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Abstract 
 
Source code duplication occurs frequently within large 

software systems.  Pieces of source code, functions, and 
data types are often duplicated in part, or in whole, for a 
variety of reasons.  Programmers may simply be reusing 
a piece of code via copy and paste or they may be “re-
inventing the wheel”. 

Previous research on the detection of clones is mainly 
focused on identifying pieces of code with similar (or 
nearly similar) structure.  Our approach is to examine the 
source code text (comments and identifiers) and identify 
implementations of similar high-level concepts (e.g., 
abstract data types).  The approach uses an information 
retrieval technique (i.e., latent semantic indexing) to 
statically analyze the software system and determine 
semantic similarities between source code documents 
(i.e., functions, files, or code segments).  These similarity 
measures are used to drive the clone detection process.   

The intention of our approach is to enhance and 
augment existing clone detection methods that are based 
on structural analysis.  This synergistic use of methods 
will improve the quality of clone detection.  A set of 
experiments is presented that demonstrate the usage of 
semantic similarity measure to identify clones within a 
version of NCSA Mosaic. 
 
1. Introduction 

 
Research suggests [3, 23] that a reasonable amount of 

large software systems contain duplicated implemen-
tations of source code.  There are a number of reasons for 
the existence of these duplicate implementations, or 
clones.   

For one, programmers often perform a type of ad hoc 
reuse by using the copy and paste method.  The scenario is 
common; you find a piece of code in another routine that 
almost solves your problem.  You copy it to your routine 
and modify it to suit the problem at hand.  This type of 
“reuse” is less costly (at the time) than redesigning a 

larger part of the system to incorporate the necessary 
generality of the reused piece of code.  Ideally, the 
program would create a more general set of routines or 
design a class hierarchy to solve the reusing problem.  
This represents a programmer’s explicit intent to reuse an 
abstraction in the problem, or solution, domain.  Baxter et 
al. go as so far to say that we should offer tools to support 
this type of cloning (reuse) in a more structured and well-
defined manner. 

The above described situation gives rise to the 
following types of clones.  A (perfect) clone is a program 
fragment that is identical to another program fragment.  A 
near miss clone is a program fragment that is very similar 
to another fragment.  The near miss clone comes about 
when the programmer modifies the copied fragment. 

Another reason for the occurrence of clones, especially 
in very large software systems, is because of “re-inventing 
the wheel”.  A developer (or maintainer) may not know of 
the existence of a solution to their problem and they just 
solve it by developing new code.  Alternatively, they may 
know of a fragment that is similar to what they need, but 
feel the expense of understanding and modifying the 
fragment is to great in comparison to “writing it 
themselves”.  Re-inventing the wheel gives rise to near 
miss clone and possibly “wide miss” clones.  A wide miss 
clone solves the same (or nearly the same) problem but 
has a very different structure.  While this general problem 
could be solved by better designs, communication among 
developers, or better documentation, it remains a reality. 

From our experience, these types of clones often 
manifest themselves as higher-level abstractions in the 
problem or solution domain.  A simple example that 
comes to mind is an ADT list.  A list structure is often 
duplicated in one form or another throughout a system.  
Each programmer, or team, builds one to suit his or her 
particular needs.   

We term these types of clones as high-level concept 
clones.  While a number of the existing clone detection 
methods can detect some of these types of clones, no 



 

 

method directly addresses the identification of high-level 
concept clones.   

In this paper, we present a method that addresses the 
detection of high-level concept clones.  We feel that this 
method should be used in conjunction with other existing 
methods to synergistically identify all types of clones.  
The next section describes the underlying approach to our 
method.  Section 3 presents how we detect high-level 
concept clones.  Section 4 describes the results of 
applying this approach to a medium sized software system 
(Mosaic).  Section 5 reviews the related work and the 
remaining sections describe our current directions. 

 
2. Detection of high-level concepts in code 

 
The method we use to detect high-level concepts in 

source code is derived from our work on the PROCSSI 
system [28].  PROCSSI is composed of a set of methods 
to support software maintenance tasks.  The main feature 
of PROCSSI is the use of both semantic and structural 
information extracted from the source code.  Here we use 
the term semantic to refer to the information embedded in 
the source that links it to the problem or solution domain.  
For example, the term “sort” has a clear meaning to a 
programmer and its presence in a piece of source code 
typically has great significance with respect to 
understanding of the source.  Structural information refers 
directly to concepts such as the structural organization, 
control flow, and data flow of the source code.  A large 
number of (inexpensive) methods to extract structural 
information exist but few methods, beyond an hourly 
wage, exist to map source code to the problem and 
solution domain. 

For the semantic dimension, PROCSSI uses the 
profiles generated by information retrieval methods, in 
this case a vector representation from Latent Semantic 
Indexing (LSI), to compare components and classify them 
into clusters of semantically similar concepts (the details 
of LSI are presented later in this section).  PROCSSI 
works as follows.  Given a software system, it is broken 
down into a set of individual source code documents.  A 
simple parsing of the source code is done to break the 
source into the proper granularity and remove any non-
essential symbols and text.  Comment delimiters and many 
syntactical tokens can be removed as they add little or no 
knowledge of the problem domain.  The profile of each 
source code document generated by LSI can then be used 
to cluster the documents in to related groups.  Clustering 
of source code based on semantic and structural 
information is very useful in the maintenance and 
evolution of legacy software systems.  For instance, the 
clustering can be used to assist in the re-modularization 
[30, 34, 35, 39] of systems and the identification of 
abstract data types [8, 17].  If a software system were to 

be reengineered into an object-oriented language from a 
structured one, then this type of clustering would prove to 
be very useful.  The objective is to reduce the amount of 
source code an engineer needs to view, at any one time, 
and give them clues about possible relationships within 
the system not apparent from the current organization of 
the files or documentation.   

PROCSSI uses a simple graph theoretic approach for 
clustering, but a number of other types of clustering 
algorithms have been used to cluster software [1, 2, 18, 
25].  Details of our approach on how the high-level 
concepts are identified using this clustering method can be 
found in [28]. 

 
2.1. Information retrieval and software 

 
There are a variety of information retrieval methods 

including traditional [11, 37] approaches such as signature 
files, inversion, and clustering.  Other methods that try to 
capture more information about documents to achieve 
better performance include those using parsing, syntactic 
information, natural language processing techniques, 
methods using neural networks, and advanced statistical 
methods.  Much of this work deals with natural language 
text and a large number of techniques exist for indexing, 
classifying, and retrieving text documents.  These methods 
produce for each document a profile.  A profile is an 
abbreviated description of the original document that is 
easier to manipulate.  

The research that has been conducted on the specific 
use of applying information retrieval methods to source 
code and associated documentation typically relates to 
indexing reusable components [13-15, 25, 26, 29, 32].  
Notable is the work of Maarek [25, 26] on the use of an 
IR approach for automatically constructing software 
libraries.  The success of this work along with the 
inefficiencies and high costs of constructing the 
knowledge base associated with natural language parsing 
approaches to this problem [10] are main motivations 
behind our research.  In short, it is very expensive (and 
often impractical) to construct the knowledge base(s) 
necessary for parsing approaches to extract even 
reasonable semantic information from source code and 
associated documentation.  Using IR methods (based on 
statistical and heuristic methods) may not produce as good 
of results, but they are inexpensive to apply and coupled 
with the structural information of the program, should 
produce good quality and low cost results.  

 
2.2. Latent semantic indexing 

 
Latent Semantic Indexing (LSI) [6, 24] is a corpus-

based statistical method for inducing and representing 
aspects of the meanings of words and passages (of natural 



 

 

language) reflective in their usage.  The method generates 
a real valued vector description for documents of text.  
This representation can be used to compare and index 
documents using a variety of similarity measures.  We 
apply LSI to source code and its associated internal 
documentation (i.e., comments) and then use the similarity 
measures to induce the similarity of different source code 
documents.   

Work applying LSI to natural language text by [6, 24] 
has shown that that LSI not only captures significant 
portions of the meaning of individual words but also of 
whole passages such as sentences, paragraphs, and short 
essays.  The central concept of LSI is that the information 
about word contexts in which a particular word appears, 
or does not appear, provides a set of mutual constraints 
that determines the similarity of meaning of sets of words 
to each other. 

One of the criticisms of this method, when applied to 
natural language texts is that it does not make use of word 
order, syntactic relations, or morphology.  But very good 
representations and results are derived without this 
information [7].  This characteristic is very well suited to 
the domain of source code and internal documentation.  
Because much of the informal abstraction of the problem 
concept may be embodied in names of key operators and 
operands of the implementation, word ordering has little 
meaning.  Source code is hardly English prose, but 
through the use of selective naming, much of the high 
level meaning of the problem-at-hand is conveyed to the 
reader (programmer/developer).  Internal source code 
documentation is also commonly written in a subset of 
English [10] that may also lend itself to the IR methods 
utilized. 

Like some other IR methods LSI does not utilize a 
grammar or a predefined vocabulary.  Though, many IR 
methods do use a list of non-essential words with low 
discriminatory power.  This makes automation much 
simpler and supports programmer defined variable names 
that have implied meanings (e.g., avg) yet are not in the 
English language vocabulary.  The meanings are derived 
from usage rather than a predefined dictionary.  This is a 
stated advantage over using a traditional natural language 
approach, such as in [10], where a (subset) grammar for 
the English language must be developed. 

 
3. Identifying high-level concept clones 

 
The method we propose for identifying high-level 

concept clones is based on the semantic similarity measure 
between source code documents described earlier.  These 
similarity measures are akin to the work by [16, 22, 38].  
They compute the similarity between software elements 
based on structural information, with the purpose of 
identifying high-level concepts in code.   

In its current form, the approach is an automated 
assistant to the developer in the identification of clones.  
To fully automate the process there is a need for 
integration with other clone detection methods that are 
based on structural information.  Section 6 of this paper 
will discuss this issue. 

Once the semantic similarities between the source-code 
documents are computed, the user should select a group of 
documents that implement a known high-level concept 
(e.g., and ADT) as starting point.  There are several ways 
in which a user, even without much knowledge of the 
given software at hand, can identify the implementation of 
such a high-level concept.  Either by selecting groups of 
documents based on file names and/or function names, or 
by using a clustering of the source code documents, such 
as described in [27, 28].  Automation of this part is also 
possible, by using selected metrics as guidance.  In 
previous work [28], we used the semantic similarity 
measures to assess the semantic cohesion of clusters of 
source code documents.  One such cluster could be 
determined using structural information about the code 
such as control or data dependency.  Such clusters of 
source code documents could be a cross multiple files.  
Most of the existing clone detection methods try to 
identify clones within or between files.  This is the 
approach we consider as well.  Some variation of the 
measures and metrics proposed in [28] are defined here 
with respect to clone detection. 

Definition.  A source code document (or simply 
document) d is any contiguous set of lines of source code 
and/or text.  Typically, a document is a function, block of 
declarations, definitions, or a class declaration including 
its associated internal documentation (comments). 

Definition.  A software system is a set of documents S 
= {d1, d2, …, dn}.  The Total number of documents in the 
system is n = |S|. 

Definition.  A cluster, ck, is a set of documents from S 
such that ck ⊆ S.  Size of a cluster, ck, is the number of 
documents in a cluster, noted |ck|. 

Definition.  A file fi, is composed of a number of 
contiguous documents and the union of all files is S.  Size 
of a file, fi, is the number of documents in the file, noted 
|fi|. 

Definition.  The software system is represented as a 
relationship graph that is a multi-graph G = (S, E), where 
the nodes S are the documents, E is a set of weighted 
edges, and a relation e: E → {(di, dj) | di, dj ∈ S; di ≠ dj}.  
The relation e defines which nodes are connected by 
which edge.  The edges u and v are called parallel or 
multiple edges if e(u) = e(v).   

Each parallel edge represents a relationship between 
the nodes (i.e., source code documents) it connects.  There 
could be different types of edges; each represents different 
relationships between two source code documents.  Here 



 

 

we consider two types of relationships, namely semantic 
similarity and structural relationships.  The structural 
relationship is defined by the file structure of the system. 

Using the semantic similarity measure one could 
cluster the software system using a variety of clustering 
algorithms.  Once such a clustering is performed, the 
following measures and metrics will be computed. 

Definition.  The number of clusters that contain a 
document from a given file is |CDFi| where  

CDFi = {ck ⊆ S | ck ∩ fi ≠ ∅}. 
Definition.  The semantic cohesion of a file with 

respect to clusters is  

SCFCi = 
|f|

1|CDF|1
i

i −− . 

Definition.  Number of files related by a cluster to a 
given file, fi, is | RFi | where  

RFi = {f ⊆ S | ck ∩ f ∩ fi ≠ ∅, f ≠ fi, ck ⊆ S}. 
Definition.  Number of files strongly related by a 

cluster to a given file, fi, is SRFi:  SRFi = | RFi | - max | ck | 
- 1 and ck ∈ LCk where LCk is the set of clusters that 
contain documents from fi and have a low semantic 
cohesion with respect to files.  

LCk = FDC ∩ {cj⊆ S|
|c|

1|FDC|
1

j

j −
− <ε} 

where ε is an empirically established threshold. 
In addition we consider two files fi and fj as being 

related if there is at least one document is fi that is similar 
with at least one document in fj: 

∃ di ∈ fi, dj ∈ fj such that sem(di, dj) > α, 
where sem is the semantic similarity function (i.e., the 
cosine between the vector representation if the two 
documents), and α is a threshold (0.7 in this case that 
corresponds to a 45 degree angle). 

Files with high semantic cohesion are of interest with 
respect to clone detection.  Such files most likely contain 
implementation of only one or very few high-level 
concepts and versions of them.  Among these files, we 
need to focus on those that are strongly related to other 
files.  All these computations are automated and a 
prototype tool has been developed and tested previously, 
using a minimal spanning tree algorithm for clustering.  
Other clustering algorithms are under investigation, which 
may provide better results for clone detection.   

At this point in the process, user intervention is 
necessary.  As we specified earlier, the high-level concept 
we identify, and for which we are trying to find clones, 
have a rather imprecise definition.  This definition is 
based on the user’s understanding of the system and 
represents some mapping between the source code and the 
problem or the solution domain.  Further automation 
would require the acquisition and representation of 
extensive domain knowledge - an extremely expensive 

and difficult undertaking that is necessary for each system 
examined.  Thus, human interaction is unavoidable at this 
point in the process. 

Two types of clones are to be identified.  One will 
consist of groups of documents from any file that 
implements the same high-level concept, while the two 
sets of documents have no data or control connections 
(e.g., separate implementation of the same or related 
ADT).  The second type of clones will consist of groups 
of documents from different files that use the same data 
structure but implement their own set of operations.  
Obviously none of these clones will be exact ones. 

Once a file (or group of documents) that contains the 
implementation of a high-level concept is chosen as 
starting point, the user will use the computed measures to 
identify clones.  All the strongly related files have to be 
investigated by the user.  While this may seem and 
extremely laborious task, experiments showed that the 
number of documents that need to be investigated is in 
fact reasonable and the guiding metrics drastically reduce 
the search space that a keyword-based search would 
generate.  Matching these results with the ones provided 
by another clone detection method could further reduce 
this search space.  This work is in progress and some 
details are provided in section 6.  The following section 
describes a set of experiences we have done to show the 
usability of the method. 

 
4. Experiments 

 
A set of experiments was run to determine the 

suitability of our method for clone detection.  The source 
code for an older version of Mosaic (v2.7) [33] was used 
as input into LSI and clustered using the previously 
described method. 

Mosaic 2.7 is written in C and was programmed and 
developed by multiple individuals.  No single coding 
standard is observed over the entire system and different 
standards are routinely used within a given file.  Little or 
no external documentation on the design or architecture is 
available and the internal documentation is often scarce or 
missing.  In short, Mosaic reflects the kinds of realities 
often found in commercial software due to the many 
external issues that affect a software development project. 

Table 1 gives 
the size of the 
Mosaic system 
(269 files 
containing 
approximately 95 
KLOC).  A 
semantic space 
using a 
dimensionality of 3
Table 1.  Vitals for Mosaic. 

LOC 95,000

Vocabulary 5,114

Number of parsed 
documents 

2,347

Number of clusters 655

produced 

50 for the 2,347 documents was 



 

 

generated.  The 
documents were 
then clustered, as 
stated previously, 
based on the angle 
of 45 degrees or 
less (i.e., between 
1.0 and 0.7) 
between any two 
vectors, which 
resulted in 655 
groupings. 

A distribution 
of the clusters 
based on the 
number of 
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spanning over 11 files, determining 116 pair of similar 
documents.  Out of the 19 similar documents, 10 
documents are similar to at more 8 documents from 
list.c.   

 
4.1. Results 

 
Among the files that contain these documents, 2 were 

found to contain a different implementations of a linked 
list and 4 other files were implementing their own 
operations defining a linked list but using the same data 
structure defined in list.h or the data structure defined 
in HTList.h.  The other files were either using the 
implemented list ADT in a correct manner or they turned 
out to be similar by accident (two cases). 
Table 2.  A distribution of 
the size of clusters.  The 
number of clusters that 

contain a given number of 
documents. 

Number of 
Documents 

Number of 
Clusters 

1 481 
2 98 

3 - 5 46 
6 - 10 15 
11 -30 8 

38 1 
99 1 

1084 1 
documents they 
ntain is given in table 2.  There are a large number of 

ngleton clusters (481) and few really large clusters.  
hese numbers reflect the same type of trends that were 
und in the earlier experiments.  The large number of 
usters of size one reflects the fact that many functions 
ften stand by themselves semantically.  The largest 
uster is for the most part composed of a common header 
mment that is found in almost every file.  It also 
cludes a large number of very small documents that 
ere parsed out to be only one or two lines of code.   

Of interest here is the semantic cohesion of files and 
e number of related files to a given one.  Table 3 
mmarizes the semantic cohesion values of the files 

ased on the current clustering.  Table 4 shows the 
istribution of documents within files.   

The clusters of interest, with respect to clone detection, 
e those that have more than one but not excessive 

umbers of documents and the files with high semantic 
hesion.  Our assumption is that a high-level concept is 
plemented using more than a few functions and data 

pes. 
We chose to start by choosing a file with the desired 

properties that was 
identified as containing 
the implementation of a 
high-level concept.  The 
file is list.c, which 
together with list.h 
and listP.h implement 
a linked list of character 
strings (char*).  The file 
list.c has a semantic 
cohesion of 0.8 and 
contains 15 documents.  
A total of 19 documents 
are similar to at least one 

Although the results are encouraging, due to the nature 
of the clustering algorithm used, the experiment was 
repeated twice more using as a starting point the pair of 
files that contain the different list implementations.  These 
files are: hotlist.h, hotlist.c, HTList.h, and 
HTList.c.  One could of course argue that the names of 
the files are self-explanatory and someone could have 
found these clones easily.  If the files would have had a 
more cryptic name that did not hint to the word ‘list’ this 
action would not have been possible, while our method 
would work the same.  In fact, the names of the files that 
contain different implementation of a list using the same 
data structure did not give any clues (e.g., 
HTMLwidgets.c, cciBindings2.c, etc.).  Restarting 
the experiment yielded 4 
more implementations of 
linked lists.  Overall, 11 
high-level concept clones 
were identified, 
implementing versions of a 
linked list. 

A reengineering of the 
system would most likely 
be concerned with creating 
a single (more general) 
implementation of a linked 
list and reuse it through 
instantiation and/or 
inheritance rather than re-
implementation. 

 
4.2. Comparison 

 
Since a considerable part of the identification process 

is manual, our focus is on providing the user with best 
heuristics to which files and documents he or she needs to 
analyze.  Measuring the overall effort is not easy in this 
case.  In order to show the efficiency of the method we 
Table 3.  Number of 
files with semantic 
cohesion within a 

given interval. 

Number of 
Files 

Semantic 
Cohesion 

5 [0.9,1.0) 
15 [0.8,0.9) 
28 [0.7,0.8) 
19 [0.6,0.7) 
30 [0.5,0.6) 
41 (0.0,0.5) 

131 Contain 1 
document 
document in list.c, tried to identify the clones of
Table 4.  A distribution 
of the size of files.  The 

number of files that 
contain a given 

number of documents. 

Number of 
Documents 

Number of 
Files 

1 110 
2 - 4 45 

5 - 10 42 
11 - 20 44 
21 - 50 21 
55 - 91 7 
 the linked list ADT using 



 

 

keyword search in the source code.  For example, 
searching for the occurrences of the term ‘list’ yielded 
3002 occurrences in 125 files.  Searching for the 
occurrences of ‘list’ as a separate word yielded 838 
occurrences in 82 files.  Various other keyword searches 
using regular expressions and other terms yielded 
comparable results.  With this in mind, our method not 
only helps identifying an implementation of a high-level 
concept in the first place, it also reduces the search space 
for clones by at least 5 times.  This also supports other 
research’s finding as to LSI’s performing much better then 
simple word matching methods. 

 
4.3. Limitations 

 
In some cases, the developers of Mosaic choose to 

entirely rename the data structure and operation names in 
a cloning (re-implementation) of a list (e.g., a list of news 
records).  When comments are also discarded, our 
measures were unable to detect similarities between two 
such implementations.  Though this demonstrates the 
importance of internal documentation can have for source 
code understanding.  By lowering the threshold for 
defining the similarity, we obtained too many false 
positives.  Since the kind of clones we are attempting to 
identify typically contained groups of documents spanning 
over several functions and files, some of the documents 
will still contain features that could be identified by our 
method. 

Still, limitations like this prompted us to experiment 
with combining this method with existing clone detection 
methods to increase the precision.  Section 6 describes the 
experiments we are currently executing and our hypothesis 
on how much this will improve the clone detection 
process. 

 
5. Related work 

 
Existing research in clone detection is based on two 

major approaches: 1) using structural information about 
the code (e.g., metrics, AST, control/data flow, slices, 
structure of the code/expressions, etc.) [3, 5, 20, 21, 23, 
31]; and 2) using string-based matches [3, 9, 19, 36].  
Each of these methods has its advantages and 
disadvantages.  The methods that fall in the first category 
are obviously language dependent, thus a bit less flexible, 
while some of the methods in the second category can 
only deal with exact matches and can have scalability 
problems due to the large number of comparisons needed. 

Johnson [19] has developed a method for the 
identification of exact duplications of sub-strings in source 
code using fingerprints at file level granularity.  Baker’s 
tool, called DUP [3], finds exact matches and p-matches 
based on parameters (i.e., replacing identifiers).  The 

granularity is that of chunks of source code larger than a 
given threshold (usually around 30 LOC).  Comments are 
ignored in this string matching process. 

A set of other related approaches use metrics derived 
from the structure or layout of the code to identify 
similarities between source code elements.  Mayrand et al. 
[31] use a set of metrics to characterize functions based on 
name, layout, expressions, and control flow to identify 
duplicate, or near duplicate, functions in programs written 
in procedural programming languages.  The method is 
also used by Lague et al. [23] in their attempt to integrate 
clone tracking into the development process.  
Kontogiannis [21] uses five complexity metrics as 
characteristics of code.  The code segments are 
represented in this 5-dimensional space and Euclidian 
distance is used as similarity metric.  The method is based 
on a system representation as an annotated syntax tree.  
This method resembles our approach in two ways, namely 
the source code segment is represented as a multi-
dimensional space, and this representation is used to 
define a similarity measure. 

On a different note, Ducasse et al. [9] propose a 
language independent method to identify clones.  The 
method is based on simple string matching, textual 
reports, and scatter plot visualization.  Comments are 
removed from the source code and the text preprocessing 
is based on a similar method to the Unix diff.  The 
string-matching algorithm identifies exact matches only 
and the user identifies clones using the DUPLOC 
visualization tool [36]. 

Komondoor and Horwitz [20] use backward slicing on 
the program dependence graph to identify clones in C 
programs.  The advantage of this method over the 
previous ones is that it can identify non-contiguous clones. 

Complementing the research in clone detection are the 
clone removal methods.  Clone detection, in general 
targets some aspects of software maintenance, trying to 
improve the quality of a software system under 
maintenance or development.  Clone removal is aimed at 
supporting specific software engineering tasks namely, 
reengineering, reverse engineering, or program 
understanding.  This paper is not concerned in detail about 
removal of the identified clones.  Ideally, these high-level 
concept clones would be combined in one or two modules 
or classes during reengineering.  Existing research 
describes several methods for clone removal [4, 5, 12]. 
 
6. Combining multiple detection methods 

 
We are currently investigating the combination of 

methods through two different approaches.  One approach 
is to apply two or more methods to the same code and 
then merge the results.  Three methods that are based on 
structural information [5, 20, 31], using abstract syntax 



 

 

tree representation, software complexity metrics, and 
slicing respectively, seem the best candidates to augment 
the results of our method.  In addition, Baker’s [3] p-
matches could also be used to identify structurally similar 
code segments where variable names are completely 
changed. 

Another approach is to augment the real-valued vector 
representation of the source code documents, produced by 
LSI, by adding more dimensions that would represent 
structural attributes of the source code derived from 
metrics.  Metrics values such as those used in [21] or [31] 
seem most appropriate.  Preliminary research on this 
approach seems promising and would enhance the 
descriptiveness of the LSI output to include structural type 
information. 

 
7. Conclusions 

 
It has been suggested in [5], that clone detection 

methods can be used to identify domain concepts in the 
code.  Our method attempts to show that the opposite is 
true as well.  This paper presents how high-level concept 
clones can be detected using a static analysis method that 
is designed for detection of domain concepts in the code.  
The granularity and type of clones identified through the 
proposed approach differ from definitions of clones in 
previous research.  Here, we are looking for high-level 
concepts clones such as ADTs. 

Researchers [5] recognize the need to detect “semantic 
equivalence” in source code, but due to practical reasons 
related to the difficulty and cost of this task, simpler 
equivalency definitions were used instead.  Our approach 
identifies semantic similarities in source code but some 
lack of precision and limited automation is the price to 
pay for the low costs of the proposed method.  None of 
the existing methods would be able to identify two 
different implementations of a function that inserts and 
element into a linked list that are not connected by data or 
control flow.  Our method fails to identify two functions 
with similar structure and functionality if comments do not 
exist and the identifier names are completely different.  
The best way to overcome this aspect is by combining two 
or more clone detection methods and thus taking 
advantage of their respective strengths. 

The paper shows that identifying clones based on 
semantic equivalence is possible at a relatively low cost 
and can be automated to a large degree by combining it 
with other clone detection methods.  This also lays the 
grounds for future research that, as we stated earlier, is 
already in progress. 
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