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Abstract 

Targeting EGFR, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), brings lights 
to the treatment of non-small cell lung cancer (NSCLC). Although T790M mutation responded as one of 
the main reasons of acquired resistance, still 15% of the resistance patients can’t be explained by the 
known mechanisms. The purpose of this research was to identify some new mechanisms of gefitinib 
acquired resistance, and to predict small molecules drugs which may reverse drug resistance by 
integrated bioinformatics analysis. The GSE34228 data package containing the microarray data of 
acquired gefitinib-resistant cell line (PC9GR) and gefitinib-sensitive cell line (PC9) from the GEO database 
were downloaded, and gene co-expression networks by weighted gene co-expression network analysis 
(WGCNA) were constructed to identified key modules and key genes related to gefitinib resistance. 
Furthermore, the significantly differentially expressed genes (DEGs) between the two cell types were 
screened out, and a protein-protein interaction (PPI) network to obtain the key genes of DEGs was 
accordingly constructed. Through the above two methods, 4 hub genes, PI3, S100A8, AXL and PNPLA4 
were mined as the most relevant to gefitinib resistance. Among them, PI3, S100A8 were down-regulated 
in PC9GR cell samples, while AXL, PNPLA4 were up-regulated. The gene set enrichment analysis (GSEA) 
for single gene showed that the four hub genes were mainly correlated with cell proliferation and cycle. 
Besides, small molecule drugs with the potential to overcome resistance, such as Emetine and cephaeline, 
were screened by CMap database. Consistent with this, in vitro experiments results have shown that 
emetine and cephaeline can increase the sensitivity of drug-resistant cells to gefitinib, and the mechanism 
may be related to the regulation of PI3 and S100A8. In conclusion, 4 hub genes were found to be related 
to the occurrence of gefitinib resistance in non-small cell lung cancer, and several small molecule drugs 
were screened out as potential therapeutic agents to overcome gefitinib resistance, which may lead a new 
way for the treatment of NSCLC of acquired resistance to gefitinib. 
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Introduction 

Lung cancer ranks first among the cause of 
cancer-related mortality [1], while non-small cell lung 
cancer (NSCLC) accounts for approximately 85% of 
lung cancers [2]. In recent years, the discovery of gene 
mutations has developed individualized targeted 
therapy, especially for NSCLC patients with 
epidermal growth factor receptor (EGFR) 

mutation-positive, epidermal growth factor receptor 
tyrosine kinase inhibitors (EGFR TKIs) provide a good 
treatment outcome, but the problem of resistance has 
not been fully solved. Gefitinib, the first-generation 
EGFR TKI, is one of the most common treatments for 
NSCLC with EGFR mutations. But almost all patients 
will develop acquired resistance within about a year 
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[3, 4]. 50% of patients with acquired resistance has 
been discovered having T790M mutation [5, 6], some 
others are reported with activation of alternative 
pathways or downstream pathways, histological or 
phenotypic transformation [7], but still 15% patients 
with acquired resistance cannot be attributed to the 
above mechanism [8]. With the third generation EGFR 
TKI, such as Osimertinib, which having been 
developed to overcome EGFR T790M, half patients 
with acquired resistance could benefit, however, the 
acquired resistance will still inevitably occurs after 
treatment with Osimertinib. At the same time, for the 
follow-up treatment of patients with other acquired 
resistance mechanisms, chemotherapy, combination 
therapy, or immunotherapy may be considered, but 
optimal treatment is not yet clearly defined [8]. It is 
necessary to find some new molecular mechanisms of 
gefitinib acquired resistance and new small molecule 
drugs that may reverse resistance. 

At present, the development of microarray and 
sequencing technology has provided help to further 
explore the molecular mechanism of tumors, and a 
variety of bioinformatics approaches have also been 
widely used. Weighted gene co-expression network 
analysis (WGCNA) is based on systems biology 
approach to determine correlations among genes [9], 
and co-expression modules and key genes that are 
highly correlated with phenotypic traits are obtained. 
Currently, WGCNA has been used in many studies to 
find therapeutic targets and candidate biomarkers for 
various tumors [10-12]. 

In the present study, hub genes related to 
gefitinib acquired resistance in NSCLC were 
identified by combining WGCNA and differential 
gene expression analysis, and functional enrichment 
analysis was performed for key modules in 
co-expression network. Meanwhile, the CMap 
database and in vitro experiments was used to predict 
and verify small molecule drugs that may overcome 
the acquired resistance to gefitinib in NSCLC. 

Materials and methods 

Data collection and preprocessing 

The mRNA expression profiles of human 
non-small cell lung cancer with acquired gefitinib- 
resistant were downloaded from the Gene Expression 
Omnibus (GEO) database. GSE34228 was based on 
Agilent-014850 Whole Human Genome Microarray 
and included 208 samples, which were treated with 
the four different conditions: EGF-treatment, 
gefitinib-treatment, both EGF and gefitinib-treatment 
and no treatment [13]. We then picked out 52 
untreated samples, including 26 PC9GR (acquired 
gefitinib-resistant) cell samples and 26 PC9 

(gefitinib-sensitive) cell samples for further analysis. 
The normalized data was downloaded and the matrix 
of gene expression was obtained. Then mapped all 
gene probes to gene symbols by using the microarray 
annotations, the average expression value was 
calculated out for those genes with corresponding to 
multiple probes, and the probe without 
corresponding annotation information were removed. 
Finally, 19,749 genes were retained from the 45,220 
genes in the dataset for subsequent analysis. The 
flowchart of this study was showed in Figure 1.  

 

 
Figure 1. Study workflow. WGCNA, weighted gene co-expression network 
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEG, differentially expressed genes; PPI, protein-protein Interaction; GSEA, gene set 
enrichment analysis. 

 

Construction of co-expression network and 
identification of significant modules 

A total of 4937 genes in the top 25% of variance 
were selected from 19749 genes to construct 
co-expression networks, and the R package 
“WGCNA” was applied to screen out the modules 
most related to gefitinib resistance and the hub genes 
among them [14]. We first set soft-thresholding power 
as 7 when 0.8 was used as the correlation coefficient 
threshold, and transform the adjacency matrix into a 
topological overlap matrix (TOM) [15]. Then, 
according to the TOM-based dissimilarity 
measurement, hierarchical clustering was conducted 
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to classify similar genes into gene modules with a 
minimum size of 30 for the gene dendrogram. In 
order to merge highly similar modules, we calculated 
module eigengenes and defined 0.25 as the threshold 
for cut height. The key module was defined as the 
module most relevant to gefitinib resistance, and the 
key genes in the module was screened out with gene 
significance (GS) and module membership (MM) both 
greater than 0.9. 

Function enrichment analyses 

To further understand the function of genes in 
the module most related to gefitinib resistance, Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway was 
analyzed using the R package “clusterprofiler” [16], 
and p-value <0.05 was considered to be significant 
enrichment. 

DEGs identification 

The R package “limma” was performed for 
DEGs identifying between PC9GR cell samples 
resistant to gefitinib and PC9 cell samples sensitive to 
gefitinib [17, 18], and the significantly altered genes 
was selected with p-value <0.05 and |log2 fold 
change (FC)| ≥2.  

PPI network construction 

We uploaded the selected DEGs to the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database to build a PPI network [19], and the medium 
confidence score >0.4 was considered significant. 
Cytoscape software was used to visualize the PPI 
network, and genes with connectivity degree ≥5 were 
defined as key genes. 

Hub gene identification and GSEA 

Key genes that belong to both the co-expression 
network and the PPI network were considered as hub 
gene for further analysis. To explore the role of the 
hub genes in gefitinib resistance, the R package 
“clusterprofiler” was used for gene set enrichment 
analysis of single hub gene [16]. According to the 
median expression of each hub gene, 26 PC9GR cell 
samples were divided into high expression group and 
low expression group, annotated gene set 
“c2.cp.kegg.v7.1.symbols.gmt” was selected as the 
reference gene set downloaded from the Molecular 
Signatures Database (MSigDB) [20], and p-value <0.05 
was considered significant. Then we used the R 
package “enrichplot” to visualize the top 3 gene sets 
in the enrichment score. 

Identification of candidate small molecules 

To identify potential small molecule drugs that 
may reverse gefitinib resistance, we uploaded the top 

150 up-regulated and down-regulated DEGs into 
CMap clue.io database (L1000 platform) [21], and 
compared our gefitinib resistance signature with the 
expression profiles from 9 human cancer cell lines 
treated with reference drugs. Finally, a list of drugs 
was generated, high negative median score indicates 
that the drug reversed the expression of our query 
signature. 

Cell viability assay 

The MTT assay was used to assess cell viability. 
After the cells were treated with different 
concentrations of drugs in 96-well plates for 48 hours, 
20 µL MTT reagent (Sigma-Aldrich, USA) were added 
to each well and cells were cultured at 37 ℃ incubator 
for 4 hours. Then, the original media was removed, 
and 150 µL of DMSO was added to each well and 
shaken for 1 min, OD value was measured at 570 nm 
with a microplate reader (Thermo Fisher Scientific, 
USA). 

RNA Extraction and quantitative real-time 
PCR (qRT-PCR) 

Total RNA from cells was extraction using the 
total RNA extraction kit (spin column, TIANGEN, 
China) following the manufacturers’ instructions. 
Then we carried out complementary DNA (cDNA) 
synthesis with the first-strand cDNA kit (TIANGEN, 
China). Quantitative real-time PCR (qRT-PCR) 
analysis was performed in the CFX Connect Real-time 
System (Bio-Rad, USA) using the SYBR Green qPCR 
Master Mix (Bimake, USA). PCR conditions were: 95 
°C for 15 min, 40 cycles at 95 °C for 10s, 55 °C for 30s 
and extension at 72 °C for 30s. Relative mRNA 
expression was calculated using the 2-ΔΔCt method and 
normalized to glyceraldehyde 3-phosphate dehydro-
genase (GAPDH). All sequences of the primers are as 
follows: PI3 (forward primer: 5’-AGATCCCGTTA 
AAGGACAAGTT-3’, reverse primer: 5’-GTATCT 
TTCAAGCAGCGGTTAG-3’); S100A8 (forward 
primer: 5’-TATCATCGACGTCTACCACAAG-3’, 
reverse primer: 5’-TCTGCACCCTTTTTCCTGATAT 
-3’). 

Results 

Identification of key modules and key genes by 
WGCNA 

Through the analysis of scale independence and 
mean connectivity, soft-thresholding power of 7 (scale 
free R2=0.8) was selected to ensure a scale-free 
network (Figure 2A), and the modules with a 
correlation higher than 0.75 were merged, ultimately, 
a total of 24 co-expression modules were recognized 
(Figure 2B-C), ranged in size from 55 to 1016 genes. 
The average gene significance in each module (Figure 
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2D) and the correlation between module eigengenes 
and gefitinib resistance (Figure 2E) both indicated 
that brown module was the key module highly 
related to gefitinib resistance. The brown module 
contained a total of 1016 genes, 84 genes were selected 

under the condition that both GS and MM were 
greater than 0.9 (Figure 2F), and these genes were also 
closely related to each other (Figure 2G). Thus, these 
genes were considered as key genes for further 
validation analysis. 

 

 
Figure 2. Identification of key modules and key genes associated with acquired resistance to gefitinib through WGCNA. (A) Analysis of the scale-free fit index 
and the mean connectivity for various soft-thresholding powers. (B) Cluster dendrogram based on module eigengenes (cutting height = 0.25). (C) Dendrogram of all DEGs in the 
top 25% of variance clustered based on the measurement of dissimilarity (1-TOM). The color band indicates the initial modules and the merged modules. (D) Distribution of 
average gene significance and errors in the modules associated with gefitinib resistance. (E) Heatmap of the correlation between module eigengenes and gefitinib resistance. (F) 
Scatter plot of eigengenes in brown module. (G) 84 key genes in brown module were tightly associated with each other. WGCNA, weighted gene co-expression network 
analysis; DEG, differentially expressed genes; TOM, topological overlap matrix. 
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Figure 3. GO and pathway enrichment analysis of the brown module genes. (A) Biological process analysis. (B) Cellular component analysis. (C) Molecular function 
analysis. (D) KEGG pathway analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes. 

 

Functional annotation of the key modules 

1016 genes in brown module were subjected to 
GO functional and KEGG pathway enrichment 
analyses, and the result was showed in Figure 3. GO 
analysis results showed genes in the brown module 
were mainly associated with the biological processes 
of protein generation and transport, such as 
establishment of protein localization to endoplasmic 
reticulum, translational initiation, and protein 
targeting to membrane (Figure 3A). In KEGG 
pathway analysis, protein production and transport 
pathways are also enriched, including Ribosome, 
RNA transport, and Protein processing in 
endoplasmic reticulum. What’s more, some pathways 
related to Neurodegenerative disorders of ageing 
were enriched (Figure 3D). 

Identification of DEGs and PPI network 
construction 

A total of 320 DEGs were screened, including 160 

up-regulated genes and 160 down-regulated genes in 
gefitinib-resistance PC9GR cells compared with 
gefitinib-sensitive PC9 cells (Figure 4A). Then, we 
constructed a PPI network with 207 nodes and 347 
edges for all 320 DEGs by Cytoscape according to the 
STRING database (Figure 4B), and 42 genes with 
degree ≥5 were identified as key genes. 

Identification of hub genes and GESA 

According to the key genes in brown module 
and the key genes in DEGs, 4 overlapping genes were 
identified as hub genes (Figure 5A), which are PI3, 
S100A8, AXL and PNPLA4. The expression of PI3 and 
S100A8 were significantly down-regulated in PC9GR 
cell samples compared to PC9 cell samples, 
conversely, the expression of AXL and PNPLA4 were 
significantly up-regulated (Figure 5B). 

Next, through GSEA of the four hub genes, we 
found that genes in low expression groups of PI3, 
S100A8 and high expression groups of AXL, PNPLA4 
were all enriched in genetic information processing 
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and metabolism pathways. Gene set with higher 
enrichment scores included DNA replication, 
Mismatch repair, Protein export, Steroid biosynthesis, 
Selenoamino acid metabolism (Figure 6). 

Related small molecule drugs screening 

After importing the DEGs into the Connectivity 
Map (L1000 platform), a drug list was generated. 
Table 1 shows 10 small molecule drugs with the 
median score <-60 that may reverse the resistance of 
gefitinib. The top negative enrichment scores belong 
to Emetine, PU-H71, and cephaeline. In these drugs, 

protein synthesis inhibitors play an important role. 
 

Table 1. Small molecule drugs identified by Connectivity Map. 

Rank Name Description Median Score 

1 Emetine Protein synthesis inhibitor -86.92 

2 PU-H71 HSP inhibitor -79.05 

3 cephaeline Protein synthesis inhibitor -75.78 

4 anisomycin DNA synthesis inhibitor -72.85 

5 HLI-373 MDM inhibitor -69.94 

6 diazepam Benzodiazepine receptor agonist -65.09 

7 mepireserpate Catecholamine depleting sympatholytic -63.5 

8 lasalocid Bacterial permeability inducer -62.58 

9 homoharringtonine Protein synthesis inhibitor -62.47 

10 cyanopindolol Adrenergic receptor antagonist -60.23 

 
 

 
Figure 4. DEGs and PPI network construction. (A) Volcano map of DEGs between gefitinib-resistant PC9GR cells and gefitinib-sensitive PC9 cells. (B) PPI network analysis 
of filtered DEGs. PPI, protein-protein interaction. 

 
Figure 5. Hub gene detection. (A) Identification of common key genes between DEGs and the brown module by overlapping them. (B) PI3, S100A8, AXL, and PNPLA4 gene 
expression differences between gefitinib-resistant PC9GR cells and gefitinib-sensitive PC9 cells. 
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In vitro validation of small molecule drugs 

To determine the correlation between the 
predicted drug and gefitinib resistance, we screened 
out two protein inhibitors with a score higher than 70 
for verification. First, PC9GR cells were treated with 
combination of emetine (3 nM, the IC10 value of 
emetine in PC9GR cells) or cephaeline (1 nM, the IC10 

value of cephaeline in PC9GR cells) and various 
concentration of gefitinib for 48h. Our results 
demonstrated that PC9GR cells interfered with 
emetine and cephaeline were more sensitive to 
gefitinib, the IC50 value decreased from (28.41 ± 0.17) 

μM to (14.73 ± 1.64) μM、(15.13 ± 1.58) μM (Figure 

7A).  

 

 
Figure 6. Gene set enrichment analysis of hub genes. (A) The top three enriched pathways in PI3 low-expression group. (B) The top three enriched pathways in S100A8 
low-expression group. (C) The top three enriched pathways in AXL high-expression group. (D) The top three enriched pathways in PNPLA high-expression group. 

 
Figure 7. In vitro validation of small molecule drugs. (A) MTT cell viability analysis of PC9GR cells treated with combination of emetine (3 nM) or cephaeline (1 nM) and 
various concentration gefitinib for 48 h. (B-C) mRNA expression of PI3 and S100A8 in different groups of cells. emt-PC9GR: PC9GR cells treated with emetine (67 nM); 
cep-PC9GR: PC9GR cells treated with cephaeline (13 nM); * indicated P < 0.05, ** indicated P < 0.01, **** indicated P < 0.0001 compared to PC9GR cell group. 
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Next, we examined the underlying mechanism 
of the above phenotypes by qRT-PCR. It was found 
that two down-regulated genes of the four predicted 
genes showed significant changes with the 
intervention of emetine and cephaeline. The mRNA 
expression of PI3 and S100A8 genes in sensitive cells 
was significantly higher than that in resistant cells, 
this is consistent with our previous prediction. At the 
same time, emetine (67 nM) and cephaeline (13 nM) 
significantly increased the mRNA expression of PI3 
and S100A8 in PC9GR cells (Figure 7B-C). 

Discussion 

Acquired resistance to gefitinib is a complex 
biological process. In this study, using publicly 
available microarray data, four hub genes related to 
gefitinib resistance were identified through a series of 
bioinformatics methods. Through GSEA, the potential 
functions of 4 hub genes in gefitinib resistance were 
explored, and several potential small molecule drugs 
that can reverse gefitinib resistance were screened. 

The 4 hub genes consist of PI3, S100A8, AXL and 
PNPLA4. Except for AXL, the other three genes have 
not been reported related to gefitinib resistance. PI3, 
encoding elafin, an endogenous serine protease 
inhibitor [22]. Elafin is a member of the WAP 
four-disulfide-core (WFDC) family [23], which has 
been confirmed to be highly expressed in 
inflammation diseases and can block the activity of 
destructive enzymes related to inflammation [24]. 
Abnormal expression of elafin has been reported in 
breast cancer, ovarian cancer [22] and melanoma [25], 
and is usually low expressed in these tumor tissues. 
Indeed, previous report indicate that overexpression 
of elafin may indicate chemotherapy resistance [26] 
but the relationship with EGFR TKIs resistance has 
not been reported. Our findings suggest that the 
downregulation of elafin may be potentially related to 
gefitinib resistance. S100A8 belongs to the S100 
protein family, which is closely associated with the 
regulation of Ca2+ in cells, thereby involving a variety 
of cell functions including cell proliferation, 
differentiation, motility, and apoptosis [27]. Research 
shows that the expression of S100 protein is 
dysregulated in almost all types of human cancer [28]. 
Meanwhile, it has been reported that the 
down-regulation of S100A8 expression may indicate 
chemotherapy resistance [29], but whether it is 
involved in EGFR TKIs resistance remains unclear. 
Compared with the first two genes, the relationship 
between AXL and EGFR TKIs resistance has been 
widely reported. AXL is a member of the TAM family, 
and it transduces signal through the high-affinity 
ligand growth arrest-specific protein 6 (GAS6), 
thereby driving the proliferation, migration and 

invasion of tumour cells [30]. It is reported that 
dysregulation of AXL expression is very common in 
the resistance of tumor cells to EGFR TKIs, the 
up-regulation of AXL can be detected after the first 
generation EGFR TKIs gefitinib, erlotinib [31] and the 
third generation EGFR TKI Osimertinib [32] acquired 
resistance. This is consistent with the results of our 
study. However, the role of AXL in drug resistance 
remains unclear, the underlying mechanism may be 
related to the combination of AXL and other receptor 
tyrosine kinases (RTKs, including EGFR, ErbB 
receptor family members, MET and PDFGR) to 
promote EGFR-induced signaling into downstream 
[30, 33], there are also reports that the expression 
changes of AXL are highly relevant to the occurrence 
of epithelial-mesenchymal transition (EMT) [31, 34]. 
The current research results of combination treatment 
of AXL inhibitors and EGFR TKIs in NSCLC indicate 
that AXL is a new target for reversing drug resistance 
[35, 36], and AXL small molecule inhibitors are also 
under development and testing. PNPLA4 plays an 
important role in catalyzing the hydrolysis of 
triglycerides and the metabolism of retinol-ester in the 
body [37]. Retinol and its related compounds may be 
involved in the occurrence and development of 
multiple malignant tumors [38, 39], and some studies 
have also reported that cellular lipid metabolism is 
related to the resistance of multiple tumor inhibitors 
[40, 41]. However, there is no relevant report on the 
direct involvement of PNPLA4 in EGFR TKIs 
resistance, and further research is needed.  

Through GO and KEGG pathway enrichment 
analysis of the key module in WGCNA, we found out 
the biological functions and possible pathways related 
to gefitinib resistance. Our analyses revealed that a 
large proportion of these co-expressed genes are 
mainly classified in the biological processes of protein 
production and transport, which are closely related to 
cell growth and proliferation. KEGG pathway 
enrichment analysis revealed that in addition to some 
pathways related to protein production and transport, 
there are also some neurodegenerative pathways 
(including "Parkinson's disease", "Alzheimer's 
disease"), which shows that gefitinib resistance and 
neurodegenerative diseases are potentially related in 
mechanism. Next, we performed GSEA to further 
explore potential mechanism of 4 hub genes. The 
results revealed that these genes play a role by 
influencing cell proliferation and cycle, and some 
metabolic-related pathways such as steroid 
biosynthesis and selenoamino acid metabolism have 
also been enriched.  

Base on the above results, we further predicted 
the small molecule drugs that may reverse the 
resistance of gefitinib, and finally discovered 9 small 



 Journal of Cancer 2021, Vol. 12 

 
http://www.jcancer.org 

5294 

molecule drugs. Similar to the above-described 
results, protein synthesis inhibitors exert essential 
roles in reversing gefitinib resistance. In this class of 
drugs, three small molecule drugs have been 
screened, including Emetine, cephaeline and 
homoharringtonine, among which the antitumor 
effects of Emetine have been widely reported, the 
mechanisms are mostly related to inducing apoptosis 
and blocking the cell cycle [42]. Our in vitro 
verification results also show that emetine and 
cephaeline can significantly increase the sensitivity of 
drug-resistant cells to gefitinib, and the molecular 
mechanism may be related to the regulation of PI3 
and S100A8. Besides, it is reported that PU-H71 [43], 
anisomycin [44] and lasalocid [45] also have a tumor 
suppressive role, but comparatively less research 
directed to reversing drug resistance. 

In conclusion, through several bioinformatics 
analyses, we have identified 4 hub genes related to 
gefitinib resistance in NSCLC, including PI3, S100A8, 
AXL and PNPLA4. They function mainly by 
influencing cell proliferation and cycle. Besides, we 
have also identified that protein synthesis inhibitors 
such as Emetine, cephaeline, and homoharringtonine 
may have potential therapeutic effects on gefitinib 
resistance. 
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