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Abstract

Development of advanced technique to identify gene struc-
ture is one of the main challenges of the Human Genome
Project. Discriminant analysis was applied to the construc-
tion of recognition functions for various components of gene
structure. Linear discriminant functions for splice sites, 5°-
coding, internal exon, and 3’-coding region recognition have
been developed. A gene structure prediction system
FGENE has been developed based on the exon recognition
functions. We compute a graph of mutual compatibility of
different exons and present a gene structure models as paths
of this directed acyclic graph. For an optimal model selec-
tion we apply a variant of dynamic programming algorithm
to search for the path in the graph with the maximal value of
the corresponding discriminant functions. Prediction by
FGENE for 185 complete human gene sequences has 81%
exact exon recognition accuracy and 91% accuracy at the
level of individual exon nucleotides with the correlation co-
efficient (C) equals 0.90. Testing FGENE on 35 genes not
used in the development of discriminant functions shows
71% accuracy of exact exon prediction and 89% at the nu-
cleotide level (C=0.86). FGENE compares very favorably
with the other programs currently used to predict protein-
coding regions. Analysis of uncharacterized human sequenc-
es based on our methods for splice site (HSPL, RNASPL),
internal exons (HEXON), all type of exons (FEXH) and hu-
man (FGENEH) and bacterial (CDSB) gene structure pre-
diction and recognition of human and bacterial sequences
(HBR) (to test a library for E. coli contamination) is avail-
able through the University of Houston, Weizmann Institute
of Science network server and a WWW page of the Human
Genome Center at Baylor College of Medicinel.
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Foundation to V.V.S.

Introduction

Significant success has been made in coding region
identification, however perfect prediction of eukary-
otic gene structure continues to be a challenging prob-
lem. A test of performance of the latest versions of the
most successful gene prediction programs: GeneMod-
eler, Geneld, Grail and GeneParser shows that they have
an accuracy of exact exon prediction: 2%, 33-42%, 31-
52% and 47%, respectively (Snyder & Stormo, 1994),
that motivates the development of new approaches to
solve this problem.

Most gene prediction systems combine information
about functional signals and the regularities of coding
and intron regions. On this basis, potential first, inter-
nal and terminal exons can be revealed and the top
ranking combination of them will present the predicted
gene structure. The program SORFIND (Hutchin-
son,Hayden,1992) is designed to predict internal exons
based on codon usage (around splice sites and in a
potential open reading frame) and Berg and von Hippel
(1987) discrimination energy for intron-exon bound-
aries recognition. An accuracy of exact internal exons

~ prediction (at both 5’ and 3’ splice junctions and in the

correct reading frame) by SORFIND program reaches
59% with a specificity of 20% (for all 5 confidence lev-
els) or 45% with a specificity of 41% (for the first 3
confidence levels). A dynamic programming approach
(alternative to the rule-based approach) was applied by
Snyder and Stormo (1993) to internal exon prediction..
It accomplishes an exhaustive and mathematically rig-
orous search for the globally optimal solution. A
sequence is divided into exons and introns by finding
the best internally consistent set of high-scoring exon
and intron subsequences. Weights for the various clas-
sification procedures are determined by training a feed-
forward neural network to maximize the number of
correct predictions. GeneParser precisely identifies
76% of internal exons in sequences between the first
and last exons, but the structure of only 46% exons
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was exactly predicted when tested on entire GenBank
entry sequences.

We have developed a program (HEXON) for the pre-
diction of internal exons of human genes. The pro-
gram is based on a splice site prediction algorithm that
uses a linear discriminant function to combine infor-
mation about significant triplet frequencies of various
functional parts of splice site regions and preferences
of oligonucleotides in protein coding and intron
regions (Solovyev, Lawrence, 1993a; Solovyev, Sala-
mov, Lawrence, 1994a). For exon prediction, we com-
bine in a linear discriminant function 5 characteristics
describing the 5’-intron region, donor splice site, cod-
ing region, acceptor splice site and 3’-intron region
for each open reading frame flanked by GT and AG
base pairs. The accuracy of precise internal exon rec-
ognition on a test set is 77% with a specificity of 79%.
The recognition quality computed at the level of indi-
vidual nucleotides is 89% for exon sequences and
98% for intron sequences. HEXON has a better exact
exon prediction accuracy than other internal exon pre-
diction programs, but it is trained and tested on inter-
nal gene regions (including intron and internal exon
sequences) and may be useful for analysis of partially
sequenced genes.

To predict 5’- and 3’-flanking coding exons, the
FEXH (find human exons) program has been devel-
oped (Solovyev, Salamov, Lawrence, 1994b). A dis-
criminant function for 5’-exon prediction consists of
hexanucleotide composition of upstream region, trip-
let composition around the ATG codon, ORF coding
potential, donor splice site potential and composition
of the downstream intron region. A discriminant func-
tion for 3’-exon prediction included octanucleotide
composition of upstream intron region, triplet compo-
sition around the stop codon, ORF coding potential,
acceptor splice site potential and hexanucleotide com-
position of downstream region. We united 5°-, internal
and 3’-discriminant functions in exon predicting pro-
gram FEXH. FEXH exactly predicts 70% of 1016
exons from the set of 181 complete genes with speci-
ficity 73%, and 89% exons are exactly or partially pre-
dicted. On the average, 85% of nucleotides were
predicted accurately with specificity 91%. Although
FEXH compares favorable with the other programs
currently used to predict coding exons (see review in
Snyder & Stormo, 1993,1994), this program shows
only the positions of candidate exons and does not
attempt to produce assembled genes.

To date, GeneModeler (Fields and Soderlund,1990),
GeneID (Guigo et al.,1992) and XGRAIL (Xu et al.,
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1994) are integrated packages that predict gene struc-
ture from genomic DNA. The first two methods rely
on revealing the functional motifs such as start and
stop codons, splice sites and poly(A) signals; then on
sequential filtering evaluation of the assembled com-
bination of a gene component. GenelID can precisely
identify 54% of real exons with correct splice bound-
aries (Guigo et al.,1992). XGRAIL is the most widely
used of the coding sequence identification program. It
based on neural network recognizers of exon candi-
dates, filtering them by a set of heuristic rules and uses
dynamic programming approach to build a gene mod-
els (Xu et al.,1994). Dynamic programming is used to
find an optimal combination of preselected exons
(Gelfand, Roytberg, 1993; Solovyev, Lawrence,
1993b; Xu et al,,1994), that is different from the
approach suggested by Snyder and Stormo (1993) to
search for exon-intron boundary positions. The result
of optimization by dynamic programming and gene
structure prediction quality are clearly dependent on
exon recognition and optimizational functions.

As mentioned above, an accuracy of exact exon
identification by gene prediction programs (including
XGRALIL) is less than or about 50% when they were
tested on the same data set of human genes (Sny-
der,Stormo,1994). This stimulated us to develop gene
structure prediction algorithm using our improved
splice site and exon recognition functions (Solovyev,
Salamov, Lawrence, 1994a,b). In the present work we
combine linear discriminant analysis and dynamic
programming approaches in our gene prediction sys-
tem using the advantages of natural functional
description of the former and fast rigorous searching
scheme of the later one (Solovyev, Lawrence, 1993b).

Materials and Methods

The data sets

We have taken all entries including complete human
gene sequences from GenBank (release 81,1994)
(Cinkosky et al., 1991). Some entries were divided if
they had several genes in them. When a gene had
alternative splicing variants, the first of them was
selected. Entries with stop codons in-frame of anno-
tated coding regions and nonstandard splice site con-
servative dinucleotides were discarded, due to
possible errors in their description. The size of the
resulting set was 185 genes. The set has been used to
compute parameters of 5’ and 3’-exon discriminant
functions and thresholds of the main algorithm. A
similar procedure was followed, this time using Gen-
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Fig.1. Construction of gene models by dynamic programming
approach.

Salamov, Lawrence, 1994b)
exon recognition which were
described earlier.

We will explain the main
steps of the algorithm (Fig.1)
and demonstrate them for an
example of prediction for Gen-
Bank entry HUMILSA (length -
5191bp). The gene from this
entry has 4 exons localized in
the following positions:(1) 1584
- 1647; (2) 2464 - 2599; (3)
2871 - 2954 and (4) 3370 -
3385.

L IDENTIFYING POTEN-
TIAL INTERNAL EXONS

First, we create a set of poten-
tial internal exons (Figure la)
using the linear discriminant
function (LDF;,,) for calculating
a score of any ORF (open read-
ing frame) between any pair of
conservative splice site dinucle-
otides AG and GT. We use the
threshold score 4.0 for accepting
of potential exon, which is less
than the optimal for exon pre-
diction without assembling
them. Further assembling will
remove many of overpredicted
exon variants.In the HUMILSA
sequence, 12 potential internal
exons were selected. Their posi-
tions and LDF values are given
in Table 1.

Bank 84 release. A further 35 entries (having 1994 in 2. RECOGNITION OF POTENTIAL 5’-CODING

their LOCUS description line) with complete genes were

. . REGIONS
thus identified, which we used to evaluate the perfor-

mance of the FGENE program. For each of the predicted potential internal exon,
. we search for possible 5’-coding region with maxi-

The algorithm mal LDF(Zs) value (Figure 1b). We consider all

A general scheme of our gene prediction algorithm is sequence regions having donor site conservative
shown in Figure 1 and realized in FGENE program. We dinucleotide GT located more than 60 bp on the left
build FGENE based on linear discriminant functions of of the acceptor site of the corresponding internal
internal (LDF,,) (Solovyev, Salamov, Lawrence, 1994a), exon and having a compatible ORF starting with

5’- coding, and 3’-coding (LDFs> and LDF3:) (Solovyev,

Met codon. From these sequences we analyze all
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TABLE 1. Predicted potential exons for GenBank entry HUMILSA.

N Location of LDFy, | ORF | optimal 5’-exon | optimal 3’-exon
internal exons LDF # location(LDF) location(LDF)
1 1618 - 1647 6.1 3 3253-3275(7.9)
2 2464 - 2599 9.5 3 1584-1647 (10.5) | 3370-3385 (11.6)
3 2871 - 2954 14.3 1 3370-3385 (11.6)
4 2878 - 2954 13.9 1 3370-3385 (11.6)
5 2892 - 2954 10.2 3 4735-4797 (4.0)
6 2892 - 2954 10.0 1 3370 3385 (11.6)
7 2894 - 2954 9.8 3 4735-4797 (4.0)
8 2894 - 2954 9.7 1 1584-1647 (10.5) | 3370-3385 (11.6)
9 2896 - 2954 6.7 1 3370-3385 (11.6)
10 | 2896 - 2954 7.0 3 1584-1647 (10.5) | 4735-4797 (4.0)
11 | 2914 -2954 5.6 1 3370-3385 (11.6)
12 | 2914 -2954 54 3 1584-1647 (10.5) | 47354797 (4.0)

variants having the discriminant function (Z;;) value
more than 0.

For HUMILB8A sequence only one potential 5° exon
with location 1584-1647 and value of LDF Z5=10.5
was predicted. In this example only exons 2,8,9 and
12 are compatible with the predicted 5’-exon 1584-
1647 (Table 1). It must be noted that not each internal
exon will have a 5’-exon after this procedure.

3. RECOGNITION OF POTENTIAL 3’-CODING
REGIONS.

For each of the potential internal exons, we search
for possible 3’-coding region with maximal LDF(Z3)
value (Figure 2b). We consider all sequence regions
having acceptor site conservative dinucleotide AG
located more than 60 bp on the right of the donor site
of the corresponding internal exon and having a com-
patible ORF with Stop codon at the end. From these
sequences we analyze all variants having the discrimi-
nant function (Z3-) value more than 0.

For HUMILBA sequence 47 potential 3’-coding
exons were predicted; for example: (3370-3385) with
Z3=11.6, (4735-4797) with Z3,=4.0, etc. All 12 inter-
nal exons have corresponding 3’-exons. For example
Ist internal exon (1618-1647) compatible with 3’-
exon (3253-3275) with corresponding value Z3=7.9.
Selected 3’-coding regions are given in Table 1.

370 ISMB-95

4. CONSTRUCTION OF GENE
MODELS

Each predicted exon can be charac-
terized by: (1) the corresponding
value of LDF; (2) an assigned reading
frame rf {1,2,3}. From the set of pre-
dicted internal, 5' and 3'- exons it is
possible to construct a model of gene
structure for a given sequence. Note
that particular potential 5’- and 3’-
exons are assigned to each internal
exon, therefore we will consider
internal exon combinations as poten-
tial gene models. The case of gene
structure without internal exons will
be treated especially.

Assume that we have array of inter-
nal exons ordered according with
their start positions in a analyzed

sequence. Let us define the term of

compatible exons. Any two (i-th and j-th) predicted
exons (i > j) are considered compatible if: (1) j-th
exon localized downstream and the distance between
the end of exon i and the beginning of exon j is more
than the minimum intron length (60 bp); 2) ORF of
these exons are compatible upon their merging, i.e.
after removing corresponding intron sequence ORF of
the i-th exon proceeds to ORF of the j-th exon and no
in-frame stop codons are observed.

We denote the graphical representation of compati-
bility of exons as an exon compatibility graph (ECG).
The nodes of ECG are internal exons and edges links
compatible ones (Figure lc). Note, that according to
its definition ECG is a directed and acyclic graph.
This graph may be presented by the list form:

1:3,5

2:45

3:5

4:

5:

The first exon is compatible with exons number 3
and 5; the second exon - 4, 5.; the third exon - 5. The
exons 4-th and 5-th have no compatible internal
exons.

Because of any gene model must consist of a subset
of compatible exons, we have to select this subset
from all possible groups of such exons. These groups
may be presented as paths in compatibility graph.



Each path in this graph going through compatible
nodes can be characterized by a weight, which is
selected in this algorithm version as the sum of LDF
values of its constituent exons. If there is 5'-exon
compatible with the first internal exon of the path
(first node) and 3'-exon compatible with the last inter-
nal exon (last node), they are considered as the first
and last nodes of the given path and their LDF values
added to the weight of path. For example, for path
going through internal exons ey, ey, ..., €; the total
weight of the gene model is equal to:

n
W= Y Z (e)+Zsleg) +Zyle, , )

i=1

where Zin, Zs, Z5 - LDF values of internal, 5' and
3'-exons selected for e, and e, exons, respectively.
Zs(eg) = 0, if the first internal exon e; have no com-
patible 5'-exon and Zs(e,,;) = 0, if internal exon e,
have no compatible 3'-exon. Our goal to find a path
with the maximal W value among all possible paths
through compatible exons.

This optimization problem can be solved using a
dynamic programming approach to search for an
optimal path in acyclic directed graph (Solovyev,
Lawrence,1993). We modified one such algorithm,
described in (Cormen, Leiserson, Rivest, 1990), and
implemented it in FGENE program.

Let the number of preselected internal exons is N;
MW(i) is the maximal weight subpath to node i, con-
sisted of i and nodes predicessing i in ECG; P(i) is
the predicessing i node of this subpath; K; is the num-
ber of exons compartible with exon i.

Initially we assign: P(i)=0 and
MW(i)=LDF,(e;))+LDF s(e;). Then, for each node i,
starting from 1, we check all his compatible K; exons
(¢=L...,K;) and assign MW({)=MW(i)+LDF(e;), if
MW(i)+LDF(e;) > MW(j). Also, in this case P(j)=i.
Finally, the pat{) with the maximal weight will be fin-
ishing in node m, which has maximal value of
MW(i)+LDF 3(ey, (i=l,..,N). Using P(i) we restore
the set of maximal path exons, by begining from the
terminal m. The number of exon (j) predicessing exon
(i) is j=P(i).

The running time of this algorithm is O(n+m),
where n - number of nodes (potential internal exons)
and m - number of edges (total number of all links
between compatible exons) of the ECG graph.

For our illustrative example we obtained a list of
compatible downstream internal exons, for each
internal exon from Table 1:

1:(2,8,10,12)
2:(3,6,7).

The first exon is compatible with exon number 2, 8,
10 and 12; the second exon - 2, 6 and 7. Exons 3-12
have no compatible internal exons.

In the HUMILBA sequence example a path with
maximal weight goes through internal exons 2 (2464
- 2599) and 3 (2871-2954). Exon 2 has a correspond-
ing 5’-exon (1584-1647) with LDF 5=10.5 and exon
3 has comresponding 3’-exon (3370-3385) with
LDF3=11.6. Therefore path through internal exons 2
and 3 has the following weight: W=10.5 +
9.5+14.3+11.6=45.9.

Thus, for HUMILS8A entry all components of anno-
tated gene structure is precisely predicted:

1. 1584 - 1647 (5’-coding region)

2. 2464 - 2599 (the first internal exon)

3. 2871 - 2954 (the second internal exon)
4. 3370 - 3385 (3’-coding region).

For estimation of an algorithm performance we
will use the following measures (Fickett and Tung,
1993; Snyder, Stormo, 1993; 1994; Dong, Searls,
1994). Sensitivity (S,) measures the fraction of the
true examples that are correctly predicted and speci-
ficity (Sp) measures the fraction of the predicted
examples that are correct:

Sn = TP Sp = TP
TP+FN'°  “P=TP+FP

True positives (TP) is the number of correctly pre-
dicted and false positives (FP) is the number of
falsely predicted authentic splice site positions (or
exons); true negatives (TN) is the number of correctly
excluded and false negative (FN) is the number of
falsely excluded pseudosite positions (or pseudoex-
ons).

Correlation coefficient (C) is an important accuracy
criterion that takes the relation between correctly pre-
dictive positives and negatives as well as false posi-
tives and negatives into account (Matthews 1975):

(TPXTN—-FP X FN)
J(TP + FP) (FP + TN) (TP + FN) (TN + FN)
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Results and discussion

Based on the foregoing discriminant functions two
coding region prediction algorithm have been devel-
oped. The FGENEH algorithm (described above)
builds gene model based on searching an optimal
combination of compatible exons. In addition, we
have developed a computer program FEXH
(Solovyev, Salamov, Lawrence, 1994b), which pre-
dicts a set of coding exons in a given sequence with-
out assembling them. The program initially predicts
internal exons based on internal exon discriminant
function. Then it searches for 5’-coding region start-
ing from the beginning of the sequence until the end
of the first predicted internal exon. In this region the
5°-coding exon with the maximal weight of the first
exon discriminant function is selected. After that we
search for 3’-coding region starting from the begin-
ning of the last predicted internal exon until the end
of the sequence. In this region the 3’-coding exon
with the maximal weight of the last exon discriminant
function is selected. FEXH is less sensitive to under-
prediction of an exon, that can significantly distort
the obtained gene model.

We analyze the performance of FEXH and
FGENEH on training (185 genes) and new test (35
genes) sets of human entry sequences. The results of
prediction are presented in Table 2.

At the level of complete exon sequences, FEXH
precisely identifies 611 of 755 (81%) internal exons
on the training and 116 of 168 (69%) on the test set.
The accuracy of 5° and 3’ exons is significantly less,
than internal. It exactly predicts 17 of 35 (49%) 5°-
exons and 19 of 35 (54%) 3’-exons from the test set
sequences. At the nucleotide level S;=85%, S,=79%
and C=0.8 for the test exon sequences.

Some of predicted pseudoexon ORFs are removed
in a gene structure predictive system FGENEH due to
assembling procedure, that improves the accuracy of
prediction. It precisely identifies 916 of 1125 (81%)
exons from the training set and 168 of 238 (71%)
exons from the test set sequences. At the nucleotide
level 5,=89%, S,=88% and C=0.86 for the test entry
sequences. We gave compared the performance of
FGENEH with the results of GRAIL-2 and XGRAIL
programs. GRAIL is the most widely used of the cod-
ing sequence identification program and shows better
or similar quality on entry sequences (compare to
GeneModeler, Geneld, GeneParser or GenlLang
algorithms) for different test data (Snyder,
-Stormo,1994; Dong, Searls,1994)). GRAIL-2 can be
used via Email server to test the whole gene set and
XGRAIL can construct a gene model by “optimal”
assembling some of predicted exons.
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We can see that the current version of FGENE
has accuracy much better than GRAIL-2, especially
in exact exon prediction (~ 20% more accurate).
The higher accuracy is probably based on quality of
our splice sites recognizers, which are more accu-
rate than the others known.

The GRAIL X-Windows (XGRAIL) version with
model construction has been applied to the predic-
tion of gene structure of the set of new 35 genes.
Their sequences were not used in FGENE as prob-
ably well as in XGRAIL training. We select the best
XGRAIL predicted model for the accuracy estima-
tion. The average prediction results are presented in
Table 2. We can see that the current version of
FGENE predicts exactly 71% of 238 real exons,
but XGRAIL the best model predicts only 48%
ones. Results of prediction for each test gene are
given in table 3. This results show the XGRAIL
accuracy similar with reported by (Snyder and
Stormo, 1994).

Thus, our approach has better performance on
new test sequences. Moreover, we do not use spe-
cial heuristic rules for exon selection in this variant
of gene prediction, in distinction with the GRAIL
algorithm. It must be noted, that higher accuracy of
coding region prediction might be reached if ORFs
of analyzing sequence have some similarity with
known protein sequences. In such case it is very
fruitful to use this information during exon selec-
tion (Gish,States,1993), but present consideration
devotes primarily to prediction of new gene struc-
tures, which have no significant similarity on
nucleic as well as protein level in the current data
bases.

One of the hardest problem of gene prediction is
identifying 30-60 bp exons in 100000 bp of bulk
DNA. FGENE performs well on such examples.
There are 13 GenBank entry sequences from our
test set that have less than 9% of the sequence
occupied by protein coding regions. For example,
entry HSZNGPI 9823 bp has 9% coding
sequences, and FGENE predicts all its exons; entry
HUMPFMRIS 61613 bp has only 3% coding DNA,
and FGENE predicts exactly 14 of its 17 exons.

Computational aspecis

FGENEH is implemented in Fortran 77 and runs
on Sun Sparc and DEC Alpha workstations.
FGENEH is quite fast for analysis of usual gene
size sequences (5000 -10000 bp). Searching aver-
age gene structure in them takes about 1 min on an
Sun SparcClassic workstation. However, analysis
of sequence of about 200000 bp takes 10 min on



TABLE 2. The performance of FEXH, FGENEH and GRAIL on the training and test sets. Sn®*°" and Sp**°" are the

sensitivity and specificity of exact exon prediction; Sn™®!

nucleotide prediction; C-correlation coefficient.

and Sp™ are the sensitivity and specificity of total exon

training entry set test entry set
SntRon Spexon Snnucl Spnucl C Sntron spexon Snnnd Spnucl C
FEXX 2% 62% 88% 80% 0.82 64% 55% 85% 79% 0.80
FGENEH | 81% 78% 91% 91% 0.90 71% 67% 89% 88% 0.86
GRAIL2 50% 55% 82% 87% 0.82 45% 68% 1% 88% 0.77
XGRAIL 48% 1% % 86% 0.73

DEC alpha computer. The maximal size of an input
sequence 200000 is installed in the current version of
FGENEH. The size of compatibility graph matrix
has to be approximately NxN/3, where N is the num-
ber of predicted potential internal exons. Now
FGENE permits N up to 1000 and this is enough for
analysis of tested 200000 bp sequence. The search
time for predicting potential internal exons grows lin-
early with sequence length. The memory requirement
of the program and run time increase with the square
of the number of potential internal exons.

Gene-Finder services

Using the methods presented in our papers we
developed a set of sequence analysis programs which
are useful for various aspects cf gene discovery. The
group includes the following programs: splice site
prediction (HSPL); recognition of exon-exon junc-
tion in cDNA (RNASPL), which is useful for select-
ing optimal PCR primers in internal exon regions
during gene sequencing, when starting with a
sequence of cDNA clone; internal exons (HEXON)
and all type of exons (FEXH) prediction; human
gene structure prediction (FGENEH), bacterial
gene structure prediction (CDSB) and recognition of
human and bacterial sequences (HBR) to test a library
for E. coli contamination by sequencing example
clones. Analysis of uncharacterized sequences based
on our methods is available through the University of
Houston network server by sending the file contain-
ing a sequence to service@bchs.uh.edu with the sub-
ject line hspl, rnaspl, hexon, fexh or fgeneh or “man
fgeneh” to receive instructions about the sequence
format. During the first month of this server installation
(October, 1994) about 600 requests for sequence analysis
have been received. These programs are also installed

in Weizmann Institute of Science server: ser-
vices @bioinformatics.weizmann.ac.il.

Gene-Finder programs can be found on World
Wide Web through the BCM Human Genome
Center Search launcher Home page (Fig.2) URL:
http: // kiwi.imgen.bcm.tmc.edu: 8088 /search-
launcher fMlauncher.html for access to Gene-Find-
er and Secondary structure prediction Help files
and programs. There were about 1200 times some-
one ran a gene-finder script through WWW for the
first 3 months of 1995.
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Table 3.The comparison with the best XGRAIL gene model using 35
test entry sequences presented to GenBank in 1994. E,, is the number
of exact predicted exons, Cp,, is the correlation coefficient computed
based on prediction at the level of individual nucleotides.

GenBank Length Ngy XGRAIL FGENEH
ENTRY nucl. E,, Couc E,. Cohuc
HSABLGRI1 35962 8 0 0.00 3 0.61
HSCYCLA 8363 8 0 0.44 5 0.92
HSDAO 9903 4 3 0.80 3 0.85
HSHLADMAG 5190 5 2 091 1 0.81
HSHLADMBG 6933 6 3 0.86 5 0.97
HSNCAMX1 16288 28 23 0.96 21 0.85
HSU01102 4995 3 1 0.07 2 0.91
HSU04636 9453 10 4 0.69 9 0.85
HSU05259 5670 5 3 091 4 0.76
HSUHSU07807 4839 3 0 0.00 2 0.37
HSU08198 2344 7 5 0.98 5 0.94
HSUBR 3321 3 0 0.18 2 0.85
HSZNGP1 9823 4 3 0.88 4 1.00
HUMCSN2A 10608 6 2 0.57 0 0.77
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Average: 238 | 48% | 0.67 | 71% | 0.86
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