

Identification of High-Level Concept Clones in Source Code

Andrian Marcus, Jonathan I. Maletic
Department of Computer Science

Kent State University
Kent Ohio 44242

amarcus@cs.kent.edu, jmaletic@cs.kent.edu

Abstract

Source code duplication occurs frequently within large

software systems. Pieces of source code, functions, and
data types are often duplicated in part, or in whole, for a
variety of reasons. Programmers may simply be reusing
a piece of code via copy and paste or they may be “re-
inventing the wheel”.

Previous research on the detection of clones is mainly
focused on identifying pieces of code with similar (or
nearly similar) structure. Our approach is to examine the
source code text (comments and identifiers) and identify
implementations of similar high-level concepts (e.g.,
abstract data types). The approach uses an information
retrieval technique (i.e., latent semantic indexing) to
statically analyze the software system and determine
semantic similarities between source code documents
(i.e., functions, files, or code segments). These similarity
measures are used to drive the clone detection process.

The intention of our approach is to enhance and
augment existing clone detection methods that are based
on structural analysis. This synergistic use of methods
will improve the quality of clone detection. A set of
experiments is presented that demonstrate the usage of
semantic similarity measure to identify clones within a
version of NCSA Mosaic.

1. Introduction

Research suggests [3, 23] that a reasonable amount of

large software systems contain duplicated implemen-
tations of source code. There are a number of reasons for
the existence of these duplicate implementations, or
clones.

For one, programmers often perform a type of ad hoc
reuse by using the copy and paste method. The scenario is
common; you find a piece of code in another routine that
almost solves your problem. You copy it to your routine
and modify it to suit the problem at hand. This type of
“reuse” is less costly (at the time) than redesigning a

larger part of the system to incorporate the necessary
generality of the reused piece of code. Ideally, the
program would create a more general set of routines or
design a class hierarchy to solve the reusing problem.
This represents a programmer’s explicit intent to reuse an
abstraction in the problem, or solution, domain. Baxter et
al. go as so far to say that we should offer tools to support
this type of cloning (reuse) in a more structured and well-
defined manner.

The above described situation gives rise to the
following types of clones. A (perfect) clone is a program
fragment that is identical to another program fragment. A
near miss clone is a program fragment that is very similar
to another fragment. The near miss clone comes about
when the programmer modifies the copied fragment.

Another reason for the occurrence of clones, especially
in very large software systems, is because of “re-inventing
the wheel”. A developer (or maintainer) may not know of
the existence of a solution to their problem and they just
solve it by developing new code. Alternatively, they may
know of a fragment that is similar to what they need, but
feel the expense of understanding and modifying the
fragment is to great in comparison to “writing it
themselves”. Re-inventing the wheel gives rise to near
miss clone and possibly “wide miss” clones. A wide miss
clone solves the same (or nearly the same) problem but
has a very different structure. While this general problem
could be solved by better designs, communication among
developers, or better documentation, it remains a reality.

From our experience, these types of clones often
manifest themselves as higher-level abstractions in the
problem or solution domain. A simple example that
comes to mind is an ADT list. A list structure is often
duplicated in one form or another throughout a system.
Each programmer, or team, builds one to suit his or her
particular needs.

We term these types of clones as high-level concept
clones. While a number of the existing clone detection
methods can detect some of these types of clones, no

method directly addresses the identification of high-level
concept clones.

In this paper, we present a method that addresses the
detection of high-level concept clones. We feel that this
method should be used in conjunction with other existing
methods to synergistically identify all types of clones.
The next section describes the underlying approach to our
method. Section 3 presents how we detect high-level
concept clones. Section 4 describes the results of
applying this approach to a medium sized software system
(Mosaic). Section 5 reviews the related work and the
remaining sections describe our current directions.

2. Detection of high-level concepts in code

The method we use to detect high-level concepts in

source code is derived from our work on the PROCSSI
system [28]. PROCSSI is composed of a set of methods
to support software maintenance tasks. The main feature
of PROCSSI is the use of both semantic and structural
information extracted from the source code. Here we use
the term semantic to refer to the information embedded in
the source that links it to the problem or solution domain.
For example, the term “sort” has a clear meaning to a
programmer and its presence in a piece of source code
typically has great significance with respect to
understanding of the source. Structural information refers
directly to concepts such as the structural organization,
control flow, and data flow of the source code. A large
number of (inexpensive) methods to extract structural
information exist but few methods, beyond an hourly
wage, exist to map source code to the problem and
solution domain.

For the semantic dimension, PROCSSI uses the
profiles generated by information retrieval methods, in
this case a vector representation from Latent Semantic
Indexing (LSI), to compare components and classify them
into clusters of semantically similar concepts (the details
of LSI are presented later in this section). PROCSSI
works as follows. Given a software system, it is broken
down into a set of individual source code documents. A
simple parsing of the source code is done to break the
source into the proper granularity and remove any non-
essential symbols and text. Comment delimiters and many
syntactical tokens can be removed as they add little or no
knowledge of the problem domain. The profile of each
source code document generated by LSI can then be used
to cluster the documents in to related groups. Clustering
of source code based on semantic and structural
information is very useful in the maintenance and
evolution of legacy software systems. For instance, the
clustering can be used to assist in the re-modularization
[30, 34, 35, 39] of systems and the identification of
abstract data types [8, 17]. If a software system were to

be reengineered into an object-oriented language from a
structured one, then this type of clustering would prove to
be very useful. The objective is to reduce the amount of
source code an engineer needs to view, at any one time,
and give them clues about possible relationships within
the system not apparent from the current organization of
the files or documentation.

PROCSSI uses a simple graph theoretic approach for
clustering, but a number of other types of clustering
algorithms have been used to cluster software [1, 2, 18,
25]. Details of our approach on how the high-level
concepts are identified using this clustering method can be
found in [28].

2.1. Information retrieval and software

There are a variety of information retrieval methods

including traditional [11, 37] approaches such as signature
files, inversion, and clustering. Other methods that try to
capture more information about documents to achieve
better performance include those using parsing, syntactic
information, natural language processing techniques,
methods using neural networks, and advanced statistical
methods. Much of this work deals with natural language
text and a large number of techniques exist for indexing,
classifying, and retrieving text documents. These methods
produce for each document a profile. A profile is an
abbreviated description of the original document that is
easier to manipulate.

The research that has been conducted on the specific
use of applying information retrieval methods to source
code and associated documentation typically relates to
indexing reusable components [13-15, 25, 26, 29, 32].
Notable is the work of Maarek [25, 26] on the use of an
IR approach for automatically constructing software
libraries. The success of this work along with the
inefficiencies and high costs of constructing the
knowledge base associated with natural language parsing
approaches to this problem [10] are main motivations
behind our research. In short, it is very expensive (and
often impractical) to construct the knowledge base(s)
necessary for parsing approaches to extract even
reasonable semantic information from source code and
associated documentation. Using IR methods (based on
statistical and heuristic methods) may not produce as good
of results, but they are inexpensive to apply and coupled
with the structural information of the program, should
produce good quality and low cost results.

2.2. Latent semantic indexing

Latent Semantic Indexing (LSI) [6, 24] is a corpus-

based statistical method for inducing and representing
aspects of the meanings of words and passages (of natural

language) reflective in their usage. The method generates
a real valued vector description for documents of text.
This representation can be used to compare and index
documents using a variety of similarity measures. We
apply LSI to source code and its associated internal
documentation (i.e., comments) and then use the similarity
measures to induce the similarity of different source code
documents.

Work applying LSI to natural language text by [6, 24]
has shown that that LSI not only captures significant
portions of the meaning of individual words but also of
whole passages such as sentences, paragraphs, and short
essays. The central concept of LSI is that the information
about word contexts in which a particular word appears,
or does not appear, provides a set of mutual constraints
that determines the similarity of meaning of sets of words
to each other.

One of the criticisms of this method, when applied to
natural language texts is that it does not make use of word
order, syntactic relations, or morphology. But very good
representations and results are derived without this
information [7]. This characteristic is very well suited to
the domain of source code and internal documentation.
Because much of the informal abstraction of the problem
concept may be embodied in names of key operators and
operands of the implementation, word ordering has little
meaning. Source code is hardly English prose, but
through the use of selective naming, much of the high
level meaning of the problem-at-hand is conveyed to the
reader (programmer/developer). Internal source code
documentation is also commonly written in a subset of
English [10] that may also lend itself to the IR methods
utilized.

Like some other IR methods LSI does not utilize a
grammar or a predefined vocabulary. Though, many IR
methods do use a list of non-essential words with low
discriminatory power. This makes automation much
simpler and supports programmer defined variable names
that have implied meanings (e.g., avg) yet are not in the
English language vocabulary. The meanings are derived
from usage rather than a predefined dictionary. This is a
stated advantage over using a traditional natural language
approach, such as in [10], where a (subset) grammar for
the English language must be developed.

3. Identifying high-level concept clones

The method we propose for identifying high-level

concept clones is based on the semantic similarity measure
between source code documents described earlier. These
similarity measures are akin to the work by [16, 22, 38].
They compute the similarity between software elements
based on structural information, with the purpose of
identifying high-level concepts in code.

In its current form, the approach is an automated
assistant to the developer in the identification of clones.
To fully automate the process there is a need for
integration with other clone detection methods that are
based on structural information. Section 6 of this paper
will discuss this issue.

Once the semantic similarities between the source-code
documents are computed, the user should select a group of
documents that implement a known high-level concept
(e.g., and ADT) as starting point. There are several ways
in which a user, even without much knowledge of the
given software at hand, can identify the implementation of
such a high-level concept. Either by selecting groups of
documents based on file names and/or function names, or
by using a clustering of the source code documents, such
as described in [27, 28]. Automation of this part is also
possible, by using selected metrics as guidance. In
previous work [28], we used the semantic similarity
measures to assess the semantic cohesion of clusters of
source code documents. One such cluster could be
determined using structural information about the code
such as control or data dependency. Such clusters of
source code documents could be a cross multiple files.
Most of the existing clone detection methods try to
identify clones within or between files. This is the
approach we consider as well. Some variation of the
measures and metrics proposed in [28] are defined here
with respect to clone detection.

Definition. A source code document (or simply
document) d is any contiguous set of lines of source code
and/or text. Typically, a document is a function, block of
declarations, definitions, or a class declaration including
its associated internal documentation (comments).

Definition. A software system is a set of documents S
= {d1, d2, …, dn}. The Total number of documents in the
system is n = |S|.

Definition. A cluster, ck, is a set of documents from S
such that ck ⊆ S. Size of a cluster, ck, is the number of
documents in a cluster, noted |ck|.

Definition. A file fi, is composed of a number of
contiguous documents and the union of all files is S. Size
of a file, fi, is the number of documents in the file, noted
|fi|.

Definition. The software system is represented as a
relationship graph that is a multi-graph G = (S, E), where
the nodes S are the documents, E is a set of weighted
edges, and a relation e: E → {(di, dj) | di, dj ∈ S; di ≠ dj}.
The relation e defines which nodes are connected by
which edge. The edges u and v are called parallel or
multiple edges if e(u) = e(v).

Each parallel edge represents a relationship between
the nodes (i.e., source code documents) it connects. There
could be different types of edges; each represents different
relationships between two source code documents. Here

we consider two types of relationships, namely semantic
similarity and structural relationships. The structural
relationship is defined by the file structure of the system.

Using the semantic similarity measure one could
cluster the software system using a variety of clustering
algorithms. Once such a clustering is performed, the
following measures and metrics will be computed.

Definition. The number of clusters that contain a
document from a given file is |CDFi| where

CDFi = {ck ⊆ S | ck ∩ fi ≠ ∅}.
Definition. The semantic cohesion of a file with

respect to clusters is

SCFCi =
|f|

1|CDF|1
i

i −− .

Definition. Number of files related by a cluster to a
given file, fi, is | RFi | where

RFi = {f ⊆ S | ck ∩ f ∩ fi ≠ ∅, f ≠ fi, ck ⊆ S}.
Definition. Number of files strongly related by a

cluster to a given file, fi, is SRFi: SRFi = | RFi | - max | ck |
- 1 and ck ∈ LCk where LCk is the set of clusters that
contain documents from fi and have a low semantic
cohesion with respect to files.

LCk = FDC ∩ {cj⊆ S|
|c|

1|FDC|
1

j

j −
− <ε}

where ε is an empirically established threshold.
In addition we consider two files fi and fj as being

related if there is at least one document is fi that is similar
with at least one document in fj:

∃ di ∈ fi, dj ∈ fj such that sem(di, dj) > α,
where sem is the semantic similarity function (i.e., the
cosine between the vector representation if the two
documents), and α is a threshold (0.7 in this case that
corresponds to a 45 degree angle).

Files with high semantic cohesion are of interest with
respect to clone detection. Such files most likely contain
implementation of only one or very few high-level
concepts and versions of them. Among these files, we
need to focus on those that are strongly related to other
files. All these computations are automated and a
prototype tool has been developed and tested previously,
using a minimal spanning tree algorithm for clustering.
Other clustering algorithms are under investigation, which
may provide better results for clone detection.

At this point in the process, user intervention is
necessary. As we specified earlier, the high-level concept
we identify, and for which we are trying to find clones,
have a rather imprecise definition. This definition is
based on the user’s understanding of the system and
represents some mapping between the source code and the
problem or the solution domain. Further automation
would require the acquisition and representation of
extensive domain knowledge - an extremely expensive

and difficult undertaking that is necessary for each system
examined. Thus, human interaction is unavoidable at this
point in the process.

Two types of clones are to be identified. One will
consist of groups of documents from any file that
implements the same high-level concept, while the two
sets of documents have no data or control connections
(e.g., separate implementation of the same or related
ADT). The second type of clones will consist of groups
of documents from different files that use the same data
structure but implement their own set of operations.
Obviously none of these clones will be exact ones.

Once a file (or group of documents) that contains the
implementation of a high-level concept is chosen as
starting point, the user will use the computed measures to
identify clones. All the strongly related files have to be
investigated by the user. While this may seem and
extremely laborious task, experiments showed that the
number of documents that need to be investigated is in
fact reasonable and the guiding metrics drastically reduce
the search space that a keyword-based search would
generate. Matching these results with the ones provided
by another clone detection method could further reduce
this search space. This work is in progress and some
details are provided in section 6. The following section
describes a set of experiences we have done to show the
usability of the method.

4. Experiments

A set of experiments was run to determine the

suitability of our method for clone detection. The source
code for an older version of Mosaic (v2.7) [33] was used
as input into LSI and clustered using the previously
described method.

Mosaic 2.7 is written in C and was programmed and
developed by multiple individuals. No single coding
standard is observed over the entire system and different
standards are routinely used within a given file. Little or
no external documentation on the design or architecture is
available and the internal documentation is often scarce or
missing. In short, Mosaic reflects the kinds of realities
often found in commercial software due to the many
external issues that affect a software development project.

Table 1 gives
the size of the
Mosaic system
(269 files
containing
approximately 95
KLOC). A
semantic space
using a
dimensionality of 3
Table 1. Vitals for Mosaic.

LOC 95,000

Vocabulary 5,114

Number of parsed
documents

2,347

Number of clusters 655

produced

50 for the 2,347 documents was

generated. The
documents were
then clustered, as
stated previously,
based on the angle
of 45 degrees or
less (i.e., between
1.0 and 0.7)
between any two
vectors, which
resulted in 655
groupings.

A distribution
of the clusters
based on the
number of

co
si
T
fo
cl
o
cl
co
in
w

th
su
b
d

ar
n
co
im
ty

spanning over 11 files, determining 116 pair of similar
documents. Out of the 19 similar documents, 10
documents are similar to at more 8 documents from
list.c.

4.1. Results

Among the files that contain these documents, 2 were

found to contain a different implementations of a linked
list and 4 other files were implementing their own
operations defining a linked list but using the same data
structure defined in list.h or the data structure defined
in HTList.h. The other files were either using the
implemented list ADT in a correct manner or they turned
out to be similar by accident (two cases).
Table 2. A distribution of
the size of clusters. The
number of clusters that

contain a given number of
documents.

Number of
Documents

Number of
Clusters

1 481
2 98

3 - 5 46
6 - 10 15
11 -30 8

38 1
99 1

1084 1
documents they
ntain is given in table 2. There are a large number of

ngleton clusters (481) and few really large clusters.
hese numbers reflect the same type of trends that were
und in the earlier experiments. The large number of
usters of size one reflects the fact that many functions
ften stand by themselves semantically. The largest
uster is for the most part composed of a common header
mment that is found in almost every file. It also
cludes a large number of very small documents that
ere parsed out to be only one or two lines of code.

Of interest here is the semantic cohesion of files and
e number of related files to a given one. Table 3
mmarizes the semantic cohesion values of the files

ased on the current clustering. Table 4 shows the
istribution of documents within files.

The clusters of interest, with respect to clone detection,
e those that have more than one but not excessive

umbers of documents and the files with high semantic
hesion. Our assumption is that a high-level concept is
plemented using more than a few functions and data

pes.
We chose to start by choosing a file with the desired

properties that was
identified as containing
the implementation of a
high-level concept. The
file is list.c, which
together with list.h
and listP.h implement
a linked list of character
strings (char*). The file
list.c has a semantic
cohesion of 0.8 and
contains 15 documents.
A total of 19 documents
are similar to at least one

Although the results are encouraging, due to the nature
of the clustering algorithm used, the experiment was
repeated twice more using as a starting point the pair of
files that contain the different list implementations. These
files are: hotlist.h, hotlist.c, HTList.h, and
HTList.c. One could of course argue that the names of
the files are self-explanatory and someone could have
found these clones easily. If the files would have had a
more cryptic name that did not hint to the word ‘list’ this
action would not have been possible, while our method
would work the same. In fact, the names of the files that
contain different implementation of a list using the same
data structure did not give any clues (e.g.,
HTMLwidgets.c, cciBindings2.c, etc.). Restarting
the experiment yielded 4
more implementations of
linked lists. Overall, 11
high-level concept clones
were identified,
implementing versions of a
linked list.

A reengineering of the
system would most likely
be concerned with creating
a single (more general)
implementation of a linked
list and reuse it through
instantiation and/or
inheritance rather than re-
implementation.

4.2. Comparison

Since a considerable part of the identification process

is manual, our focus is on providing the user with best
heuristics to which files and documents he or she needs to
analyze. Measuring the overall effort is not easy in this
case. In order to show the efficiency of the method we
Table 3. Number of
files with semantic
cohesion within a

given interval.

Number of
Files

Semantic
Cohesion

5 [0.9,1.0)
15 [0.8,0.9)
28 [0.7,0.8)
19 [0.6,0.7)
30 [0.5,0.6)
41 (0.0,0.5)

131 Contain 1
document
document in list.c, tried to identify the clones of
Table 4. A distribution
of the size of files. The

number of files that
contain a given

number of documents.

Number of
Documents

Number of
Files

1 110
2 - 4 45

5 - 10 42
11 - 20 44
21 - 50 21
55 - 91 7
 the linked list ADT using

keyword search in the source code. For example,
searching for the occurrences of the term ‘list’ yielded
3002 occurrences in 125 files. Searching for the
occurrences of ‘list’ as a separate word yielded 838
occurrences in 82 files. Various other keyword searches
using regular expressions and other terms yielded
comparable results. With this in mind, our method not
only helps identifying an implementation of a high-level
concept in the first place, it also reduces the search space
for clones by at least 5 times. This also supports other
research’s finding as to LSI’s performing much better then
simple word matching methods.

4.3. Limitations

In some cases, the developers of Mosaic choose to

entirely rename the data structure and operation names in
a cloning (re-implementation) of a list (e.g., a list of news
records). When comments are also discarded, our
measures were unable to detect similarities between two
such implementations. Though this demonstrates the
importance of internal documentation can have for source
code understanding. By lowering the threshold for
defining the similarity, we obtained too many false
positives. Since the kind of clones we are attempting to
identify typically contained groups of documents spanning
over several functions and files, some of the documents
will still contain features that could be identified by our
method.

Still, limitations like this prompted us to experiment
with combining this method with existing clone detection
methods to increase the precision. Section 6 describes the
experiments we are currently executing and our hypothesis
on how much this will improve the clone detection
process.

5. Related work

Existing research in clone detection is based on two

major approaches: 1) using structural information about
the code (e.g., metrics, AST, control/data flow, slices,
structure of the code/expressions, etc.) [3, 5, 20, 21, 23,
31]; and 2) using string-based matches [3, 9, 19, 36].
Each of these methods has its advantages and
disadvantages. The methods that fall in the first category
are obviously language dependent, thus a bit less flexible,
while some of the methods in the second category can
only deal with exact matches and can have scalability
problems due to the large number of comparisons needed.

Johnson [19] has developed a method for the
identification of exact duplications of sub-strings in source
code using fingerprints at file level granularity. Baker’s
tool, called DUP [3], finds exact matches and p-matches
based on parameters (i.e., replacing identifiers). The

granularity is that of chunks of source code larger than a
given threshold (usually around 30 LOC). Comments are
ignored in this string matching process.

A set of other related approaches use metrics derived
from the structure or layout of the code to identify
similarities between source code elements. Mayrand et al.
[31] use a set of metrics to characterize functions based on
name, layout, expressions, and control flow to identify
duplicate, or near duplicate, functions in programs written
in procedural programming languages. The method is
also used by Lague et al. [23] in their attempt to integrate
clone tracking into the development process.
Kontogiannis [21] uses five complexity metrics as
characteristics of code. The code segments are
represented in this 5-dimensional space and Euclidian
distance is used as similarity metric. The method is based
on a system representation as an annotated syntax tree.
This method resembles our approach in two ways, namely
the source code segment is represented as a multi-
dimensional space, and this representation is used to
define a similarity measure.

On a different note, Ducasse et al. [9] propose a
language independent method to identify clones. The
method is based on simple string matching, textual
reports, and scatter plot visualization. Comments are
removed from the source code and the text preprocessing
is based on a similar method to the Unix diff. The
string-matching algorithm identifies exact matches only
and the user identifies clones using the DUPLOC
visualization tool [36].

Komondoor and Horwitz [20] use backward slicing on
the program dependence graph to identify clones in C
programs. The advantage of this method over the
previous ones is that it can identify non-contiguous clones.

Complementing the research in clone detection are the
clone removal methods. Clone detection, in general
targets some aspects of software maintenance, trying to
improve the quality of a software system under
maintenance or development. Clone removal is aimed at
supporting specific software engineering tasks namely,
reengineering, reverse engineering, or program
understanding. This paper is not concerned in detail about
removal of the identified clones. Ideally, these high-level
concept clones would be combined in one or two modules
or classes during reengineering. Existing research
describes several methods for clone removal [4, 5, 12].

6. Combining multiple detection methods

We are currently investigating the combination of

methods through two different approaches. One approach
is to apply two or more methods to the same code and
then merge the results. Three methods that are based on
structural information [5, 20, 31], using abstract syntax

tree representation, software complexity metrics, and
slicing respectively, seem the best candidates to augment
the results of our method. In addition, Baker’s [3] p-
matches could also be used to identify structurally similar
code segments where variable names are completely
changed.

Another approach is to augment the real-valued vector
representation of the source code documents, produced by
LSI, by adding more dimensions that would represent
structural attributes of the source code derived from
metrics. Metrics values such as those used in [21] or [31]
seem most appropriate. Preliminary research on this
approach seems promising and would enhance the
descriptiveness of the LSI output to include structural type
information.

7. Conclusions

It has been suggested in [5], that clone detection

methods can be used to identify domain concepts in the
code. Our method attempts to show that the opposite is
true as well. This paper presents how high-level concept
clones can be detected using a static analysis method that
is designed for detection of domain concepts in the code.
The granularity and type of clones identified through the
proposed approach differ from definitions of clones in
previous research. Here, we are looking for high-level
concepts clones such as ADTs.

Researchers [5] recognize the need to detect “semantic
equivalence” in source code, but due to practical reasons
related to the difficulty and cost of this task, simpler
equivalency definitions were used instead. Our approach
identifies semantic similarities in source code but some
lack of precision and limited automation is the price to
pay for the low costs of the proposed method. None of
the existing methods would be able to identify two
different implementations of a function that inserts and
element into a linked list that are not connected by data or
control flow. Our method fails to identify two functions
with similar structure and functionality if comments do not
exist and the identifier names are completely different.
The best way to overcome this aspect is by combining two
or more clone detection methods and thus taking
advantage of their respective strengths.

The paper shows that identifying clones based on
semantic equivalence is possible at a relatively low cost
and can be automated to a large degree by combining it
with other clone detection methods. This also lays the
grounds for future research that, as we stated earlier, is
already in progress.

8. References

[1] Anquetil, N. and Lethbridge, T., "Extracting Concepts from
File Names; a New File Clustering Criterion", in Proceedings of
20th International Conference on Software Engineering
(ICSE'98), Kyoto, Japan, 1998, pp. 84-93.
[2] Anquetil, N. and Lethbridge, T., "Experiments with
Clustering as a Software Remodularization Method", in Proc. of
6th Working Conference on Reverse Engineering, 1999.
[3] Baker, B., "On Finding Duplication and Near-Duplication in
Large Software Systems", in Proc. of Working Conference on
Reverse Engineering, Toronto, Ontario, July 1995.
[4] Balazinska, M., Merlo, E., Dagenais, M., and Lague, B.,
"Partial Redesign of Java Software Systems Based on Clone
Analysis", in Proceedings of Working Conference on Reverse
Engineering, Atlanta, GA, October 6-8 1999, pp. 326-336.
[5] Baxter, I. D., Yahin, A., Moura, L., Sant'Anna, M., and Bier,
L., "Clone detection using abstract syntax trees", in Proceedings
of International Conference on Software Maintenance, Bethesda,
Maryland, November 16-19 1998, pp. 368-377.
[6] Berry, M. W., "Large Scale Singular Value Computations",
International Journal of Supercomputer Applications, vol. 6,
1992, pp. 13-49.
[7] Berry, M. W., Dumais, S. T., and O'Brien, G. W., "Using
Linear Algebra for Intelligent Information Retrieval", SIAM:
Review, vol. 37, no. 4, 1995, pp. 573-595.
[8] Canfora, G., Cimitile, A., Munro, M., and Tortorella, M.,
"Experiments in Identifying Reusable Abstract Data Types in
Program Code", in Proceedings of IEEE 2nd Workshop on
Program Comprehension, 1993, pp. 36-45.
[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., and Harshman, R., "Indexing by Latent Semantic Analysis",
Journal of the American Society for Information Science, vol.
41, 1990, pp. 391-407.
[10] Ducasse, S., Rieger, M., and Demeyer, S., "A Language
Independent Approach for Detecting Duplicated Code", in Proc.
of International Conference on Software Maintenance, Oxford,
England, Aug 30 - Sep 3 1999, pp. 109-118.
[11] Duda, R. O. and Hart, P. E., Pattern Classification and
Scene Analysis, Wiley, 1973.
[12] Dumais, S. T., "Latent Semantic Indexing (LSI) and TREC-
2", in Proceedings of The Second Text Retrieval Conference
(TREC-2), March 1994, pp. 105-115.
[13] Etzkorn, L. H. and Davis, C. G., "Automatically Identifying
Reusable OO Legacy Code", IEEE Computer, vol. 30, no. 10,
October 1997, pp. 66-72.
[14] Faloutsos, C. and Oard, D. W., "A Survey of Information
Retrieval and Filtering Methods", University of Maryland,
Technical Report CS-TR-3514, August 1995.
[15] Fanta, R. and Rajlich, V., "Removing clones from the
code", Journal od Software Maintenance: Research and
Practice, vol. 11, no. 4, 1999, pp. 223-243.
[16] Fischer, B., "Specification-Based Browsing of Software
Component Libraries", in Proc. of 13th ASE, 1998, pp. 74-83.

[17] Frakes, W., "Software Reuse Through Information
Retrieval", in Proc. of 20th Annual HICSS, Kona, HI, Jan. 1987,
pp. 530-535.
[18] Girard, J.-F., Koschke, R., and Schied, G., "Comparison of
Abstract Data Type and Abstract State Encapsulation Detection
Techniques for Architectural Understanding", in Proceedings of
Working Conference on Reverse Engineering, 1997, pp. 66-75.
[19] Girard, J.-F., Koschke, R., and Schied, G., "A Metric-Based
Approach to Detect Abstract Data Types and State
Encapsluation", Journal Automated Software Engineering, vol.
6, no. 4, October 1999.
[20] Girard, J.-F. and R., K., "A Comparison of Abstract Data
Type and Objects Recovery Techniques", Journal Science of
Computer Programming, Elsevier 1999.
[21] Hutchens, D. and Basili, V., "System Structure Analysis:
Clustering With Data Bindings", IEEE Transactions on
Software Engineering, vol. 11, no. 8, 1985, pp. 749-757.
[22] Johnson, H. J., "Substring matching for clone detection and
change tracking", in Proceedings of International Conference on
Software Maintenance, 1994, pp. 120-126.
[23] Jolliffe, I. T., Principal Component Analysis, Springer
Verlag, 1986.
[24] Komondoor, R. and Horwitz, S., "Finding duplicated code
using program dependences", in Proceedings of European
Symposium on Programming, Genoa, Italy, April 2-6 2001.
[25] Kontogiannis, K., "Evaluation Experiments on the
Detection of Programming Patterns Using Software Metrics", in
Proceedings of Working Conference on Reverse Engineering,
Amsterdam, The Netherlands, October 6-8 1997, pp. 44-55.
[26] Kontogiannis, K., Galler, M., and DeMori, R., "Detecting
code similarity using patterns", in Proceedings of Third
Workshop on AI and Software Engineering : Breaking the Toy
Mold, August 1995, pp. 68-73.
[27] Lague, B., Proulx, D., Merlo, E., Mayrand, J., and
Hudepohl, J., "Assessing the Benefits of Incorporating Function
Clone Detection in a Development Process", in Proceedings of
International Conference on Software Maintenance, Bari, Italy,
October 1-3 1997, pp. 314-321.
[28] Landauer, T. K. and Dumais, S. T., "A Solution to Plato's
Problem: The Latent Semantic Analysis Theory of the
Acquisition, Induction, and Representation of Knowledge",
Psychological Review, vol. 104, no. 2, 1997, pp. 211-240.
[29] Landauer, T. K., Laham, D., Rehder, B., and Shreiner, M.
E., "How Well Can Passage meaning Be Derived without Using
Word Order? A Comparison of Latent Semantic Analysis and
Humans", in Proc of Proceedings of the 19th Annual Conference
of the Cognitive Science Society, 1997, pp. 412-417.
[30] Maarek, Y. S., Berry, D. M., and Kaiser, G. E., "An
Information Retrieval Approach for Automatically Constructing
Software Libraries", IEEE Transactions on Software
Engineering, vol. 17, no. 8, 1991, pp. 800-813.
[31] Maarek, Y. S. and Smadja, F. A., "Full Text Indexing
Based on Lexical Relations, an Application: Software Libraries",
in Proc. of SIGIR89, Cambridge, MA, June 1989, pp. 198-206.

[32] Maletic, J. I. and Marcus, A., "Using Latent Semantic
Analysis to Identify Similarities in Source Code to Support
Program Understanding", in Proceedings of 12th IEEE
International Conference on Tools with Artificial Intelligence,
Vancouver, British Columbia, Nov. 13-15 2000, pp. 46-53.
[33] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Information", in
Proceedings of 23rd International Conference on Software
Engineering, Toronto, Ontario, May 12-19 2001, pp. 103-112.
[34] Maletic, J. I. and Valluri, N., "Automatic Software
Clustering via Latent Semantic Analysis", in Proc. of 14th IEEE
International Conference on Automated Software Engineering
(ASE'99), Cocoa Beach FL, Oct. 1999, pp. 251-254.
[35] Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., and
Gansner, E. R., "Using Automatic Clustering to Produce High-
Level Organization of Source Code", in Proc of 6th International
Workshop on Program Comprehension, Italy, June 1998.
[36] Mayrand, J., Leblanc, C., and Merlo, E., "Experiment on
the Automatic Detection of Function Clones in a Software
System Using Metrics", in Proceedings of International
Conference on Software Maintenance, Monterey, CA,
November 4-8 1996, pp. 244-254.
[37] Michail, A. and Notkin, D., "Assessing Software Libraries
by Browsing Similar Classes, Functions and Relationships", in
Proceedings of International Conference on Software
Engineering, 1999.
[38] Mosaic, "Mosaic Source Code v2.7b5", NCSA site, Date
Accessed: 4/12/00, ftp://ftp.ncsa.uiuc.edu/Mosaic/Unix/source/.
[39] Müller, H. A., Orgun, M. A., Tilley, S. R., and Uhl, J. S.,
"A Reverse Engineering Approach to Subsystem Structure
Identification", Software Maintenance: Research and Practice,
vol. 5, no. 4, 1993, pp. 181-204.
[40] Ning, J. Q., Engberts, A., and Kozaczynski, W.,
"Recovering Reusable Components from Legacy Systems", in
Proc. of Working Conference on Reverse Engineering, 1993.
[41] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and
Flannery, B. P., Numerical Recipes in C, The Art of Scientific
Computing, Cambridge University Press, 1996.
[42] Rieger, M. and Ducasse, S., "Visual Detection of
Duplicated Code", Object-Oriented Technology (ECOOP'98
Workshop Reader) July 1998, pp. 75-76.
[43] Salton, G., Automatic Text Processing: The
Transformation, Analysis and Retrieval of Information by
Computer, Addison-Wesley, 1989.
[44] Schwanke, R. W., "An intelligent tool for re-engineering
software modularity", in Proceedings of 13th International
Conference on Software Engineering, 1991, pp. 83-92.
[45] Strang, G., Linear Algebra and its Applications, 2nd ed.,
Academic Press, 1980.
[46] Wiggerts, T., "Using clustering algorithms in legacy
systems remodularization", in Proceedings of Working
Conference on Reverse Engineering, 1997, pp. 33-43.

	1. Introduction
	2. Detection of high-level concepts in code
	2.1. Information retrieval and software
	2.2. Latent semantic indexing

	3. Identifying high-level concept clones
	4. Experiments
	4.1. Results
	4.2. Comparison
	4.3. Limitations

	5. Related work
	6. Combining multiple detection methods
	7. Conclusions
	8. References

