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Identification of the 58-end of human genes requires identification of functional promoter elements. In silico
identification of those elements is difficult because of the hierarchical and modular nature of promoter
architecture. To address this problem, I propose a new stepwise strategy based on initial localization of a
functional promoter into a 1- to 2-kb (extended promoter) region from within a large genomic DNA sequence
of 100 kb or larger and further localization of a transcriptional start site (TSS) into a 50- to 100-bp
(corepromoter) region. Using positional dependent 5-tuple measures, a quadratic discriminant analysis (QDA)
method has been implemented in a new program—CorePromoter. Our experiments indicate that when given a
1- to 2-kb extended promoter, CorePromoter will correctly localize the TSS to a 100-bp interval ∼60% of the
time.

[Figure 3 can be found in its entirety as an online supplement at http://www.genome.org.]

As the Human Genome Project enters its large-scale
sequencing phase, methods for the identification of
genes and regulatory elements in silico have be-
come extremely important (Business Week 1996).
In the past decade, many reliable in silico methods
have been developed and used successfully (for re-
view, see Claverie 1997) to identify protein coding
regions; unfortunately, however, reliable methods
for identifying either the 58 or 38 ends of gene tran-
script units are still lacking (for review, see Fickett
and Hatzigeorgiou 1997). The inability to identify
the 58 and 38 ends of genes using computational
methods severely limits our ability to separate one
gene from another when analyzing multigene frag-
ments. Although the 38 ends of many transcripts
may be identified by searching the expressed se-
quence tags (ESTs), where 38 end cDNA sequences
are enriched, no rapid and accurate 58 end gene se-
quencing method is yet available. Clearly a system-
atic improvement of computational promoter rec-
ognition methods is very much in need.

Recent advances in molecular genetics, bio-
chemistry, and structural biology have revealed that
RNAPII promoters typically have a modular struc-
ture, consisting of multiple short sequence ele-
ments, most of which comprise transcription factor
(TF) binding sites. These elements, which can be
either positive or negative, can be dispersed or can

overlap and usually lie within the 1-kb region up-
stream and surrounding a transcription start site
(TSS). The combination of these regulatory elements
is often unique for most genes or pathways. Within
this region lies a core promoter, typically from 160
to +40 bp relative to a TSS, defined by a minimal
DNA element that is necessary and sufficient for ac-
curate transcription initiation in a reconstituted
cell-free system (Roeder 1996). The core promoter is
responsible for binding the basal transcription fac-
tors and thus constitutes a universal positioning el-
ement within promoter regions. Transcription ini-
tiation is hierarchical and dynamic: It starts from
chromosomal derepression (through chromatin re-
modeling and nucleosome discruption) and TF
binding and results in the activation of transcrip-
tion via a multitude interaction among the regula-
tory and basal TFs. Although a core promoter may
be sufficient to direct transcription in vitro, a full
intact promoter containing upstream sequence ele-
ments is often required for transcription in vivo.

Based on consideration of the biological knowl-
edge of promoter architecture, a two-step approach
to the computational problem of promoter recogni-
tion and TSS mapping was proposed recently
(Zhang 1997b). Because hierarchical organization
may dictate different molecular recognition mecha-
nisms on different scale levels, this strategy essen-
tially reduces the general promoter recognition
problem into two related discrimination subprob-1E-MAIL mzhang@cshl.org; FAX (516) 367-8461.
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lems. The first subproblem is a large-scale (low-
resolution) problem that may only need coarse-
grained measures, such as CpG islands, nucleo-
some/chromatin features, downstream coding
propensity, TF density, repetitive DNA counts, and
so forth. The solution to this subproblem alone is
enough for gene separation in principle, but it may
have to await the availability of sufficient amount of
long stretch genomic DNA sequence data. The sec-
ond subproblem is a fine-scale (high-resolution)
mapping problem that requires extracting detailed
universal features that can best discriminate a core
promoter from its surroundings. The solution to
this subproblem also has immediate practical appli-
cations, especially for a bench scientist who has iso-
lated and cloned a promoter activity into a 1- to
2-kb fragment. Currently, the human promoter–
proximal data have just become sufficient enough
for a systematic investigation. In a preliminary test
(Zhang 1998), I had obtained very encouraging re-
sults on a small data set of 177 nonredundant hu-
man promoters in EPD48 (Bucher and Trifonov
1986). Here, I will show more robust results on a
much larger data set of 673 nonredundant human
promoters (see Data and Methods) and announce
the availability of my new program CorePromoter
to the genome community.

Core Promoter Architecture

Before going into computational aspects, it is help-
ful to briefly summarize core promoter structure (for
more detailed reviews, see, e.g., Kollmar and Farn-
ham 1993; Orphanides et al. 1996; Roeder 1996;
Tjian 1996).

It is known that the TATA box and the Initiator
(Inr) are the two key genetic elements in a core pro-
moter (Fig. 1) that play a central role in determining

the TSS position (e.g., Novina and Roy 1996). The
TATA box has the consensus TATA(A/T)A(A/T), and
the Inr has the consensus YYAN(T/A)YY (the under-
lined position indicates the TSS). TATA and Inr are
functionally similar in two respects: Both can direct
accurate transcription initiation by RNAPII in the
absence of other control elements, and both can
direct a high level of accurately initiated transcrip-
tion when stimulated by an upstream activator
(Smale 1997). Abundantly expressed genes (most
cloned before 1980) frequently contain a strong
TATA box in their core promoter. Housekeeping
genes, oncogenes, growth factors, and TFs are often
TATA-less. TATA1Inr+ promoters are mainly found
in hematoietic lineage-specific genes and homeotic
genes (Novina and Roy 1996), TATA1Inr1 promot-
ers are mainly found in housekeeping genes that
have multiple TSSs (often 40–80 bp downstream of
a Sp1 site), and some share a downstream promoter
element (DPE) called MED-1 with the consensus
GCTCC(G/C) (Ince and Scotto 1995). Because of its
overlap with other TF sites, Inr has much weaker
consensus compared to the TATA box. Table 1
shows some experimentally mapped examples.
Transcription initiation involves assembly of a pre-
initiation complex (PIC, see Fig. 1) on the core pro-
moter. Although the details on the structure and
organization are still lacking, recent site-specific
protein–DNA photo-cross-linking done on a mini-
mal human TBP–IIB–IIF–RNAPII–core promoter
subcomplex has revealed that the interface between
the largest and second largest subunits of RNAPII
(RPBI and RPB2) forms an extended (∼240 Å) chan-
nel that interacts with core promoter DNA both up-
stream and downstream of TSS. (see also Forget et al.
1997; Lagrange et al. 1996). Although this mini-PIC
covered at least the (150, +20) region of the AdML
core promoter, with TFIID a real PIC can bind a
more extended region as measured by DNase I foot-

print (Orphanides et al.
1996). From this architectural
information, it appeared that
a core promoter might be lo-
calized in about the 100-bp
region containing the TSS.

RESULTS

Although it is known that the
density of TF sites tends to be
higher in promoter DNA than
other genomic regions (this
was actually the basis for

Figure 1 Core promoter organization: (UPE and DPE) Upstream and down-
stream promoter elements; (X) a UPE-binding TF; (CIF) a Co–Inr TF; (A,B,D,F,E,H)
TFIIA, TFIIB, etc.; (TBP) the TATA box-binding protein; (TF150 and TF250) TBP-
associated factors (TAFs) 150 and 250, respectively.
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many current promoter prediction algorithms; see,
e.g., Prestridge 1995), a statisical study (Zhang
1998a) has shown that it is insufficient as an indi-
cator of a core promoter. Most TF binding sites are
not well localized, for the binding sites that were
localized only in a statistical sense and mapped
within a much broader region. Currently, the use of
putative TF sites (those predicted by either consen-
sus or matrix methods) will suffer at least from the
following limitations: They lose important context
information, many false positives, score/cutoff de-
pendency, or the TF database is simply too limited
or biased (as most of TF sites are not mapped and it
will take years to map the majority of them experi-
mentally). It is therefore more logical to start an
objective statistical approach without having to re-
sort to any putative TF site information directly and
let the data speak for itself. Thus, a baseline is pro-
vided for further improvement by adding explicit TF
site information later. As illustrated below, this ap-
proach has proved successful.

Exploratory LDA Studies with a Set
of Nonoverlapping Windows

First, a k-tuple frequency measure was chosen. A
global 6-tuple frequency measure had been used for
promoter prediction as a ‘‘content’’ measure in the
sense of Staden (Hutchinson 1996). But this content
approach disregards all the positional information
that is crucial for the fine mapping of the core pro-
moter and TSS. In contrast, a pure ‘‘signal’’ ap-
proach is powerless because of the large variation in
the signal positions. This suggests that a ‘‘mixed’’
approach, using position-specific windows, should
present a suitable solution to the problem. Discrimi-
nant analysis is a standard statistical pattern recog-
nition techique that has been used widely in many

fields (see, e.g., McLachlan
1992). Intuitively, if one
views samples as swarms of
points in multidimensional
feature space, discriminant
analysis will provide an opti-
mal surface (in the sense of
minimizing errors) separating
the true samples from the
pseudosamples. When the
surface is a plane, the method
is called linear discriminant
analysis (LDA); if it is qua-
dratically curved, it is called
quadratic discriminant analy-
sis (QDA). LDA is often used

for exploratory studies for its simplicity. When LDA
is used, it is implicitly assumed that the true samples
and the pseudosamples have the same covariance
structure (see, e.g., Zhang 1997a). Here I chose the
average k-tuple frequency preference score x in a
window of size w as the feature variable (see Data
and Methods).

Then there was the choice of k and w. Reliable
statistics requires N 2 (w 1 k + 1) be larger than 4k,
where N is the number of independent sequences,
as w determines the resolution and it needs to be
large enough to contain major TF elements but
small enough to capture the positional variation. It
was found experimentally that w = 30 bp works well
even for the small Eukaryotic Promoter Database
data set (N = 177). Although k = 6 may be barely
workable, I chose a more cautious value of k = 5,
which also represents a half-turn of a DNA double
helix and often corresponds to the number of resi-
dues in the core of a typical TF binding site. For an
exploratory test, I chose four nonoverlapping win-
dows (hence, four feature variables) and did various
LDA studies by varying different parameters (w, k,
sample size, sampling interval, or adding other fea-
ture variables). These window positions were care-
fully chosen such that the first window would con-
tain UPE, the second window would contain TATA
box, the third window would contain Inr, and the
last window would contain DPE (see Fig. 1). There
was no need to separate TATA and TATA-less pro-
moters, as the second feature variable would code
this information differentially. The top half of Fig-
ure 2 shows some typical LDA discriminant score
profiles (which have the meaning of the posterior
probability that the window surrounding each po-
sition contains a core promoter) for 10 extended
promoters from EPD48. The samples of prediction
were taken at 6-bp intervals when scanning a se-

Table 1. Examples of TATA and TATA-Less Promoters

Gene TATA box Inr TF

AdML TATAAAA TCACTCT Pol II-I at (+7, +33)
gfa CATAAAG weak Pol II-D at (+10, +50)
hsp70 TATAAAT weak Pol II-D at (+18, +30)
TdT CTGCTGGTC TCATTCT Pol II-I, YY1
dhfr — CAAACTT E2F
PBGD — TCAGTGT ? at (+3, +12)
rpS1 — TCCCTTT YY1
P5 — CCATTTT YY1

From Orphanides et al. (1996).
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quence. A vertical line indicates the true TSS posi-
tion (a comparison with PROSCAN, a TF density-
based prediction, can be found in Zhang 1998). Al-
though there is still significant noise in these
profiles, the true signals stand out not only because
of their height, but also because of their unique
shape.

A QDA Study with Two Overlapping Sets
of Windows

How could the noise be reduced? More experiments
indicated that the false positives were much more
sensitive to change of parameters. When the win-

dow size or position is varied,
true signals tend to remain at
the same position while the
noises tend to displace ran-
domly (data not shown). This
finding immediately sug-
gested that it may be benefi-
cial to apply the ‘‘principle of
resonance’’: If two profiles
corresponding to different pa-
rameters are combined, the
true signals will tend to en-
hance each other while the
noises will tend to cancel each
other. Furthermore, as the
sample size is increased, the
height of the noise tends to be
suppressed. To maintain a
high resolution as well as to
limit the dimension of the
multivariate feature space, I
used the 13-window system (8
windows of 30 bp and 5 win-
dows of 45 bp) with a sample
size of 240 bp. Because the
overlapping windows were
used (see Fig. 6, below), a
more covariance-sensitive
method—QDA—was applied
(see, e.g., Zhang 1997a). The

bottom half of Figure 2 shows the new discriminant
profiles obtained by QDA of 13 feature variables on
the same 10 extended EPD48 promoters (see Data
and Methods). The remarkable enhancement of the
signal-to-noise ratio indicates that the ‘‘interference
amplification’’ is at work.

To further analyze the stability (robustness),
standard 10 cross-validation tests were performed
on 177 true samples and 42,480 pseudosamples
(20% test set and 80% training-set were chosen ran-
domly in each test). The statistical variation is sum-
marized in Table 2. In particular, the average sensi-
tivity and specificity may be calculated as 0.71 and
0.83, respectively.

Table 2. Cross-Validation Statistics

Testa 1 2 3 4 5 6 7 8 9 10

Sensitivity 0.857 0.771 0.629 0.571 0.657 0.771 0.657 0.686 0.629 0.857
Specificity 0.857 0.871 0.815 0.800 0.852 0.771 0.885 0.828 0.880 0.769

a(Sensitivity) True Positives/actual positives; (specificity) true positives/predicted positives.

Figure 2 Top panels are LDA profiles for 10 extended EPD48 human promoter
sequences. Bottom panels are QDA profiles for the same 10 sequences. The EPD
entry-ID is indicated for each sequence. The vertical lines are the true TSS posi-
tions. The sequence range is (1600, +600). A peak in the profile indicates a high
likelihood for a TSS.
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Some interesting observations from these pro-
files are worth mentioning. The double peaks of the
profiles in Figure 2 correspond to the alternative
TSSs, as annotated in GenBank. Because, for simplic-
ity, only one sample at position (1160, +80) per
sequence was considered as the true sample (signal)
and some alternative TSSs and the high scoring
samples in the neighborhood of the true sample
were considered as false positives (noise), it would
be more informative to look at the whole profile.
This QDA study involved only the position-
dependent 5-tuple frequency bias. As the local back-
ground (as characterized by fb in Data and Methods)
was used, chromosomal GC content variation was
therefore taken care of automatically. It was some-
what surprising that adding TATA or Inr scores as
extra discriminant feature variables did not make
any noticeable improvement (data not shown). Ap-
parently they were also automatically built in by the
specific choice of window positions. Actually, we
believe that most, if not all, of the hidden position-
ing elements should be accommodated.

Enlargment of the Data Set
and Implementation
of Core Promoter

Because the human EPD data
is very limited and is biased
by TATA box-containing pro-
moters (Zhang 1998a), a
larger data set (673 promot-
ers) was constructed based on
a nonredundant first exon da-
tabase (see Data and Meth-
ods). Because these promoters
in the (1600, +600) region
were taken from GenBank
solely based on the TSS anno-
tation, the data may be under-
standably more error-prone
than EPD but they are more
representative. Exactly the
same procedure was carried
out, and new sample means
and covariance matrices were
calculated from the true core
promoters in the (1160, +80)
region and from all of the
pseudopromoters outside the
(1240, +240) region where
240 bp was the size of a
sample. The QDA posterior
probability score profiles were
plotted on a log10 scale (rang-

ing from 13 to 0) in Figure 3 (40 sample profiles are
shown; the complete 673 profile can be found at
http://www.cshl.org/genefinder). To maximize the
information content, I chose the following repre-
sentation: Among the top 20 scores in the (1600,
+600) region, only up to 3 top profile peaks are
shown. That is, if the highest peak falls into the
(150, +50) region, only this one peak (marked by 1)
is shown; if the second peak falls into the true
neighborhood, only these two peaks (marked by 1
and 2) are shown, and so forth. The original Gen-
Bank accession number and the position of the TSS
for each promoter are also indicated on the far left
for ease of reference.

As expected, the accuracy for this larger data
was reduced when compared with that for EPD data.
In the correct neighborhood (150, +50), 66% of the
core promoters demonstrate the highest peaks; 81%
if including also the second highest; 84% if further
including the third highest. In addition, although
the majority of the highest peaks are mapped
closely to the core promoter region, the variation of

Figure 3 QDA profiles (in log10 scale) for a newly constructed nonredundant
human promoter database LEDB (673 sequences with 55 identical to EPD se-
quences) were depicted by up to the three highest peaks (see text for details).
The GenBank accession no. and the TSS position are indicated at left. Each peak
is also indicated by its rank number: (1) the highest peak in the whole profile, (2)
the second highest, etc. The sequence range is (1600, +600), and the true TSS
position is indicated by a vertical dotted line.

ID OF HUMAN GENE PROMOTERS IN SILICO

GENOME RESEARCH 323



the absolute value from one promoter to another
can be very large (up to two orders of magnitude,
which is why a logarithmic scale was used to plot
the profile peaks).

To get the worst-case scenario, the QDA predic-
tor constructed from the large data was used to
make core promoter predictions on 122 extended
EPD promoter sequences (a true test set) that did not
intersect with the larger data. The result is shown in
Figure 4. The range of these extended EPD promot-
ers is also (1600, +600). Now, in the correct neigh-
borhood (150, +50), only 59% of the core promot-

ers demonstrate as the highest peaks; 67% if includ-
ing also the second highest; 73% if further
including also the third highest. This may be re-
garded as a measure of the base-line statistic: in a
novel extended promoter sequence (∼1.2 kb), a core
promoter is expected to be localized correctly in a
100-bp region with at least 60% chance by this pure
statistical QDA predictor without using any TF site
information. Although many of the high peaks out-
side the 100-bp region turned out to be alternatively
annotated core promoters, there was not enough
information and resource to examine all of the false

positives at that point.
To compare with the

most similar available ap-
proach, I used TSSG (Solovyev
and Salamov 1997) through
t h e e - m a i l s e r v e r a t
service@bchs.uh.edu. TSSG
uses a LDA approach, and the
feature variables are (1) a
TATA box score, (2) triple
preferences around the TSS,
(3) hexamer preferences in
the nonoverlapping regions
( 1 3 0 0 , 1 2 0 1 ) , ( 1 2 0 0 ,
1101), and (1100, 11), and
(4) potential transcription fac-
tor binding sites. For the 673
promoters, TSSG was only
able to localize 37% in the
(150, +50) interval and 44%
in the (1100, +100) interval.
The novel features that may
contribute to a better perfor-
mance of CorePromoter are
the overlapping set of rela-
tively shorter windows and
QDA.

As it is relatively easy to
predict strong TATA promot-
ers, to determine whether the
correct prediction was corre-
lated with such strong TATA
promoters, a plus sign (+) was
added next to the EPD entry-
ID in each profile to indicate
that sequence is a strong
TATA promoter. A strong
TATA promoter was defined
by a score larger than the cut-
off value of 12.2 when using
the TATA box scoring matrix
of Bucher (1990) near the

Figure 4 Similar QDA profiles to those in Fig. 3 for the 122 extended EPD
promoters that were not used as the training set. (1) A strong TATA promoter.
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130 region (see Zhang 1998a for more on core pro-
moter classification). As expected, most strong
TATA promoters did have a high core promoter
peak. This correlation may be seen more clearly in
Figure 5 where the peak scores (on a log10 scale) in
the (150, +50) region of Figure 4 were plotted
against the TATA scores. When the TATA score is
larger than about 15 (15.43 was the mean TATA
score of the total 177 human EPD promoters; see
Zhang 1998a), there appears to be a weak linear cor-
relation that may have also caused the order of mag-
nitude variation in peak scores. But the QDA pre-
dictor was able to predict many TATA-less core pro-
moters, albeit with a reduced overall score level that
was still clearly above the noises.

Initially, this QDA algorithm is implemented in
CorePromoter with the covariance matrix calcu-
lated from the 673 promoters (the EPD covariance
matrix is an option). It may be accessed through the
World Wide Web at http://www.cshl.org/
genefinder, or it may be down-loaded from ftp://
cshl.org/pub/science/promoter (the FTP version has
the option for output of all the scores so that one
can plot the whole profile locally). A more detailed
study between the differences will be published else-

where, and the future version of CorePromoter will
contain the combined covariance matrix. I appeal
to bench scientists for more accurate database an-
notations and for helping to correct errors. I have
presented the TSS prediction in detail in both Fig-
ures 3 and 4 and sincerely hope to get feedback from
biologists who are studying these genes. A statistical
method can only achieve the same level of accuracy
as that of a human annotator—perhaps with much
greater efficiency. Without the help of the bench
scientists, we have no way of knowing which are
real true/false positives. CorePromoter will be im-
proved further by adding more explicit TF site in-
formation in the future. As many gene-specific fea-
tures were averaged out for the general purpose of
core promoter recognition and fine TSS mapping,
using gene-specific methods will be essential for any
regulatory function studies.

DATA AND METHODS

One hundred seventy-seven human nonredundant
promoter sequences were extracted from EPD48
(Bucher and Trifonov 1986). Each sequence was
then extended from the original range (1500,
+100) to (1600, +600) by the use of BLAST (Gen-
Bank, release 100). A few corrections were made af-
ter checking against both the original and recent
publications. A larger promoter data set (673 se-
quences, called LEDB for lead exon database in
CorePromoter options) was extracted (or extended
when necessary) from a nonredundant first exon
(including the flanking regions) database, which
was constructed according to GenBank annotations
(Zhang 1998b). The range for this data was also
(1600, +600).

Standard LDA and QDA (see e.g., Zhang 1997a
and references therein) were used for core promoter
discrimination. All feature variables were 5-tuple
scores averaged within a position-specific window.
If one defines fw(s) to be the signal frequency of a
5-tuple s in the window w and fb(s) to be the back-
ground frequency calculated as the average of fL(s)
and fR(s), where L and R indicate the left and the

r i g h t n e a r e s t - n e i g h b o r
nonoverlapping windows,
t h e n t h e 5 - t u p l e s c o r e
x(s) = fw(s)/[fw(s) + fb(s)]. All
the fws were estimated from
t h e a l i g n e d d a t a , a n d
Bayesian priors were used to
render all frequencies non-
zero (Tanner and Wong
1987).

Figure 5 The scatter plot of QDA scores (in log10
scale) for the peaks in (150, +50) in Fig. 4 vs. the TATA
scores (see text for detail).

Figure 6 Feature variables in discriminant analyses.

ID OF HUMAN GENE PROMOTERS IN SILICO

GENOME RESEARCH 325



In the exploratory LDA studies, each sample was
a sequence of 120 bp that contained four nonover-
lapping windows of 30 bp each (Fig. 6). Samples for
the training set were drawn from the 177 EPD48
nonredundant human sequences at a 10-bp inter-
val. Each sequence would contain just one true
sample (ignoring the few alternative TSSs) at (170,
+50).
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