gene, we summed the number

of gene detections at a given cutoff or penalty parameter

value over all replicates to get a gene detection count. For

the single marker test SM, we counted a gene detection for

any gene containing a marker below the P-value threshold.

To obtain power, we added the detection counts for all 10

causal genes, and divided this by the total number of possi-

ble true detections (1,000), i.e. the number of true positives

(10) times the number of replicates (100). For type I error,

we added detection counts for all noncausal genes, and di-

vided this sum by the number of true negatives (3,590) times

the number of replicates, i.e. by the total of 359,000 pos-

sible true negative detections (null genes). Figures 3 and 2

show the resulting power vs. false positive (FP) rates per

gene for all methods considered, for Scenarios 1 and 2,

respectively.

PeRC appears to perform well on this data set. In Figure 3,

the methods in Score-seq (T1, VT, Fp, and T5), seem to out-

perform the other methods. In Figure 2, when a third of

the causal variants are protective, most of the methods per-

form worse than in Scenario 1 (with Fp taking a huge loss

of power), but PeRC W seems to perform similarly to the

case with all risk causal variants. The Score-seq methods take

the biggest hit compared to Scenario 1, having similar true

detection rates to SKAT, MB, and Calpha. GRANVIL and

PeRC B also lose power, as expected. Single marker (SM)

analysis and the sparse group lasso (GL) perform poorly in

both cases. Table 2 shows gene detection power and false

positive rates for: (1) the single gene based methods (us-

ing the the Bonferonni corrected P-value of .05/3, 600 to

declare a gene as significant) (2) the SM method (using the

Bonferroni corrected P-value of .05/120, 608 to declare a SNP

as significant, with a gene declared as significant if any SNPs

within it are significant), and (3) the results for PeRC when

using a permutation-based test to find the penalty parameter

that gives the desired experimentwise 5% false positive rate.

In PeRC, to find the κ that yields the desired false positive

rate for our simulations, we assumed each replicate should

have the same κ (since they were drawn from the same popu-

lation on the same set of SNPs and from the same simulation

model), in order to reduce computational costs. For each sce-

nario, we permuted case/control status once for each replicate

and recorded the resulting number of variables in the model

over a range of κ. We selected the κ that gave approximately

five false positives over the 100 replicates, which gave us our

desired per gene false positive rate. For a real data set, we

could permute the case/control status 100 times and select

the value of κ that results in five false positives over all 100

replicates, or we could use a similar procedure, for example, to

that described in Ayers and Cordell [ 2010]. As Mendel v12.0

did not allow selection of the penalty parameter and had lit-

tle power in Figures 3 and 2, we did not include the sparse

group lasso in this table. Table 2 shows that SM, GRANVIL,

PeRC, VW-TOW, and the Score-seq methods control type I

error at the nominal level while SKAT and SKAT-O do

not; although SKAT and SKAT-O had the highest power,

they had higher false positive rates than most of the other

methods.

Next, we examined that genes each method preferentially

selected to see why our method was performing so much

better than the other methods in Scenario 2. The results are

shown in Figures 4 and 5. These figures give the detection

power of the causal genes over the 100 replicates for each

method at several different average false positive rates. On

further inspection, it appears as if our method preferentially

selects the longest causal gene with many causal variants,

even though the penalty has been adjusted to penalize longer

genes more heavily. Most of the methods preferentially se-

lect genes with a higher sum of causal variant MAFs. The

sparse group lasso appears to only detect the small causal

gene with 2 common causal variants. SKAT-O and VW-TOW

select the widest range of genes at low false positive rates. All

methods struggled to detect genes 3, 4, 5, 6, and 8 in both

Scenarios. Gene 3 contained common variants, while genes

4, 5, 6, and 8 had a low sum of causal variants minor allele

frequencies.
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Figure 2. Power vs. false positive rates for the case where two-thirds of the causal variants are risk variants and the rest are protective (Scenario
2). The P-value threshold or penalty parameter rate was varied to obtain points for the curves, which are an average over all replicates at each
point.

Figure 3. Power vs. false positive rates for the case where all causal variants are risk variants (Scenario 1). The P-value threshold or penalty
parameter rate was varied to obtain points for the curves, which are an average over all replicates at each point.
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Table 2. Estimated average power and false positive rates (FPR) and their standard errors (SE) for the simulated data

Method

GRANVIL SKAT-O SKAT Calpha MB PeRC B PeRC W VW-TOW T1 T5 Fp VT SM

Scenario 1

Power Est 0.046 0.247 0.171 0.072 0.057 0.073 0.057 0.013 0.135 0.087 0.059 0.160 0.010

SE (0.006) (0.011) (0.011) (0.008) (0.006) (0.007) (0.006) (0.008) (0.007) (0.007) (0.011) (0.003) (0.004)

FPR Est 3.9e-05 5.0e-04 5.1e-04 1.2e-04 6.1e-05 2.8e-05 8.9e-05 1.9e-05 4.5e-05 7.2e-05 1.7e-05 1.3e-04 2.8e-05

SE (1.0e-05) (4.5e-05) (4.3e-05) (2.2e-05) (1.3e-05) (8.4e-06) (1.7e-05) (1.3e-05) (1.4e-05) (6.6e-06) (1.7e-05) (1.9e-05) (8.2e-06)

Scenario 2

Power Est 0.012 0.120 0.122 0.079 0.022 0.001 0.047 0.007 0.016 0.043 0.001 0.043 0.011

SE (0.004) (0.010) (0.010) (0.007) (0.005) (0.002) (0.006) (0.004) (0.006) (0.001) (0.006) (0.003) (0.003)

FPR Est 5.6e-05 3.2e-04 3.4e-04 2.8e-04 3.6e-05 3.6e-05 6.1e-05 8.4e-06 2.2e-05 7.8e-05 1.1e-05 8.1e-05 5.0e-05

SE (1.3e-05) (4.2e-05) (4.1e-05) (3.0e-05) (1.0e-05) (1.1e-05) (1.2e-05) (8.6e-06) (1.5e-05) (5.5e-06) (1.6e-05) (2.1e-05) (4.8e-06)

Figure 4. Average gene power over all replicates for each causal gene at three different false positive rates for Scenario 1.

To investigate whether PeRC W selects genes solely due

to their length, we permuted the genotypes for the longest

gene (9) to break the genotype phenotype correlation and

re-ran the analysis (Supplementary Figures S1 and S2). At

low false detection rates (top two rows of Supplementary

Figures S1 and S2), our method did not detect gene 9. How-

ever, at a much higher false detection rate (bottom row of

Supplementary Figures S1 and S2), gene 9 was selected as a

false detection for a large proportion of the replicates. PeRC B

did not detect gene 9 after permutation of the genotypes for

either Scenario (data not shown). We then removed all of

the SNPs in gene 9 from the data set and re-ran both PeRC

and Mendel. We recomputed the power and false detection

rates for all of the methods excluding gene 9, (see Supple-

mentary Figures S3 and S4). In this scenario, PeRC W per-

formed poorly, although it did maintain some of its power

when a proportion of the causal variants were protective. Cur-

rently, we control for gene length bias via the sg term in the

penalty function. Silver and Montana [2012] suggest using

weights determined from permutations with a null response

to control this bias, which may be a beneficial addition to

PeRC W.

We investigated the power of PeRC B and PeRC W over

a small selection of different choices for the values of the

penalty parameters (Figures 6 and 7). Although the lasso-like

penalty (with λ1 = λ3 = 0) performed best for both methods
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Figure 5. Average gene power over all replicates for each causal gene at three different false positive rates for Scenario 2.

at low false positive rates, it performed poorly at larger false

positive rates. Thus, in Figures 3– 5, we focused on parameters

that lead to higher power at higher false positive rates and had

the widest range of gene detections (shown in Supplementary

Figures S5– S8).

Conclusions

Many recent methods developed for rare and common

variant analysis have been geared toward determining the

optimal weights for the different variants. Here, we have pro-

posed a flexible regression framework to test for association

between a dichotomous phenotype or a quantitative trait

with rare and common grouped variants where the weights

for the rare variants can be determined by the data. With

weights based on minor allele frequencies for the group and

common coefficients, we find that we may lose power to

detect common variants as they are more heavily penalized.

The large number of possible weights and penalty parameters

creates an enormous search space of parameters of which

we have only touched the surface. Here, we have selected

the penalty parameters (λ1, λ2, λ3) = κ(4, 1, 1) for PeRC W,

which encourages heavy grouping. For PeRC B, the lasso

(λ1 = λ3 = 0) seems to be optimal for Scenario 1, but very

strong grouping, (λ1, λ2, λ3) = κ(8, 1, 1), is optimal for Sce-

nario 2, perhaps because we are drawing more information

from the common variants, searching for hints of association

from any common variants that might be in association with

a causal rare variant (Figures 6 and 7). A more detailed in-

vestigation of the choice of penalty parameter is beyond the

scope of this manuscript, but would be an interesting topic

for further work. An interesting exploratory approach would

be to investigate the number and positions of selected predic-

tors at a variety of penalty parameter ratios and over a range

of κ values.

We recently became aware of a new hierarchical method

CHARM [Cardin et al., 2012] that shares the same spirit

as PeRC W, allowing each variant to have a different effect

size but without model selection. CHARM uses a prior dis-

tribution of effect sizes centered at zero with a hierarchical

parameter controlling the degree to which the effect sizes

vary from zero. Like PeRC, CHARM is able to distinguish

between multiple signals and linkage disequilibrium. Unlike

PeRC, CHARM only analyzes one gene at a time. The authors

of CHARM state that it requires approximately one minute

of computation time per SNP, so we did not attempt to run

CHARM on our 120K SNP data set.

The advantage of our model is that we can include all

genes simultaneously, considering the impact of one variable

on another, so that, in principal, a weak effect may become

more visible when other causal effects are already accounted

for. Penalty parameters can be adjusted to change the weights

on the rare variants, common variants, and groups of vari-

ants through various weighting options to tailor the method

to the required analysis. The user can also input their own

weights. PeRC also allows for penalized and unpenalized co-

variates, and can perform the lasso, sparse group lasso, elastic
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Figure 6. Power vs. false positive rates for PeRC B over a variety of penalty parameters. The two plots on the left represent Scenario 1, where
the bottom plot is a larger range of false positive rates than the top plot. The two plots on the right correspond to Scenario 2.

Figure 7. Power vs. false positive rates for PeRC W over a variety of penalty parameters. The two plots on the left represent Scenario 1, where
the bottom plot is a larger range of false positive rates than the top plot. The two plots on the right correspond to Scenario 2.
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net, and ridge by controlling the penalty parameters appro-

priately. Currently, PeRC does not handle missing genotypes,

so they must be imputed beforehand and input to PeRC as

dosage data. For 20 values of the penalty parameter κ on ap-

proximately 120K SNPs, PeRC W required around 4 hr for

to run, while PeRC B required around an hour. Although

PeRC does not always outperform other methods, its im-

proved performance over the sparse group lasso is encour-

aging for rare variant penalized regression. Additionally, we

may be able to improve performance by using an optimal

combination of the burden and weighted models, similarly

to SKAT-O, to take advantage of the strengths of each model

within the different scenarios of risk variants (risk vs. pro-

tective). We have shown that our method is able to detect

long causal genes with many very rare variants with the cur-

rent selected penalty parameters. The coefficients for the rare

variants are estimated from the data, allowing variants to

have both risk and protective effects. Thus, PeRC W is fairly

insensitive to whether or not the causal variants are risk or

protective. PeRC can also be used with sequence data for a

set of genes or pathways that may have been shown or sus-

pected to be associated with a trait in attempt to determine

which genes and/or SNPs are contributing most to the trait

variance.
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