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Background: Clear cell renal cell carcinoma (ccRCC) is a common genitourinary cancer

type with a high mortality rate. Due to a diverse range of biochemical alterations and a high

level of tumor heterogeneity, it is crucial to select highly validated prognostic biomarkers to

be able to identify subtypes of ccRCC early and apply precision medicine approaches.

Methods: Transcriptome data of ccRCC and clinical traits of patients were obtained from

the GSE126964 dataset of Gene Expression Omnibus and The Cancer Genome Atlas

Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database. Weighted gene co-

expression network analysis (WGCNA) and differentially expressed gene (DEG)

screening were applied to detect common differentially co-expressed genes. Gene

Ontology, Kyoto Encyclopedia of Genes and Genomes analysis, survival analysis,

prognostic model establishment, and gene set enrichment analysis were also

performed. Immunohistochemical analysis results of the expression levels of prognostic

genes were obtained from The Human Protein Atlas. Single-gene RNA sequencing data

were obtained from the GSE131685 and GSE171306 datasets.

Results: In the present study, a total of 2,492 DEGs identified between ccRCC and

healthy controls were filtered, revealing 1,300 upregulated genes and 1,192

downregulated genes. Using WGCNA, the turquoise module was identified to be

closely associated with ccRCC. Hub genes were identified using the maximal clique

centrality algorithm. After having intersected the hub genes and the DEGs in GSE126964

and TCGA-KIRC dataset, and after performing univariate, least absolute shrinkage and

selection operator, and multivariate Cox regression analyses, ALDOB, EFHD1, and

ESRRG were identified as significant prognostic factors in patients diagnosed with

ccRCC. Single-gene RNA sequencing analysis revealed the expression profile of

ALDOB, EFHD1, and ESRRG in different cell types of ccRCC.
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Conclusions: The present results demonstrated that ALDOB, EFHD1, and ESRRGmay

act as potential targets for medical therapy and could serve as diagnostic biomarkers

for ccRCC.

Keywords: clear cell renal cell carcinoma, weighted gene co-expression network analysis, differentially expressed

genes, prognostic genes, single-cell analysis

INTRODUCTION

Renal cell carcinoma (RCC) is one of the most common
genitourinary cancer types worldwide, and it has a number of
heterogeneous histological subtypes, with clear cell RCC (ccRCC)
accounting for ~85% of all cases (1). In total, 431,288 new patients
were diagnosed with renal cancer, and 179,368 of these patients
succumbed to the disease worldwide in 2020 (2). ccRCC is not
susceptible to chemoradiotherapy (3).AlthoughccRCCiscurableat
an early localized stage by partial or total surgical nephrectomy,
advancedormetastatic ccRCCremainsa clinical challenge (4).Over
the past years, antiangiogenic treatment, inhibitors of the
mammalian target of rapamycin (mTOR) pathway, or immune
checkpoint inhibition therapy have considerably evolved (5).
However, due to diverse biochemical alterations and a high level
of tumor heterogeneity, it is important to select highly validated
prognostic biomarkers to identify subtypes of ccRCC early and
apply precision medicine approaches (6).

Themolecular mechanism of ccRCC is characterized by genetic
diversity and chromosomal complexity. Loss of the heterozygosity
of chromosome 3p, where the von Hippel–Lindau (VHL) gene is
located, is found inover90%of ccRCCcases, and it is considered the
critical genetic event (7–9).A loss-of-functionmutation in theVHL
gene induces the aberrant regulation of a number ofVHL-mediated
targets, pathways, and processes, which is a significant step in the
development of ccRCC (10, 11). The VHL protein, as an E3
ubiquitin ligase, is notably involved in the ubiquitylation of the
prolyl hydroxylated transcription factors, hypoxia-inducible factor
1a (HIF1 a) andHIF2a, under normoxic conditions. HIF1a and
HIF2 a have an important role in the regulation of angiogenesis,
erythropoiesis, glycolysis, and apoptosis (12–14). Moreover, next-
generation sequencing technologies have provided evidence that
PBRM1, SETD2, or BAP1 mutations are the drivers of tumor
evolution (15, 16). Although the molecular features of ccRCC
have been increasingly defined by previous studies (17–19), there
remain numerous subtypes of ccRCC the pathogenic mechanisms
of which have yet to be clearly determined at the genetic and
molecular levels. Thus, it is important to identify more additional
disease-related genes.

Benefiting from the rapid development of genome sequencing
technology, bioinformatics can be used to study gene expression
profiles inordertoexaminethemolecularmechanismoftumorsand
identify tumor-specific indicators. Weighted gene co-expression
network analysis (WGCNA) was developed by Horvath and
Zhang in 2005 (20). At present, WGCNA is becoming a powerful
approach todetectinggenemodules, exploring the correlationof the
modules and phenotypes, and discovering hub genes that regulate
critical biological processes (21, 22).

In the present study, a gene expression profile of ccRCC
from the Gene Expression Omnibus (GEO) was downloaded.
WGCNA and differentially expressed gene (DEG) screening
were applied to detect common differentially co-expressed
genes. Then, The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma (TCGA-KIRC) data were used to
establish the prognostic model of ccRCC. Single-cell RNA
sequencing (RNA-seq) data from GEO were used to verify
the expression profile of the prognostic genes in different
cell types. This study aimed not only to understand
ccRCC pathogenesis but also to determine its molecular
mechanisms and provide insights into novel therapeutic
targets for drugs.

METHODS

Data Collection and Single-Cell RNA
Sequencing Data Processing
The workflow for the current study is presented in Figure 1.
Original data were collected from the GSE126964 dataset, which
contained 55 ccRCC tumor tissues and 11 matched normal
tissues (23). The GEO expression matrix was annotated with
gene symbols using the information from the GPL20795 HiSeq X
Ten platform file, as well as log2 transformed in R (version 4.0.4)
and RStudio (version 1.2.5033) if necessary. Principal
component analysis (PCA) was performed, and the outliers of
GSM3619137 and GSM3619152 were excluded (Figure S1). In
total, only 53 ccRCC sample and 11 normal sample data were
used for subsequent analysis.

RNA-seq data of TCGA-KIRC and corresponding clinical
informationwere obtained fromTCGA(https://portal.gdc.cancer.gov/).

Single-cell RNA-seq data from GSE131685 and GSE171306
were downloaded through GEO website. R package “Seurat”
(version 4.0.2) was used to process the data (24). Three healthy
kidney samples from GSE131685 (25) and two ccRCC samples
from GSE171306 (26) were merged for further analysis. The
single-cell RNA-seq data processing was described previously
(27). The cell clusters were annotated manually based on
previous knowledge and information from literatures (28, 29).
Expression profiling of the genes were depicted by heatmap and
violin plot using the function “FeaturePlot” and “VlnPlot.”

Differentially Expressed Gene
Identification
The “limma” software package (version 3.48.0) (30) was used to
conduct the DEG analysis between ccRCC and normal sample
data from the GSE126964 dataset (30). An adjusted p-value <0.05
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and a |log2fold change| of ≥2.0 were selected as the cutoff criteria.
The volcano and heatmap plots were generated using ggplot2
(version 3.3.3) and pheatmap (version 1.0.12) packages,
respectively. The DEGs of TCGA-KIRC dataset (https://portal.
gdc.cancer.gov/) were obtained via Gene Expression Profiling
Interactive Analysis (GEPIA2; http://gepia2.cancer-pku.cn/) (31)
using the same aforementioned threshold.

Gene Ontology Enrichment and Kyoto
Encyclopedia of Genes and Genomes
Analysis of Differentially Expressed Genes
The “clusterProfiler” (version 3.18.1) R package was used for GO
and KEGG enrichment analyses (http://www.bioconductor.org/
packages/release/bioc/html/clusterProfiler.html) (32). The three
main processes in GO analysis are as follows: biological process
(BP), molecular function (MF), and cellular component (CC).
The p-value was conventionally set at 0.05. A circle plot was
generated by “Goplot” R package (version 1.0.2).

Weighted Gene Co-Expression Network
Construction
The “WGCNA” package (version 1.70-3) of R (20) was used to
construct the co-expression networks. Genes with mean counts of
over 5were selected. A total of 64 sampleswere used to calculate the
Pearson’s correlation matrices. The matrices of adjacency were
created based on the Pearson’s correlation matrices. Then, the
clinical trait data were uploaded, and the scale independence and
mean connectivity were estimated. Subsequently, the topological
overlap measure (TOM) matrix, which was created from the
adjacency matrix, was used to estimate the network’s connectivity
property. A hierarchical clustering dendrogram of the TOMmatrix
was constructed using the average distance with a minimum size
threshold of 50 to classify the similar gene expression profiles into
different genemodules. Finally, similar genemodules weremerged,
with a threshold of 0.20.

Co-Expression Network Construction and
Hub Gene Identification
The Cytoscape software v3.7.2 was used to visualize the co-
expression network in the turquoise module (33). The data were

imported into Cytohubba, a Cytoscape plug-in for hub gene
identification, and the maximal clique centrality (MCC)
algorithm was used to calculate the scores of all nodes of the
network. The top 30 nodes with the highest MCC scores were
selected as the hub genes associated with ccRCC. The “real” key
genes were identified as those intersecting between the top 30
nodes in turquoise module, DEGs from GSE126964 and DEGs
from TCGA-KIRC.

Identification and Verification of
Prognostic Gene Signatures
Univariate Cox regression analysis was performed to screen the
genes significantly associated with overall survival (OS) in the
TCGA-KIRC dataset. The OS-related genes with p < 0.1 were
included in the least absolute shrinkage and selection operator
(LASSO) regression analysis by using the R package “glmnet”
(version 4.1-2). Then, a multivariate Cox regression model
analysis was performed to establish a Cox proportional hazards
regression prognostic model. We used the following formula to
calculate the risk score of each patient:

Risk Score =o
n

i=1

bi � xi

In this formula, b is coefficient and x is the expression level of
each prognostic gene i. The samples were divided into a high-risk
group and a low-risk group according to the median risk score of
the training cohort from TCGA-KIRC. Receiver operating
characteristic (ROC) analysis and Kaplan–Meier analysis were
conducted between the high-risk group and the low-risk group.

Validation of the Protein Expression Levels
of Prognostic Genes in the Human Protein
Atlas Database
The Human Protein Atlas (HPA) is a database that aims tomap all
the human proteins in cells, tissues, and organs using an
integration of various omics technologies (https://www.
proteinatlas.org/). We also verified the protein expression levels
of the survival-related hub genes based on immunohistochemistry
using the HPA database.

A B

FIGURE 1 | Workflow of the present study. (A) Identification workflow. (B) Verification workflow. DEG, differentially expressed gene; GO, Gene Ontology; KEGG,

Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating

characteristic; HPA, Human Protein Atlas; GSEA, gene set enrichment analysis.
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Gene Set Enrichment Analysis of
Prognostic Genes
Gene set enrichment analysis (GSEA) was also used to detect the
potential molecular mechanisms of the prognostic genes.
Enriched terms predicted to be associated with the KEGG
pathway in c2.cp.v7.2.symbols.gmt were screened by GSEA.
Images were generated by “ggplot2” (version 3.3.3) package.
The p-value of <0.05 was considered statistically significant.

Prognostic Gene Expression Profiles
The prognostic gene expression profiles were obtained from the
GTEx Portal (https://gtexportal.org/home/).

RESULTS

Differentially Expressed Gene Screening
The “limma” package was utilized to analyze DEGs in the
GSE126964 dataset, with the threshold of |log2(fold-change)|>2.0
and adjusted p < 0.05. A total of 2,492 DEGs between ccRCC and
normal control samples were filtered, revealing 1,300 upregulated
genes and 1,192 downregulated genes (Figures 2A, B).

The DEGs were mostly enriched in “T cell activation,”
“leukocyte cell–cell adhesion,” “apical part of cell,” “external side
of plasma membrane,” “collagen-containing extracellular matrix
(ECM),” and “ion transmembrane transporter activity” in the GO

analysis (Figure 2C). In the KEGG analysis, DEGs were enriched
in “cytokine–cytokine receptor interaction,” “hematopoietic cell
lineage,” “viral protein interaction with cytokine and cytokine
receptor,” “cell adhesion molecules,” and “protein digestion and
absorption” (Figure 2C).

We also evaluated the metabolic shift between ccRCC tissues
and normal control tissues in the GSE126964 dataset. Similar to
the finding of Clark et al. (19), glycolysis-associated genes were
found to be significantly upregulated, and most oxidative
phosphorylation (OXPHOS) and tricarboxylic acid (TCA)
cycle-associated genes were significantly downregulated in the
GSE126964 dataset (Figure S2).

Weighted Co-Expression Network
Construction and Analysis
The sample clustering dendrograms of the ccRCC and normal
samples are shown in Figure S3A. The soft-power threshold b
was selected as 5 to ensure that both the scale-free topology
model fit index (R2) and mean connectivity reached steady status
(Figure 3A). Then, gene modules were detected based on the
TOM matrix. A total of 25 modules were identified via average
linkage hierarchical clustering, and each module was represented
by a different color (Figure 3B). Among the modules, the
turquoise module had the highest correlation with ccRCC
traits (r = -0.97, p = 1e-39) (Figure 3C). A set of 400 selected
genes were identified for the network heatmap construction
(Figure S3B).

A B

C

FIGURE 2 | Screening for DEGs. (A) Volcano map of DEGs between ccRCC and normal samples in the GSE126964 dataset. The red plots in the volcano represent

upregulated genes, and the blue points represent downregulated genes. (B) Heatmap of the 200 selected DEGs. The color in heatmaps from blue to yellow shows

the progression from low expression to high expression, respectively. (C) GO and KEGG analyses of the DEGs. The outer circle shows the scatter plot of the

assigned gene log2fold change for all terms: red points show genes that exhibited increased expression, whereas the blue points represent genes that exhibited

decreased expression. The inner circle indicates the Z-score value and the number of genes. Red represents a higher z-score value, and purple represents a lower

Z-score value. DEG, differentially expressed gene; BP, biological process; CC, cell component; MF, molecular function; GO, Gene Ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; ccRCC, clear cell renal cell carcinoma.
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Identification of Key Genes
An intramodular analysis of gene significance (GS) and module
membership (MM) of the genes in the module turquoise was
subsequently conducted. A high correlation coefficient of GS and
MM was found in the turquoise module (cor = 0.97, p < 1e-200)
(Figure3D).Theco-expressionnetworkof the turquoisemodulewas
constructed using Cytoscape software. Then, the module net was
analyzed with the “Cytohubba” plug-in, and a network of the top 30
hub genes was constructed using the MCC algorithm (Figure 3E).

In order to identify the “real” key genes, we then obtained 796
DEGs, using a cohort of KIRC, from TCGA via GEPIA2, with
the same threshold values. After comparing the DEGs in the
GSE126964 dataset, TCGA-KIRC data and the top 30 hub genes
from the turquoise module, a set of 13 key genes was
identified (Figure 4A).

Validation of Key Genes via
Survival Analysis
We randomly divided the patients in TCGA-KIRC into two
cohorts, a training cohort (N = 266) and a testing cohort (N =

266). The univariate Cox regression analyses of 13 key genes with
regard to OS of samples from the training cohort were performed
(Table 1). Eight genes with p < 0.1 (GGT6, SLC22A8, FAM3B,
PTH1R, ALDOB, ESRRG, SLC34A1, and EFHD1) were included in
LASSO analysis (Figures 4B, C). Following the cross validation,
seven genes achieved the minimum partial likelihood deviance.
Then, we performed a multivariate Cox regression with these seven
genes (GGT6, FAM3B, PTH1R, ALDOB, ESRRG, SLC34A1, and
EFHD1) as covariants. We finally got three genes, including
ALDOB, ESRRG, and EFHD1 without collinearity, and each of
them could be an independent prognostic marker for ccRCC
(Figure 4D). A prognostic model based on the three genes was
established. The risk score for each individual patient was calculated
with the following formula: risk score = (-0.105197) * ALDOB +
(-0.275676) * ESRRG + (-0.269554) * EFHD1.

Then, the Kaplan–Meier analysis was performed. As shown in
Figure 4E, the survival rate of patients in the high-risk group was
significantly lower than that in the low-risk group in either
training cohort (p < 5.81e-4) or testing cohort (p < 5.48e-20).
The ROC curve was then used to evaluate the accuracy of the

A

B

D E

C

FIGURE 3 | WGCNA of the ccRCC samples. (A) Analysis of the network topology for various soft-thresholding powers. The left plot shows the scale-free fit index

(y-axis) as a function of the soft-thresholding power (x-axis). The horizontal red line shows x-axis = 0.85. The right plot displays the mean connectivity (degree, y-axis)

as a function of the soft-thresholding power (x-axis). The power was set as 5 for further analysis. (B) Hierarchical cluster analysis was conducted to detect co-

expression clusters with corresponding color assignments. Each color represents a module in the constructed gene co-expression network, as assessed via

WGCNA. (C) Module–trait relationships. Each row represents a color module, and every column represents a clinical trait. Each cell contains the corresponding

correlation and p-value. (D) A scatter plot of GS for ccRCC vs. the MM in the turquoise module. (E) Identification of hub genes using the MCC method. Genes with

the top 30 MCC values were colored red to yellow. Red refers to a relatively large MCC value, and yellow refers to relatively smaller MCC values. WGCNA, weighted

gene co-expression network analysis; ccRCC, clear cell renal cell carcinoma; GS, gene significance; MM, module membership; MCC, maximal clique centrality.
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survival analysis. The areas under the curves (AUCs) were 0.717
and 0.699 in the training cohort and testing cohort, respectively
(Figure 4E), which indicate that the prediction effect was good.
We also plotted the distribution of risk scores in patients with
ccRCC and the correlation between survival time and risk scores
in the training cohort and testing cohort (Figure 4F). In
addition, all of the three genes (ALDOB, ESRRG, and EFHD1)
were significantly downregulated and associated with poor
pathologic stages in the training cohort, testing cohort, or
GSE126964 dataset (Figure 4F and Figure S4). Moreover,
ALDOB, ESRRG, and EFHD1 were highly expressed in renal

tissues among the different normal tissues, which indicated a
critical regulatory function of these genes in the normal kidney
(Figure S5).

Validation of Protein Expressions of
Prognostic Genes
Immunohistochemistry staining results obtained from the HPA
database revealed the protein expression levels of the key
survival-related genes (Figure 5). The results showed the
downregulation of ALDOB, EFHD1, and ESRRG protein in
ccRCC samples compared with normal controls.

A B D

E F

C

FIGURE 4 | Prognostic analysis of the key genes. (A) Key genes belonging to both the hub genes and DEGs of the GSE126964 and TCGA-KIRC datasets.

(B, C) LASSO regression complexity was controlled by lambda using the glmnet R package. (D) The multivariate analysis of risk factors in ccRCC. (E) Overall survival

and ROC analysis between high-risk score and low-risk score groups in the training cohort and testing cohort. (F) The overall survival stratified by the high- and low-

risk score groups was plotted for the training cohort and testing cohort. Detailed risk scores, survival information, and heat maps of gene expression are also

included for each dataset. *p < 0.05; **p < 0.01; DEG, differentially expressed gene; TCGA-KIRC, The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma;

ROC, receiver operating characteristic; AUC, area under the curve; ccRCC, clear cell renal cell carcinoma; LASSO, least absolute shrinkage and selection operator.

TABLE 1 | Univariate Cox regression analysis in the train cohort.

Characteristics HR 95% CI p-value

GGT6 (High vs. Low)# 0.702 0.535-0.922 0.011*

KNG1 (High vs. Low) 0.995 0.856-1.157 0.952

DIO1 (High vs. Low) 0.938 0.744-1.181 0.584

SLC22A8 (High vs. Low) 0.706 0.531-0.937 0.016*

FAM3B (High vs. Low) 0.738 0.519-1.049 0.090

SERPINA5 (High vs. Low) 1.047 0.932-1.175 0.440

FABP1 (High vs. Low) 0.920 0.776-1.091 0.340

PTH1R (High vs. Low) 0.795 0.693-0.911 0.001*

ARMH4 (High vs. Low) 0.783 0.570-1.075 0.131

ALDOB (High vs. Low) 0.873 0.809-0.942 <0.001***

ESRRG (High vs. Low) 0.685 0.557-0.843 <0.001***

SLC34A1 (High vs. Low) 0.825 0.700-0.973 0.022*

EFHD1 (High vs. Low) 0.700 0.594-0.825 <0.001***

HR, hazard ratio; CI, confidence interval; #Samples were classified into high and low gene expression according to a cut-off of 50%; *p < 0.05; ***p < 0.001.
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Gene Set Enrichment Analysis of
Prognostic Genes
GSEA was conducted to search the KEGG pathways in which the
prognostic genes and risk scores were enriched in the samples
with high expression or high-risk levels from TCGA-KIRC.
“Oxidative phosphorylation” and “Fatty acid metabolism”

pathways were enriched with low-risk score and high
expression of ALDOB, ESRRG, and EFHD1, while immune-
related pathways, including “Cytokine–cytokine receptor
interaction,” “Chemokine signaling pathway,” and “Primary
immunodeficiency” were significantly enriched with high-risk
score and low expression of the prognostic genes (Figures 6A–D).

Single-Cell Transcriptomic Context of the
Prognostic Genes
To further verify the relationship among ALDOB, ESRRG, and
EFHD1 in ccRCC, single-cell RNA-seq data from GSE131685
and GSE171306 were employed (25, 26). After quality control, a
total of 34,371 cells from two ccRCC samples and three normal
kidney samples were profiled (Figure 7A). We identified 27
different cell clusters and five cell groups, including immune
cells, epithelial cells, endothelial cells, mesenchymal cells, and
tumor cells (Figures 7B, C). Consistent with previous research
(28), proximal tubular epithelial cells account for over 90% of a
normal renal cortical sample, while in ccRCC, over 50% was
accounted for immune cells and approximate 20% for tumor
cells (Figure 7D). Except the clusters of macrophage 1 (MC1)
and T cell 2 (T2), most kinds of immune cells were identified
from ccRCC patients, which depicted a tumor immune
microenvironment of ccRCC (Figure 7E). We also identified
four tumor cell clusters. Analysis of KEGG pathway in tumor
cells suggested the increased glycolysis gluconeogenesis, cancer,
and focal adhesion-associated metabolism in ccRCC, while
oxidative phosphorylation-associated pathways were negatively
enriched with tumor cells (Figures S6, S7).

We then explored the expression profile of ALDOB, ESRRG,
and EFHD1 in different types of cells. Similar with results from
TCGA-KIRC and GSE126964, the expression of ALDOB,

ESRRG, and EFHD1 were much lower in tumor cells than that
in other intrinsic renal cells (Figures 7F–I).

DISCUSSION

ccRCC is a common genitourinary cancer with a high mortality
rate (3). There is an urgent requirement to identify additional
potential targets for drugs and biomarkers for early diagnosis of
ccRCC. In the present study, a novel prognostic model based on
three genes (ALDOB, EFHD1, and ESRRG) for ccRCC was
established. ALDOB, EFHD1, and ESRRG were also identified
as novel independent prognostic markers for ccRCC in different
datasets via integrated bioinformatics analysis, including DEG
analysis, WGCNA, and single-cell analysis.

Metabolic Shift in Clear Cell Renal Cell
Carcinoma
Metabolic disorder is a hallmark in different types of cancer,
since sufficient energy and metabolite production are required
for the malignant proliferation of cancer cells (34). Gebhard et al.
(35) reported that ccRCC tissues were overloaded with glycogen
and lipid compared with normal tissues, which suggested that the
metabolism of lipids and glucose may be altered in ccRCC (36).
In particular, a mutation in VHL is considered to be closely
associated with metabolic reprogramming in ccRCC (37).
Subsequent accumulation of HIF1 a leads to the expression of
glucose transporter-1, thereby promoting cellular glucose uptake.
In addition, it can induce lactate dehydrogenase, which promotes
the conversion of pyruvate to lactate and switches energy production
from the TCA to lactate fermentation (38). This phenomenon is
widely known as the Warburg effect. Despite the well-known VHL–
HIF axis, there are a number of altered levels of the biochemical
enzymes, substrates, andmetabolic intermediates or products that are
involved in the metabolic reprogramming waiting to be discovered.
Our analysis of the GSE126964 data and single-cell RNA-seq data
from GSE131685 and GSE171306 supported the observations of the
metabolic shift in ccRCC and demonstrated the upregulation of

A B C

FIGURE 5 | Immunohistochemistry staining of prognostic proteins based on the HPA. Protein expression levels of (A) ALDOB, (B) EFHD1, and (C) ESRRG in tumor

tissues and normal tissues. HPA, Human Protein Atlas; Tub., tubules; Glo., glomeruli.
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glycolysis-associated genes and downregulation of OXPHOS and
TCA-associated genes at the transcriptome level (Figure 6 and
Figures S2, S6, S7). Although a metabolic shift is advantageous for
tumor progression, alteredmetabolic pathways in ccRCCmay also be
exploited as therapeutic targets and may be an important future
research direction.

ALDOB, EFHD1, and ESRRG Can Be Novel
Independent Prognostic Markers for Clear
Cell Renal Cell Carcinoma
ALDOB encodes aldolase B, an enzyme that is expressed in the
liver and kidneys and is involved in glycolysis process and
fructolysis process. The function of which can cleave fructose-
1,6-bisphosphate to yield glyceraldehyde and dihydroxyacetone
phosphate (39). A research found that declined ALDOB
expression was associated with multiple malignant
characteristics of HCC and indicate a poor prognosis (40).
Moreover, Bu et al. (41) shows that ALDOB upregulation is
commonly found in the metastatic cell in liver during primary
colon cancer proliferation by enhancing fructose metabolism and
central carbon metabolism. A study by Wang et al. (42) found
that the low expression of ALDOB is also important in ccRCC
and predicts poor prognosis, which is consistent with our
research results. It leads to a high level of fructose 1,6-

bisphosphate (FBP) and protects ccRCC from oxidative stress
(42). However, the mechanism and prognostic value of
accumulated FBP remain unknown.

EFHD1 encodes a mitochondrial inner membrane protein,
acted as a calcium sensor for mitochondrial flash activation (43),
and induced metabolic changes during the development of pro-/
pre-B cells (44). A recent report suggested that EFHD1 may
interact with b-actin for its involvement in the Ca2+-dependent
regulation of mitochondrial morphology (45). EFHD1 was
significantly downregulated in both the GSE126964 and
TCGA-KIRC cohorts (Figure 4) and may also have an impact
on mitochondrial energy metabolism in ccRCC. However, the
detailed mechanism of how EFHD1 regulates ccRCC
pathogenesis is currently unknown.

ESRRG encodes a member of nuclear receptor superfamily of
transcription factors and has been shown to be a tumor suppressor
indifferent types of cancer (46–48).A studybyHuang et al. (49) also
identified ESRRG as a co-expressed DEG in different datasets of
hypertension-relatedRCC.Moreover, an experimental studyon the
mechanism of ESRRG conducted by Nam et al. (50) demonstrated
that ESRRG suppressed the migratory and invasive abilities of
behaviors in RCC cells. Our analysis and previous studies have all
suggested that lower ESRRG expression may be a reliable predictor
of a poor clinical outcome.

A B

DC

FIGURE 6 | Single-gene GSEA of (A) ALDOB, (B) EFHD1, (C) ESRRG and (D) risk score based on TCGA-KIRC. GSEA, gene set enrichment analysis; KEGG,

Kyoto Encyclopedia of Genes and Genomes; TCGA-KIRC, The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma.
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Hub Genes Including ARMH4, PTH1R,
SLC22A8, and SLC34A1 Were Correlated
With Cancer
ARMH4, also named C14ORF37, encodes a protein that contains
an armadillo-like helical domain. It has been shown that
ARMH4 can interact with and inhibit the function of mTOR
complex 2 kinase activity and function as a tumor suppressor in
hematological malignancies, which is driven by interleukin 6 (IL-
6)–signal transducer and activator of transcription 3 (STAT3)
signaling pathways (51, 52). Wang et al. (53) also predicted that
ARMH4may act as a modulator for QKI, KH domain containing
RNA binding, one of the key RNA-binding proteins shown in
TCGA-KIRC dataset, and may change its splicing regulation in
kidney cancer (53). Our analysis further confirmed the
importance of ARMH4 in ccRCC. However, the specific
mechanism remains to be explored.

PTH1R encodes a G protein-coupled receptor of parathyroid
hormone (PTH) and PTH-related protein and plays a central
role in calcium homeostasis (54). Recently, the structure and
dynamics of the active PTH1R have been shown by cryo-electron

microscopy (55). Studies from different research groups have
reported that the decreased expression of PTH1R was a poor
prognosis factor in multiple types of cancer (56–59). Although
PTH1R was found to be highly expressed in normal kidney
samples (Figure 5 and Figure S4), the detailed mechanism of
PTH1R in renal function and ccRCC has yet to be fully
elucidated and requires further study.

SLCs are a superfamily of membrane proteins responsible for
the cellular uptake of a diverse range of substances. Among the
SLCs, SLC22A8 and SLC34A1 both show kidney-specific
expression. SLC22A8 is involved in the sodium-independent
transport and excretion of organic anions, while SLC34A1 is a
sodium-phosphate co-transporter that controls proximal tubule
phosphate reabsorption (60, 61). Although defects in SLCs can
lead to serious diseases (62–64), there is lack of research in
cancer, especially ccRCC. Kang et al. (65) examined the
expression patterns and prognostic values of SLCs in the
development of ccRCC using different bioinformatics methods.
These authors demonstrated that the low expression levels of a
cluster of SLCs, including SLC34A1, were correlated with ccRCC

A B D

E

F G

IH
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FIGURE 7 | Prognostic expression profile based on single-cell sequencing analysis. (A) Composition and distribution of single cells from GSE131685 and GSE171306.

(B) UMAP embedding of 34,371 single cells from three human normal kidneys and two ccRCC samples. Labels refer to 27 clusters identified. (C) Scaled gene expression of

the top 10 specific genes in each cluster. Each column is the average expression of all cells in a cluster. (D) Composition of different cell types in the five single-cell RNA-seq

samples. (E) Number of cells per immune cell type and clinical parameter. The expression profile of (F) ALDOB, (G) EFHD1, and (H) ESRRG for each cell and the (I) violin

plot. UMAP, Uniform Manifold Approximation and Projection; ccRCC, clear cell renal cell carcinoma; Im., immune; Epi., epithelial; Endo., endothelial; Mes, mesenchymal; CD,

collecting duct; CT, connecting tubule; iEn, injured endothelial cells; Fib, fibroblast; Mast, mast cell; MC, macrophage; Mono, monocyte; PT, proximal tubule; iPT, injured

proximal tubule; VR, vasa recta.
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progression and poor prognosis (65). Since ccRCC shows a
prominent metabolic shift effect, the production and
accumulation of metabolites are also different from those in
normal tissues. Therefore, SLCs may be critical in ccRCC.

CONCLUSION

Through a series of comprehensive bioinformatics analyses,
including DEG screening, WGCNA, and single-cell analysis, a
prognostic model based on ALDOB, EFHD1, and ESRRG was
established, and these three genes were also identified as
independent prognostic markers for ccRCC. The aforementioned
prognostic genes have the potential to become therapeutic targets
and biomarkers for ccRCC. However, these key survival-related
genes should be tested in a large cohort of ccRCC cases and
should be analyzed and validated in additional in vivo and
in vitro experiments.
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