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Abstract

Amyloid beta (Aβ) binding alcohol dehydrogenase (ABAD) is a cellular cofactor for promoting

(Aβ)-mediated mitochondrial and neuronal dysfunction, and cognitive decline in transgenic

Alzheimer's disease (AD) mouse models. Targeting mitochondrial ABAD may represent a novel

therapeutic strategy against AD. Here, we report the biological activity of small molecule ABAD

inhibitors. Using in vitro surface plasmon resonance (SPR) studies, we synthesized compounds

with strong binding affinities for ABAD. Further, these ABAD inhibitors (ABAD-4a and 4b)

reduced ABAD enzyme activity and administration of phosphonate derivatives of ABAD

inhibitors antagonized calcium-mediated mitochondrial swelling. Importantly, these compounds

also abolished Aβ-induced mitochondrial dysfunction as shown by increased cytochrome c

oxidase and adenosine-5′-triphosphate levels, suggesting protective mitochondrial function effects

of these synthesized compounds. Thus, these compounds are potential candidates for further

pharmacologic development to target ABAD to improve mitochondrial function.
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Introduction

Alzheimer's disease (AD) is a type of dementia in adults, which results in disordered

cognition and memory due to neuronal stress and subsequent cell death. Multiple reports

show that mitochondrial and synaptic dysfunction are early pathological features of AD

[1-6]. In AD, amyloid beta (Aβ) progressively accumulates in synaptic mitochondria

resulting in impaired mitochondrial structure and function [7-16]. Interaction of Aβ with

mitochondrial proteins such as cyclophilin D, a key component of mitochondrial

permeability transition pore, and Aβ-binding alcohol dehydrogenase (ABAD), a

mitochondrial enzyme, enhances mitochondrial oxidative stress, mitochondrial toxicity and
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cognitive decline [3; 7; 9; 17-24]. Thus, strategies that suppresses or attenuates Aβ-induced

mitochondrial toxicity in addition to decreasing Aβ levels in the brain may hold potential for

preventing and/or halting AD at its early stages by improving mitochondrial function.

Hence, development of substances that inhibit Aβ function may result in more effective

interventions for prevention and treatment interventions of AD. Scientists are exploring a

number of strategies to block Aβ including “secretase inhibitors” to block the secretase

clipping action [25-32]. It is not yet clear that any of these compounds will improve AD

symptoms or protect neuronal cells, and none have entered clinical trials due to continuing

concerns about side effects. Because AD is a multifaceted disease and its molecular biology

is poorly understood, multi-targeted approaches will likely yield more effective treatments.

As mitochondrial dysfunction is an early pathological feature of AD, targeting

mitochondrial function could be an effective therapeutic strategy.

ABAD, unique among members of the short-chain dehydrogenase reductase family as it

interacts with Aβ, has attracted considerable interest in AD drug discovery [9; 12; 33-36].

Increased ABAD expression was found in AD-affected brain regions (i.e., temporal gyrus

and hippocampus) but not in AD-spared regions (i.e., cerebellum) as compared to age-

matched, non-AD brain tissue [9; 37]. Similarly, transgenic (Tg) mice overexpressing

amyloid precursor protein (APP)/Aβ showed higher ABAD levels in AD-affected

hippocampus and cerebral cortex than nontransgenic littermate controls. Increased ABAD

expression results in exaggerated mitochondrial oxidative stress, abnormal energy

metabolism, and mitochondrial dysfunction in an AD mouse model [9; 12; 20; 38; 39]. Aβ

interaction with ABAD inhibits normal enzymatic activity of ABAD, thereby promoting

oxidative stress [9; 20], increasing mitochondrial toxicity [20], and inducing a signaling

cascade that leads to apoptosis and accelerates early deficits in learning and memory [9].

Interestingly, our recent studies indicate that inhibition of ABAD-Aβ interaction protects

mitochondria and neurons from Aβ-induced toxicity.

Recently, the search for inhibitors of ABAD-Aβ interactions has begun in the AD research

field. Using an ELISA-based screening assay, an FDA-approved immunosuppressant drug

called frentizole was identified as a novel inhibitor of ABAD-Aβ interactions. Analysis of

the frentizole structure-activity relationship (SAR) studies allowed Xie et al. to develop new

benzothiazole ureas with a 30-fold improvement in potency [33]. Previously, we designed

and synthesized eight ABAD inhibitors based on the frentizole and benzothiazole ureas SAR

studies; these inhibitors showed high affinity for binding to the human ABAD active site

[40]. In the present study, we first evaluated the ABAD inhibitor activity of these novel

benzothiazole phosphonate derivatives using in vitro surface plasmon resonance (SPR) to

determine whether the synthetic compounds bind to human recombinant ABAD protein.

Second, we examined the biological activity of these synthesized compounds on Aβ-induced

mitochondrial function. Based on our SPR binding studies and biological activity, we

selected these two compounds (i.e. 4a and 4b) for the present studies to characterize these

novel potent drugs for prevention and treatment of AD by improving mitochondrial and

neuronal function.
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Materials and methods

Synthesis of ABAD inhibitors

We first synthesized the benzothiazole amino phosphonate derivatives using a three-

component reaction of equimolar quantities of aromatic aldehydes, 6-

methoxybenzo[d]thiazol-2-amine, and dimethyl phosphate in toluene at reflux temperature

in the presence of Mg (ClO4)2 [40]. In this study, we used the two best compounds that had

better biological activity based on binding affinity and effect on mitochondrial function

induced by calcium or Aβ from our recently published paper [40]. Compounds ABAD-4a

and 4b were in the form of white powder with melting points of 216°C and 180°C, and

molecular weights of 452 and 394, respectively. The Molecular formulae for compound 4a

is C19H22N2O7PS and for 4b is C17H19N2O5PS (Figure 1). High pressure liquid

chromatography (HPLC) purity of the compounds 4a and 4b was 98% and 100%,

respectively.

ABAD expression and purification

ABAD was produced recombinantly in Escherichia coli (BL21) and purified to

homogeneity as previously described [41]. Briefly, BL21 E. coli were transformed with

pGE5-human ABAD, prepared as described below. Transformants were induced with 0.5

mmisopropyl-1-thio-β-d-galactopyranoside for 3 h, and cell extracts were prepared by cell

disruption. Extracts were subjected to cation exchange fast protein liquid chromatography

(FPLC) chromatography on SP Sepharose Fast Flow (Amersham Pharmacia Biotech) and on

Source 15S, followed by gel filtration on Superdex 200. The extract from 1 liter of bacterial

culture was applied to 2 ml of SP Sepharose in 25 mM MES (pH 6.0), 50 mM NaCl, 5 mM

dithiothreitol. The resin was washed with equilibration buffer and eluted with an ascending

linear salt gradient (0.1–1.0 M NaCl).These fractions were pooled, diluted 6-fold, and

applied to Source 15S resin in 0.1 M MES (pH 6.0)/0.1 M NaCl (5 mg of protein per 1 ml of

resin). The column was eluted with an ascending salt gradient, and ABAD emerged at ≈0.15

M NaCl. ABAD-rich fractions were concentrated by ultrafiltration to ≈15 mg/ml and loaded

onto a Superdex 200 (30/10) column (1 ml was applied to the column for each run). Peak

fractions from Superdex 200 were subjected to immunoblotting for ABAD using specific

antibody to ABAD generated in our Lab and used in our previous study The ABAD

immunoreactive band was visualized at ≈27 kDa.

Binding Experiment with ABAD

We studied interactions between ABAD and compounds 4a and 4b using a dual flow cell as

described previously [7; 9]. SPR studies were performed on a BIACORE 3000 at 25°C. SPR

binding experiments with ABAD were performed in phosphate-buffered saline (PBS, pH

7.4, 0.005% surfactant P20), which served as both running and sample buffer. The surface of

the sensor chip was first activated with mixtures of N-hydroxysuccinimide (NHS, 115

mg/ml) and N-(3-dimethyl-aminopropyl)-N′-ethyl-carbodiimide-hydrochloride (EDC, 750

mg/ml) for 7 minutes. ABAD was dissolved in PBS buffer (pH 5.0) at a concentration of 10

μg/ml. The protein was immobilized directly and covalently on the hydrophilic carboxy

methylated dextran matrix of the CM5 sensor chip (Biacore) using the standard primary
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amine coupling reaction according to standard procedures. After protein immobilization,

excess activated carboxylic acid groups were quenched with ethanolamine (1 M, pH 8.5).

Care was taken during injection of samples to avoid carryover effects. Special washing

routines were used to clean the system before injection of new samples. Sample flow rate

was set at 40 μL/minute for the determination of the kinetic and equilibrium constant.

Regeneration of the surfaces between subsequent binding experiments was achieved by

washing the surface extensively with buffer solution.

All data analyses were carried out using BIA evaluation software, and sensor grams were

processed by automatic correction for nonspecific bulk refractive index effects. Kinetic

analyses of the ligand binding to the protein were performed based on the 1:1 Langmuir

binding fit model according to the standard procedures described in the software manual.

Assay of ABAD enzymatic activity

ABAD activity was determined by inhibition of reduction of S-acetoacetyl-CoA (SAAC).

The assay was carried out with human recombinant ABAD protein (418 ng/ml), SAAC (172

μM), NADH (102 μM), and a range of inhibitor concentrations (from 0 to 1000 μM) in 93

mM potassium phosphate buffer (pH 7.3) [41]. All assay components except SAAC were

pre-incubated for 5 min; the reaction was initiated with the addition of SAAC. The reaction

proceeded for 6 min at room temperature under steady-state conditions; the decrease NADH

absorbance at 340 nm was determined every 10 seconds. Kinetic data was analyzed using

PRISM software (Scitech, San Diego, CA) to determine IC50 value and Ki. One unit of

enzyme activity was defined as the amount needed to convert 1.0 μmol of substrate to

product per min.

Isolation of brain mitochondria

Brain cortex from mice without white matter was used for mitochondrial isolation.

Mitochondria were prepared as previously described [7; 42]. Briefly, brain cortical tissues

were homogenized in 9 ml of ice-cold EB buffer (EDTA 1 mmol, bovine serum albumin 1-6

mg/ml) using Dounce homogenizer until particles were no longer seen. Homogenates were

centrifuged at 1300 × g for 5 min. Supernatant from this fraction was carefully deposited on

top of 15% percoll solution (10 ml) and then centrifuged at 16000 RPM for 10 min. The

pellet was carefully mixed with 9 ml of mitochondrial buffer (D-mannitol 4.098%, Sucrose

2.56%, K2HPO4 0.034%, pH 7.3-7.4) and 200 μl of 1% digitonin. After 5 min incubation on

ice, the mixture was centrifuged at 8000 RPM for 10 min. The mitochondrial pellet was

resuspended in 100 μl of mitochondrial buffer and then used for further experiments.

Brain mitochondrial swelling and Calcium uptake/release inhibition assays

Appropriate amounts of mitochondria were re-suspended in 1 ml swelling assay buffer (150

mM KCl, 2 mM KH2PO4, 10 mM HEPES, pH 7.4) and energized with the addition of 1 mM

Glutamate and 1 mM Malate. Calcium (200 μM) was added to the assay buffer to trigger

mitochondrial swelling. Mitochondrial permeability transition was determined by measuring

the rate of change in absorbance at 540 nm on a spectrophotometer.
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Initial solubilization of Aβ peptide and preparation of oligomer Aβ

Aβ1-42 peptide (lyophilized powder, 1 mg, American Peptide Company, catalog number

62-0-8Q) was stored in sealed glass vials in desiccated containers at −80°C. Prior to

resuspension, the lyophilized peptide was allowed to equilibrate to room temperature for 30

min to avoid condensation. Under a chemical fume hood, lyophilized Aβ1-42 was

resuspended in 100% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Sigma-Aldrich, catalog

number 105228) in a polypropylene vial using a glass GasTight® Hamilton syringe with a

Teflon plunger. After vortexing, the solution was divided between 3 polypropylene vials and

vortexed again. The HFIP was allowed to evaporate in the fume hood for 1 hour, and the

resultant clear peptide film was dried under vacuum (6.7 mTorr) in a SpeedVac centrifuge

for 10 minutes at 800 × g. The resulting pellet was stored desiccated at -20°C. Directly

before use, the aliquots were resuspended in 5 mM anhydrous dimethyl sulfoxide (DMSO,

Sigma-Aldrich, catalog number D-2650) by pipette mixing followed by bath sonication for

10 minutes.

Preparation of Aβ1-42 Oligomer [43]

Aβ1-42 oligomers were prepared by diluting 5 mM of Aβ1-42 aliquot in PBS, immediately

vortexing for 30 seconds, and incubated at 4°C for 24 hours. Prior to the experiment, the

aliquot was diluted in ice-cold culture media to the required concentration. We have

successfully prepared oligomer Aβ1-42 in our published studies [7; 15; 17; 44; 45]

Measurement of mitochondrial cytochrome c oxidase (CcO) activity

CcO activity was measured as described [3; 7] with a cytochrome c oxidase kit (Sigma). In

brief, human neuroblastoma (SK-N-SH) cells were incubated with ABAD inhibitor and Aβ

oligomer. After 48 hours incubation, cells were washed twice with PBS, followed by

harvesting of cell lysates. The protein concentration was determined by Bradford method.

Next, an appropriate volume of cells and enzyme solution was added to 475 μl of assay

buffer. The reaction was triggered by the addition of 25 μl freshly prepared ferrocytochrome

c substrate solution. Changes of OD550 nm were recorded immediately with an Amersham

Biosciences Ultrospec 3100 pro spectrophotometer programmed for 5 s delay, 10 s intervals

for a total of six readings.

Measurement of Adenosine-5′-triphosphate (ATP) level

ATP levels were determined using an ATP Bioluminesence Assay Kit (Roche) as our

previously described [7; 19]. Briefly, SK-N-SH cells were incubated with ABAD inhibitor

and oligomer Aβ1-42 at 37°C for 48 hours. Cells were harvested using ATP lysis buffer

followed by incubation for 30 minutes on ice. The mixture was centrifuged at 12,000 × g for

10 minutes at 4°C, and the supernatant was collected for the assay. The content of ATP was

measured according to the manufacturer's instructions [3; 7]. Light emitted from the

luciferase-mediated reaction was captured in a luminescence plate reader (Molecular

Devices) at 37°C with an integration time of 10 seconds and calculated from a log-log plot

of the standard curve of known ATP concentrations.
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Cell survival and toxicity assay

The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium_bromide) assay, which is

widely used to measure cell proliferation and to screen for anticancer drugs, is used for

assessing cell viability. Cells were treated with a range of ABAD compounds (4a & 4b at 1,

10, 50, and 100 μM) for 48 hours and then subjected to MTT reduction assay following the

manufacture's instruction.

The trypan blue dye exclusion is commonly used for measuring cell viability and toxicity.

48-66 hours after treatment of ABAD compounds, the trypan blue exclusion experiments

were performed. In brief, cells plated in 96-well plates were washed with the balanced salt

solution (Hanks-Balanced Salts/HBSS) once, then replaced with HBSS including trypan

blue solution to the final concentration of 0.2% (Sigma-Aldrich, St. Louis, MO), and mixed

thoroughly. After stand at room temperature for 5 min, cells were washed HBSS again and

then maintained in the well with HBSS. Both the stained and unstained cells in each well

were counted under a microscope (Nikon E400). The calculated percentage of unstained

cells represented the percentage of viable cells. Cell viability (%) = total viable cells

(unstained)/ total cells (stained and unstained) ×100.

Statistical analysis

We performed statistical analyses with one-way analysis of variance (ANOVA) using the

Statview statistics software (SAS Institute, Version 5.0.1) with Bonferroni/Dumn posthoc

test. P<0.05 was considered significant. All data are expressed as means ± s.e.m.

Results

ABAD synthetic inhibitors bind to ABAD protein

We selectively synthesized two ABAD inhibitors based on our studies, which showed high

affinity of binding to human ABAD along with the improvement of mitochondrial function

(Fig. 1). We first evaluated the ABAD inhibitory activity of these synthetic compounds by

using in vitro SPR to determine whether synthetic compounds bind to human recombinant

ABAD protein. The Biacore sensor grams for the binding of compounds 4a and 4b to the

immobilized ABAD are shown in Figure 2. The 1:1 Langmuir binding fit model was used to

determine the equilibrium dissociation constant (KD), and the association (kon) and

dissociation (koff) rate constants by using Equations (1) and (2).

(1)

where R represents the response unit, C is the concentration of the analyte, and

(2)

These results were then evaluated by chi-square analysis. All kinetic parameters are listed in

Table 1.
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SPR results showed that both compounds 4a and 4b exhibited strong binding affinities for

ABAD (Figure 2) with KD values of 496 nM and 291 nM, respectively (Table 1).

Compound 4b exhibited slightly higher binding affinity with ABAD than 4a. This was

further verified by the ABAD enzymatic activity inhibition assay. These data indicate that

ABAD-4a and 4b compounds specifically target to ABAD with the highest affinity binding

properties of the synthesized compounds.

Effect on ABAD enzyme activity

To assess the effect of ABAD inhibitors on its enzymatic activity, we determined the ability

of the compounds to inhibition SAAC reduction by ABAD (Table 1 and Figure 3). ABAD

can catalyze a broad repertoire of substrates, including steroid hormones, fatty acids and

alcohols. Here, we utilized NADH-dependent SAAC reduction catalyzed by ABAD to

evaluate the inhibitors. By incubating varying concentrations of inhibitors with ABAD, we

determined the inhibitory effect on SAAC reduction. Compound 4b exhibited the most

potent inhibitory effect on SAAC reduction with IC50 at 52.7 μM and Ki at 14.9 μM.

Compound 4a showed modest inhibitory effect on SAAC reduction with IC50 at 341.9 μM

and Ki at 96.6 μM, whereas the previously reported human ABAD inhibitor (AG18051)

showed good inhibitory effect with IC50 at 92 nM when compared to compounds 4a and 4b.

Because enzymatic activity of ABAD is essential for potentiation of Aβ cytotoxicity, it is

possible that blocking Aβ–ABAD interaction with small-molecule inhibitors will, in turn,

decrease Aβ induced cytotoxicity. The effective concentration of ABAD compound 4a (1

μM) without toxicity is almost 100-fold lower than IC50 (96.6 μM) for inhibition of ABAD

activity, suggesting that compound 4a at 1μM would likely be therapeutic effects in AD.

Effect of ABAD inhibitors on mitochondrial function

Mitochondrial swelling in response to Ca2+—As ABAD plays a role in

mitochondrial dysfunction and since such dysfunction is relevant to Aβ accumulation and

oxidative stress in AD, we first evaluated the effect of the compounds 4a and 4b on

mitochondrial permeability transition pore (mPTP) formation. Cortical mitochondria were

isolated from mice and subjected to a swelling assay in response to calcium as previously

described [7; 18]. Mitochondria responded well to calcium-induced swelling compared to

vehicle-treated mitochondria. Addition of 4a or 4b significantly protected mitochondria from

calcium-induced swelling in a dose-dependent manner (Figure 4). Compound 4b was a more

potent inhibitor of calcium-induced mitochondrial swelling than 4a. The inhibitors did not

affect mitochondrial swelling without calcium, suggesting that the inhibitors have no effect

on mitochondrial physiology function (Figure 4).

CcO activity—To assess the effect of the inhibitors on Aβ-induced mitochondrial

respiratory function, we determined the activity of CcO, which is a key enzyme associated

with the mitochondrial respiratory chain. SK-N-SH cells were treated with 5 μM of oligomer

Aβ 1-42 in the presence of 1 μM inhibitor (4a or 4b, respectively) for 48 hours; samples

were then tested for CcO activity. Aβ treatment significantly decreased CcO activity,

whereas, addition of ABAD 4a- or 4b compounds rescued CcO activity in Aβ-treated cells

compared to vehicle-treated cells (Figure 5A-B). Inhibitor (4a or 4b) alone was without

effect on CcO activity in the absence of Aβ (Figure 5).
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Levels of ATP—To determine the effect of the ABAD inhibitors on Aβ-induced

impairment in energy metabolism, we measured ATP levels. SK-N-SH cells were exposed

to 5 μM of Aβ1-42 in the presence of 1μM of compound (4a or 4b, respectively). Then, we

measured ATP in cell lysates. As shown in Figure 6, Aβ treatment significantly decreased

ATP levels, whereas the addition of ABAD inhibitor rescued ATP activity. ATP levels in

cells exposed to ABAD inhibitors were comparable to those of vehicle-treated cells without

Aβ, suggesting no toxic effect of the inhibitors on mitochondrial energy metabolism. These

data suggest that ABAD inhibitors (4a-b) block mitochondrial dysfunction induced by Aβ

(Figure 6).

Effect of ABAD inhibitor on cell survival and toxicity—We evaluated the effect of

ABAD inhibitors on cell viability and toxicity using MTT reduction assay and trypan blue

exclusion, which are widely used to assess cell survival and toxicity and to screen for drugs

toxicity. Cells were treated with a range of concentrations of ABAD compound (4a and 4b)

at 1, 10, 50, 100 μM for 48 to 66 hours. Compared to vehicle treatment, cells treated with

ABAD compound did not reveal decreased MTT reduction (Fig. 7A), and increased

percentage of typan blue-positive cells (Fig. 7B), and abnormal morphology (Fig. 7C),

These data suggest that treatment of ABAD inhibitors alone do not have significant

cytotoxicity.

Discussion

Here, we evaluated the biological activities of two previously synthesized small molecule

ABAD inhibitors on ABAD enzymatic activity and the effects on mitochondrial swelling for

mPTP formation, Aβ-mediated abnormal mitochondrial respiratory function and bioenergy.

Interestingly, the substitution of methoxy at the 6-position in benzothiazole amine seems to

play a crucial role in phosphonate derivative bioactivity. Two benzothiazole phosphonates

(compounds 4a and 4b) inhibited ABAD enzymatic binding activity, reduced calcium-

induced mPTP formation, decreased Aβ-induced mitochondrial dysfunction, and increased

CcO and ATP levels. Clearly, the presence of the hydroxyl group on benzene at the 4-

position is essential for ABAD activity, which is consistent with the original design of

frentizole and benzothiazole urea scaffold as the active structure. Conversion of frentizole

into benzothiazole urea [33] or benzothiazole amino phosphonates [40] results in a

remarkable increase in ABAD enzymatic activity potency. Furthermore, the substitution of

the heterocyclic aldehyde at the amino position resulted in substantial loss of ABAD

inhibitory activity (data not shown).

When the 4-hydroxy substituent was constant, methoxy substitution at the 6-position of

benzothiazole amine was generally favorable for ABAD activity, conferring micromolar

IC50 values for enzymatic reaction inhibition. Furthermore, 6-methoxy-substituted

benzothiazole amine displayed potent enzymatic activity and a high therapeutic index. The

structurally simple 6-methoxy benzothiazole amine seems to be an optimal substitute for

ABAD binding, enzymatic, calcium induced swelling, mitochondrial respiratory function,

and energy metabolism inhibition comparable to frentizole and benzothiazole urea

derivatives. Additionally, modification of the phosphonate moiety benzthiazole ring has a

subtle effect on enzymatic potency (compound 4b). In contrast, benzothiazole phosphate
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analogues displayed an overall superior ABAD inhibitory effect in terms of the IC50 value

and therapeutic index. Thus, these studies shed new light on the design and understanding of

benzothiazole phosphate based enzyme inhibitors, which will be helpful for the evolution of

this scaffold into clinically useful AD drugs.

The results of our mitochondrial swelling assays indicated that the phosphonate derivatives

antagonize calcium-mediated mitochondrial swelling. The in vitro assays indicated that

compounds 4a and 4b inhibit calcium-dependent brain mitochondrial swelling and calcium

uptake and release. More importantly, these compounds largely diminished Aβ-induced

mitochondrial dysfunction as shown by increased CcO and ATP in addition to suppression

of calcium-induced mitochondrial swelling, demonstrating a protective effect of compounds

4a and 4b on mitochondrial function. The ABAD inhibitors alone did not affect normal

mitochondrial and neuronal function. Further, no changes in cell morphology, cell survival

and viability were found in cells treated with both ABAD compounds in which

concentration of ABAD inhibitor was even up to 100 μM, 100 fold higher than effective

dose (1μM), suggesting no toxic effects of the inhibitors on normal cellular function.

Since all assays have been carried out at different experimental conditions required, this

could be an explanation that the concentration of ABAD inhibitors depends on the

experimental condition. For example, we applied cell-free system to determine the direct

effect of the compound on ABAD activity under acute condition in an in vitro enzymatic

activity in which assays have to be completed in 10 min. In mitochondrial swelling assay,

mitochondria were isolated from brain tissue and then treated with calcium in vitro for 10-30

min under acute condition (25-100 μM ABAD compound), as compared with the assay to

determine the effect of Aβ on mitochondrial function in cell culture (48 hours) as shown in

Figures 5-6. In the experiments shown in Figures 5 and 6, we examined the effect of

compounds on mitochondrial function in cellular culture system. Our results clearly showed

the protective effect of compounds at 1μM on Aβ-induced mitochondrial dysfunction. The

results generated from 1μM compound are consistent with the data of the surface plasmon

resonance (SPR) with binding affinity (∼300-500 nM). Nevertheless, our studies

demonstrate that both compounds significantly improve mitochondrial function by increased

complex IV activity, a key enzyme associated with mitochondrial respiratory function, and

ATP production in Aβ-rich environment. These data provide the evidence for supporting the

conclusion on the protective effect of ABAD compound on Aβ-induced mitochondrial

injury.

Novelty of the present approach lies in the use of a phosphonate moiety, which can readily

penetrate biological membranes such as the blood-brain barrier and enter the target organ

[46-48]. Therefore, phosphate esters are commonly used for prodrug development and

exclusively used for water insoluble compounds. [46-50] Future plans include examination

of the ability of these compounds to cross the blood brain barrier and further evaluation of

the effects on mitochondrial and neuronal function, amyloid pathology, and behavior in an

AD mouse model. Additionally, we would like to examine whether our ABAD inhibitors are

able to reverse Aβ-initiated mitochondrial dysfunction by incubating neuronal cells with Aβ

prior to treatment with the 4a and 4b inhibitors.
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In summary, we identified benzthiazole phosphonates derivatives as ABAD inhibitors and

successfully developed new small molecule compounds that showed specific ligand binding

ability for ABAD. Furthermore, these ABAD inhibitors rescued mitochondrial function

diminished by calcium and Aβ. With the goal of improving mitochondrial function in AD,

these inhibitors hold potential for therapeutic development
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mPTP mitochondrial permeability transition pore

ATP Adenosine-5′-triphosphate

ABAD Amyloid binding alcohol dehydrogenase

Aß amyloid beta

AD Alzheimer's disease

SPR Surface plasmon resonance

CcO cytochrome c oxidase

SAR Structure–activity relationship

SAAC S-acetoacetyl-CoA
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Figure 1.
The structures of the synthesized small molecule ABAD inhibitors 4a and 4b. Hit structures

of compounds 4a & 4b obtained by three component one pot reaction of 6-

methoxybenzo[d]thiazol-2-amine, aldehydes and dimethyl phosphonate. Compound

structures are shown three-dimensional orientation and chiral carbon represents with dashed

bonds. Solid lines represent bonds, which are in the plane of the paper and dashed lines to

represents bonds that are extend away from the viewer.
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Figure 2.
The synthesized ABAD inhibitors, 4a (A) and 4b (B), bind to immobilized human

recombinant ABAD protein in a dose–dependent manner as shown by SPR. Globally fit data

(black lines) were overlaid with experimental data (red lines). Human recombinant ABAD

protein (10μg/ml) was immobilized directly on the hydrophilic carboxy methylated dextran

matrix of the CM5 sensor chip (Biacore) using the standard primary amine coupling reaction

according to standard procedures. Compounds (4a, 1, 2, 5, 10 μM & 4b, 1, 5, 10, 15 μM)

were injected at flow rate 40 μL/minute for the determination of the kinetic and equilibrium

constant. All data analyses were carried out using BIA evaluation software, and sensor

grams were processed by automatic correction for nonspecific bulk refractive index effects.

The dissociation constant (KD) was determined as indicated at 25°C
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Figure 3.
Inhibition of ABAD enzymatic activity in the presence of benzothiazole phosphonate

derivatives (small molecule ABAD inhibitors) 4a (A) and 4b (B). Human ABAD

recombinant protein (418 ng/ml) was incubated with or without ABAD compound 4a or 4b

(0-200 μM) in 93 mM potassium phosphate buffer (pH 7.3) containing NADH (102 μM).

Five minutes after incubation, SAAC were added to the reaction mixture. The reaction was

run for a total of 6 min. The decrease of NADH absorbance at 340 nm was determined every

10 seconds. Kinetic data was analyzed by PRISM software to determine IC50 value and Ki.

Both compounds (4a and 4b) significantly inhibited ABAD enzymatic activity using SAAC

substrate.
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Figure 4.
Effect of Aβ/ABAD inhibitors [4a (A) and 4b(B)] on calcium-induced mitochondrial

swelling (red line) compared to vehicle-treated mitochondria (black). The isolated cortical

mitochondria (100 μg) were incubated with and without ABAD compound (4a or 4b) on ice

for 5 min. Calcium (200 μM) was added to the reaction buffer to trigger mitochondrial

swelling. The addition of the indicated concentrations of compounds (0 to 100 μM)

attenuated calcium-induced mitochondrial swelling.
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Figure 5.
Effect of ABAD inhibitors (4a (A) and 4b (B)) on Aβ-induced reduction in CcO activity.

SK-N-SH cells were treated with 5μM oligomer Aβ plus the indicated inhibitor (4a or 4b) at

0.5 and 1μM, Aβ alone (5 μM), inhibitor alone (1μM), or vehicle without inhibitor,

respectively. After 48 hours, CcO activity was measured in cell lysates. *P<0.01 compared

to the indicated groups of vehicle, inhibitor (1μM) with Aβ, and inhibitor alone.
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Figure 6.
Effect of ABAD inhibitors [4a (A) and 4b (B)] on Aβ-induced reduction of ATP levels. SK-

N-SH cells were exposed to 5μM oligomer Aβ plus the indicated inhibitor (4a or 4b) at 0.5

and 1μM, inhibitor alone (1μM), Aβ alone (5μM), or vehicle without inhibitor, respectively.

48 hours later, ATP levels were determined in cell lysates. *P<0.001compared to the

indicated groups of vehicle, inhibitor with Aβ, and inhibitor alone.
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Figure 7.
Effect of ABAD inhibitors on cell survival and toxicity. SK-N-SH human neuronal cell line

was incubated with vehicle and ABAD compound (4a or 4b), respectively, at 37°C for 4 -66

hours, and then subjected to the MTT reduction to examine the cell survival (A) and typan

blue staining to assess cell death (B). The panel (C) showed the representative

morphological images with indicated treatment. The vehicle (0)-treated cells serviced as

controls. Scale bar = 50 μm.
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Table 1

ABAD enzymatic activity and SPR results.

ABAD Inhibitors ABAD enzymatic activity IC50 (μM) ABAD enzymatic activity Ki (μM) SPR KD (nM)

4a 341.89±68.68 96.6±19.4 496

4b 52.7±5.0 14.9±1.4 291
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