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Identifying communities in complex networks is an effective means for analyzing complex systems, with
applications in diverse areas such as social science, engineering, biology andmedicine. Finding communities
of nodes and finding communities of links are two popular schemes for network analysis. These schemes,
however, have inherent drawbacks and are inadequate to capture complex organizational structures in real
networks.We introduce a new scheme and an effective approach for identifying complexmixture structures
of node and link communities, called hybrid node-link communities. A central piece of our approach is a
probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive
experiments on various real-world networks, including a large protein-protein interaction network and a
large network of semantically associated words, illustrated that the scheme for hybrid communities is
superior in revealing network characteristics. Moreover, the new approach outperformed the existing
methods for finding node or link communities separately.

M
ost complex systems in various fields, such as social networks in social science, the Internet in engin-
eering, and signaling pathways in biology, can be formulated as networks where nodes represent entities
(e.g., individuals in a social network) and links represent some relationship between nodes (e.g., co-

worker relationship in a social network). Individual entities in a complex system seldom exist in isolation, but
rather are often organized in groups to exert functions. For example, an organization typically consists of units of
different but related functions that interconnect in particular structures to maximize the overall performance of
the organization. In biology, a group of proteins in a cell interact to form an RNA polymerase for transcription of
genes. Therefore, a critical step toward understanding complex systems is to uncover organizational or com-
munity structures in the networks1. Communities, also referred to as clusters ormodules, are groups of nodes that
share common properties or play similar roles2. A primary objective of community detection is to identify sets of
nodes with common functions by using information of network topology.

Manymethods for community identification have been proposed. Themost popular ones belong to the scheme
for detecting node community1–8, a.k.a., node scheme, where communities are subsets of nodes relatively densely
connected within groups but sparsely connected across groups4. Indeed, many real networks carry structures that
can form node communities4–8.

In the conventional node scheme, a node belongs to only one community. However, overlapping community
structures are ubiquitous in real networks9. For example, an individual has a family and belongs to a group of co-
workers, each of which has its own function and forms its own circle of influence. Forcing a node into one
community will fail to accommodate multiple relationships and functions that a node may have, resulting in
erroneous representation of the network structure9.

To overcome this drawback, the link-community scheme has been proposed10. In this link scheme, links with a
similar relational property form communities so that a node can inherit the community memberships of its
adjacent links and, as a result, can naturally belong to multiple communities. There are real-world systems that
can be represented by link communities10–14.

However, the link scheme typically generates a highly overlapping community structure even though a
network may not have overlapping structure at all3. Take the American college football network4 as an example,
which is to be elaborated in the Results section. Under the link scheme, this network produced a highly over-
lapping community structure with 83 of the 115 nodes overlapped one another, despite that the football teams are
organized in conferences that have no overlapping structure. This problem stems from the fact that the link
scheme forces every link into a community while in reality there are cases where some (background) links may
better not be put into any community. For example, in protein-protein interaction (PPI) networks, some
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constitutive interactions, e.g., interactions among the proteins that
form the basal transcription machinery such as RNA polymerase II,
may better be ignored in a PPI network for analyzing PPIs along an
aberrant pathway underlying a particular disease.
Many real-world systems have complex structures that are better

characterized by a mixture of node and link communities. This sug-
gests that a hybrid node-link community scheme, or hybrid scheme
for short, will be more effective and robust in revealing and repre-
senting complex organizational structures than either the node or
link scheme. In the hybrid scheme, a network can be characterized by
a number of communities, where a community can be either a node
community or a link community but not both. A node in the network
may belong to a node community or be connected by an edge assoc-
iatedwith a link community. Likewise, an edge in the networkmay be
in a link community or be connected to a node associated with a node
community. An illustrative example, from the data compiled by
Knuth, is a network of 77 characters and their joint appearance in
common scenes inHugo’s classic novel LesMisérables15, where nodes
are characters and two nodes are connected if the two characters
appear together in a scene. The node and link schemes can produce
distinctive community structures (Fig. 1A and 1B). Since a node is
forced into one community in the node scheme,multiple community
memberships are lost under this scheme. For example, Fantine is
classified only into the pink community (the pink node in box to
the left of Fig. 1A). In fact, Fantine and the seven blue nodes form
another community (the clique of the seven blue nodes plus the pink
node for Fantine in Fig. 1A), which is a small social group consisting
of four Parisian students and their respective lovers. Therefore, the
node schememisses this important relationship between Fantine and
the group which she actually belongs to because it cannot properly
characterize nodes withmore than one role. This issue is exacerbated
for the protagonist Valjean and his nemesis Javert (the other two
pink nodes in box in Fig. 1A) who playmore social roles than Fantine
does and connect to,48% of all the characters. The link scheme, on
the other hand, may avoid such problem by allowing nodes to exist in
more than one community. However, it has its own drawbacks. For
example, the link betweenValjean and Bossuet is placed into the pink
link community (the pink link connecting the two nodes in box in
Fig. 1B) so that Bossuet is forced into this community. However,
Bossuet does not appear together with the members of the pink
community in any of the scenes except Valjean who belongs to not
only the pink community but also four other communities. Thus, it is
problematic to place Bossuet into the pink link community. A similar
problem occurs with the link between Fantine and Thenardier as the
latter does not appear together with the members of the pink com-
munity except Fantine.
In sharp contrast, the hybrid node-link scheme can provide eleg-

ant solutions to these problems and correctly place multi-role char-
acters into the right communities (Fig. 1C). In the hybrid scheme, a
node may or may not be assigned to a node community and a link
may be involved in a link community or set for free, depending on the
objective for forming communities. In the Les Misérables example,
Fantinewas put into both the blue link community and the pink node
community, and Valjean and Javert were also correctly assigned to
multiple communities, thereby fixing the problem of the node
scheme. Moreover, the hybrid scheme did not force the link between
Valjean and Bossuet and the link between Fantine and Thenardier
into any community so that Bossuet (and Thenardier) was free from
the pink community, fixing the problem of the link scheme.
However, it is challenging to detect hybrid node-link communit-

ies, which requires to accurately characterize such structures. A
viable approach is stochastic modeling which, instead of directly
detecting communities, describes how such structures are generated
in the first place. In this paper, we introduce a probabilistic model to
accommodate both node and link communities, where we describe
each community as a random graph that does not have any com-

munity structure and cannot be further subdivided. We develop two
methods – an expectation-maximization (EM) algorithm and a non-
negative matrix factorization (NMF) approach – to estimate the
probability that a node or an edge belongs to a node or link com-
munity. Based on the learnedmodel parameters, we adopt a heuristic
approach to infer the hybrid node-link community structure that
best characterizes the observed network. We call the proposed
method NLC (Node-Link Communities), which can be run to find
node, link or hybrid node-link communities as so desired.

Results
We performed three experiments. The first was to demonstrate the
favorable features of the new scheme for hybrid communities over
the existing schemes for single type of communities. The second was
to show the superior performance of our NLC method over the
existing methods for finding a single type of communities (i.e., node
or link communities). The third was to apply NLC under the hybrid
scheme to two applications in biology science and cognitive psycho-
logy, where several rich metadata can be used as gold standards for
validation, to show the superior performance of NLC over the exist-
ing methods in solving real-world problems. Here our NLC method
appears in two versions: NLC-EM and NLC-NMF, which corre-
spond to the EM algorithm and the NMF approach, respectively.
Since our model takes the number of communities c as a para-

meter, for the first two experiments, we used the generalized map
equation16 (see Methods) to search for the target community struc-
ture by iterating over possible values of c. The generalized map equa-
tion is based on the principle of minimum description length
(MDL)17 and as such is particularly suitable for overlapping com-
munities. Under this measure, the shorter the MDL of an overall
community structure, the better the structure is. As the two networks
considered in the applications are very large, it is not practical to
determine the number of communities c by searching for the best
structure among all candidates with different c. To address this issue,
we adopted an iterative bipartition strategy to determine the number
of communities c for large networks in the applications.
In order to evaluate and compare the different results, a suitable

metric for the goodness of a community structure is required. Most
of the current quality measures are designed for non-overlapping
structures. When extended, these methods penalize overlapping
structures18. Fortunately, the generalized map equation16 based on
MDL17 can naturally measure overlapping communities. Here we
used this quality metric to evaluate community structures from dif-
ferent methods when the actual network community structures were
unknown. On network structures with the true community struc-
tures available, we adopted the normalized mutual information
(NMI)19, a widely used accuracy metric, for evaluating network
methods. Moreover, as the two large networks in the applications
possess rich metadata, we evaluated the performance of different
methods by measuring how well the discovered community struc-
tures reflect the metadata, which appeared to be more convincing
than using quality metrics designed only based on network topology.

Comparison of the three community schemes. The NLC method
supports the three schemes for the identification of hybrid
community structures as well as node and link communities
separately. We thus applied it to identify the best network
structures for each of these schemes. The comparison was done on
three real network problems. For simplicity, here we present the
results of NLC-EM.

Zachary’s karate club. The Zachary’s ‘‘karate club’’ network20 has
become a de facto testbed for community detection algorithms.
Fig. 2 shows the community structures from the three schemes.
Three disjoint node communities (Fig. 2A) were identified in the
node scheme. Node 1 (the instructor, the red node in box) was
exclusively assigned to the red community, even though it is also
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Figure 1 | Community structures of the co-appearance network of characters in LesMisérables from (A) the node scheme, (B) the link scheme and (C)
the hybrid node-link scheme.Here, node or link communities are colored in nodes or links respectively, and uncolored nodes and black links represent

background.
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connected to all the nodes (except one) in the purple community,
showing its importance to the purple community. In comparison, the
hybrid (and link) scheme (Fig. 2B) correctly placed node 1 (square
node in box) in the purple and red link communities. Moreover, the
MDL for the communities in the hybrid (and link) scheme is 4.2966,
which is smaller than that for node partition (4.3563).
To further evaluate the quality of the results from the three

schemes, we compared the MDLs of the structures from these
schemes with the community number c varied. As shown in Fig. 3,
the results from the hybrid scheme have smallerMDLs than the other
two schemes except when c equals to 3 at which the hybrid and link
schemes produce the same network structure. The result in Fig. 3 also
suggested that there should be 3 communities, whereas the reported
‘‘actual’’ number was two. In fact, the instructor’s faction (square
nodes) contains two evidently overlapping subgroups that were con-
nected only through the instructor (node 1, Fig. 2B). Thus, it is more
suitable to split the instructor’s faction into two.

American college football network. In the American college football
network4, the nodes represent football teams and a link represents a
game played by two teams during the football season in year 2000.
The teams were divided into ‘‘conferences’’, which formed actual
communities. The teams in the same conference played more often
with the teams not in the same conference. A team played on average
approximately 7 intra- and 4 inter-conference games in the season.
This suggested that the network possessed typical characteristics of
node communities. As expected, the hybrid scheme discovered a
node-community structure for this network (Fig. 4A). In contrast,
the link scheme produced a highly overlapping community structure
with 83 out of all 115 nodes overlapped (Fig. 4B), revealing a serious

drawback of this scheme. We compared the results from the hybrid
and link schemes against the reported network structure using the
extended normalized mutual information (NMI) for overlapping
communities19. The hybrid scheme scored NMI 5 0.8035 while
the link scheme scored NMI 5 0.3604, showing that the former
significantly outperformed the latter. Furthermore, we also com-
pared the community structures from the hybrid (node) scheme
and the link scheme as well as the reported structure using the
MDL quality metric. The MDL for the hybrid scheme (5.4487) was
smaller than that for the link scheme (6.1125). Surprisingly, theMDL
for the hybrid scheme was also smaller than that of the reported
structure (5.6772). This may be due to two factors. First, the inde-
pendent teams that did not belong to any conference were grouped
into a separate but subjective ‘‘conference’’ in the reported commun-
ity structure even though these independent teams did not play more
often among themselves than with other teams. Second, our hybrid,
data-driven community discovery schemewas able tomore faithfully
detect community structures underlying the data of overall games
played than the reported result.
TheMDLwas used to evaluate the community structures obtained

by the three schemes with varying number of communities. The
detailed result is shown in Fig. 5. As this network has typical char-
acteristics of node communities, the hybrid scheme always produced
the same results as the node scheme, and the MDLs from the hybrid
(and node) scheme are always smaller than that of the link scheme.
The best network structure was found by the hybrid scheme with 12
node communities, which is the same as the actual number of
conferences.

LesMisérables.The three distinct community structures for the three
schemes are shown in Fig. 1. As discussed in the Introduction, the
hybrid scheme can overcome the shortcomings of the node and link
schemes. Furthermore, the MDL of the result from the hybrid
scheme (4.6783) is less than that from the node scheme (4.7528)
and link scheme (4.7259). Similar to the two early network problems,
the results from the hybrid scheme on this co-appearance network
have shorter MDLs than the node and link schemes with all values of
community number c evaluated, which is shown in Fig. 6. The short-
est description length was achieved with 8 communities (Fig. 1).

Comparison with the existing methods. We evaluated the
performance of NLC, including NLC-EM and NLC-NMF, along
with several well-established methods for finding node communities
or link communities on nine widely used real networks (Table 1).
These methods included the Louvain method6 which is regarded as
one of the best for node partitioning1, LC (Link Community)10 which
is the most well-known method for link-community finding, and
CPM (Clique Percolation Method)9 which is the most prominent
algorithm for overlapping community detection. We also included
two model-based methods proposed by Newman et al, i.e., NModel
for node communities21 and LModel for link communities13.

Figure 2 | Communities of the ‘‘karate club’’ network obtained by (A) the node scheme and (B) the hybrid (and link) scheme. The nodes in circle

and square represent the two communities as originally reported: the club administrator’s faction in circles and the instructor’s faction in squares. Node

or link communities from our model are colored in nodes or links, respectively.

Figure 3 | The minimum description lengths for the results from the
three schemes with varying number of communities c on the ‘‘karate
club’’ network. As shown, the hybrid scheme produced structures with the

smallest MDLs and the best structure has three communities.

www.nature.com/scientificreports
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As the ground truth of the community structures of these net-
works is not available, we used the MDL as the quality metric. As
shown in Table 1, the newmethodNLC had the best performance on
all networks. Specifically, NLC-EM had the best performance on 6 of
the 9 networks, and NLC-NMF performed the best on the remaining
3 networks. The superior performance of NLC may be attributed to
its flexibility and robustness in forming hybrid node-link communit-
ies. Further, we rescaled the MDL scores to better illustrate the
improvement across different networks. In particular, for each net-
work, we took its optimal MDL-value (calculated by Fuzzy

Infomap16) as 1, and set its baseline MDL-value (averaged over 100
random partitions) to 0. The relative improvements are shown in
Fig. 7. As shown, both NLC-EM and NLC-NMF outperformed each
of the other 5 methods we compared.
Moreover, to further assess the performance of these methods, we

compared them on six real networks with known community struc-
tures. These networks are originally constructed from the data of
social media in the Stanford Network Analysis Project22, where the
communities, including overlapping ones, in each of these networks
are explicitly labeled. We thus evaluated these methods by compar-

Figure 4 | Community structures of American college football network obtained by (A) hybrid and node-community schemes and (B) the link-
community scheme.Nodes in the network represent teams and links represent games between teams. Here, the 12 different combinations of node shape

and node color represent the actual ‘‘conferences’’. The clusters of nodes in space denote node communities obtained by ourmodel in (A), and the colored

links denote link communities from our mode in (B).

www.nature.com/scientificreports
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ing their predictions with the known, true communities. Note that
this is an exact performance measure because the actual community
structures, rather than some measure based on network topologies,
were adopted in comparison. To serve our purpose, here we
employed the widely used NMI index which has been extended to
overlapping communities as the accuracy measure19.
The networks used here are very large (see Table 2), which exceed

the capacities of almost all currently available community detection
methods.We thus adopted a samplingmethod to obtain a large set of
networks with manageable sizes. Similar to what was suggested by
Yang& Leskovec23, we randomly selected a node u in the given graph
G which belonged to at least two communities; we then took the
subnetwork to be the induced subgraph of G consisting of all the
nodes that shared at least one known community membership with
u. Besides, in order to obtain credible subnetworks with well-defined
overlapping community structures, for each network we combined
duplicate communities and removed the communities containing no
more than two nodes in their true structures; we then disregard the
subnetworks whose values of extended modularity (EQ)24 under the
ground-truth were less than a threshold of e 5 0.1, which could be
considered as having no well-defined community structure. Finally,
we generated 500 networks with overlapping communities for each
of the 6 datasets in our experiments.
Quantified by NMI as the performance metric, our NLC method

outperformed all the other methods on all six networks (Table 2).
NLC-EMhad the best performance on 2 of the 6 networks, andNLC-
NMF performed the best on the remaining 4 networks. Besides,

Figure 5 | The minimum description lengths for results from the 3
schemes with varying number c of communities on the American college
football network.

Figure 6 | The minimum description lengths for results from the 3
schemes with varying number c of communities on Les Misérables.
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NLC-EM was on average 5.75%, 12.55%, 8.60%, 4.56% and 4.39%
more accurate than Louvain, LC, CPM, NModel and LModel,
respectively, and NLC-NMF was on average 11.17%, 17.96%,
14.02%, 9.98% and 9.81% more accurate than Louvain, LC, CPM,
NModel and LModel, respectively. This result, which was independ-
ent of any network topologies like the MDL index uses, evidently
illustrated the superior performance of NLC.

Applications to large networks.We applied the hybrid scheme and
the NLC algorithm to help elucidate the structures of a large protein-
protein interaction network in biological science and reveal hidden
associations among commonly used words. The domain specific
results, such as protein-protein interactions and their biological
implication, will be reported elsewhere. Here, we discuss the results
on network structures identified using the domain metadata based
function and in comparison with some existing methods.
In order to obtain an objective quality assessment beyond a net-

work structural measure, such as MDL, we utilized domain know-
ledge specific to these applications to assess the quality of the results.
Furthermore, the study was performed in comparison with three
well-known methods (selected from Table 1) that can discover over-
lapping communities and are applicable to large networks. The
methods compared included CPM9 which is the most prominent
algorithm for detection of communities with overlapping structures,
LC10which is best known for link-community finding, and LModel13

which is the most related approach compared with our new method
NLC. It is worth noting that CPM may not classify all nodes of a
network into a community. It may treat some nodes of a network as
background and not designate them to any community. To set a
baseline for fair comparison, we designed two types of comparison.
One was on the subgraph processed by CPM, and the other on the
whole network. In the first comparison, the subgraph processed by
CPM was taken as the targeted network. To be fair for all the meth-
ods, we used the number of communities attained by CPM as the
number of communities for LModel andNLC in this comparison. As
it is difficult to control the number of communities for LC10, we left
LC to the second comparison. The second comparison was carried
out on the whole networks using LC10, LModel and NLC. As the two
networks considered here weremuch larger than those used before, it
was not practical to determine the number of communities c by
searching for the best structure among all candidates with different
c. Thus, we adopted a simple partitioning strategy in NLC (and
LModel) by repeatedly bipartitioning a (sub)network using our
model (or LModel) until the likelihood function (or a loss function)
could not be further improved. This strategy usedNLC (and LModel)
as a hierarchical clustering algorithm similar to the LC method,
making the three methods more comparable for evaluation.

Protein-protein interaction network. The first large network consid-
ered was the protein-protein interaction (PPI) network of budding

Figure 7 | The 0–1 normalized MDLs of the results of the new NLC method (including NLC-EM and NLC-NMF) and five existing algorithms (in
Table 1). For each network, we normalize the optimal MDL-value to 1 and its baseline MDL-value to 0; we then perform a linear normalization on its

MDL-values for each of the compared methods.

Table 2 | Comparison of the NMIs accuracy of different methods on 6 Stanford large networks with ground-truth of overlapping communit-
ies22. Here, n is the number of nodes,m the number of links and c the number of communities.Mdenotes amillion and k one thousand. The
mean values and standard deviations are based on 50 runs, and Louvain, LC and CPM are deterministic algorithms without standard
deviations. The larger theNMI of an overall community structure, the better the structure is. The bestNMIs for these networks are shown in
bold and underlined

Datasets
/NMIs (%) n m c

Methods

FUA (node) LC (link) CPM (overlap) NModel (node) LModel (link) NLC-EM (hybrid) NLC-NMF (hybrid)

LiveJournal 4.0M 34.9M 310k 20.07 14.77 18.84 27.64 6 0.56 23.69 6 0.48 28.74 6 0.49 41.02 6 1.15
Friendster 120M 2,600M 1.5M 28.65 17.18 27.59 32.82 6 1.07 32.36 6 0.57 38.97 6 0.51 23.50 6 0.62
Orkut 3.1M 120M 8.5M 25.60 17.73 26.54 26.90 6 0.55 23.69 6 0.43 28.59 6 0.40 33.83 6 0.24
Youtube 1.1M 3.0M 30k 24.06 17.81 13.80 17.82 6 0.60 29.91 6 0.60 33.92 6 0.46 31.70 6 0.14
DBLP 0.43M 1.3M 2.5k 16.83 14.12 17.99 15.20 6 0.51 13.71 6 0.52 14.98 6 0.30 35.49 6 0.36
Amazon 0.34M 0.93M 49k 24.73 17.56 18.10 26.70 6 0.40 24.74 6 0.70 29.24 6 0.59 41.44 6 0.62
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yeast Saccharomyces cerevisiae25. It contains 2,640 nodes (proteins)
and 6,600 links representing physical interactions between pairs of
proteins.
We used the terms in Gene Ontology (GO)26, the most elaborated

gene function annotations, as domain metadata for quality assess-
ment. The GO terms include information of functions and cellular
locations of a gene and biological pathways that a gene may be
involved in. The biological significance of a community of genes
(nodes) can be measured by the GO terms enriched in the genes in
the community, measured by the standard Fisher’s Exact Test. In
particular, the p-value of the test can be calculated using the prob-
ability of observing k proteins associated with a GO term, t, when
randomly choosing n proteins from a pool ofN proteins, wherem of
them are annotated with the term t. We further calculated the False
Discovery Rate (FDR) adjusted for the Benjamini-Hochberg mul-
tiple testing correction27. A GO term was considered as significantly
enriched in a community if its FDR was no greater than a specified
threshold. To measure the biological significance of a community
structure, we used as a quality metric the average number of signifi-
cantly enriched GO terms with p-values not exceeding a threshold.
The larger this average number of significant GO terms, the more
biologically significant a community structure is.
Our new methods NLC-EM and NLC-NMF identified PPI com-

munity structures with more significant GO terms than CPM under
all 10 different FDR thresholds tested (Fig. 8A), showing their better
performance over CPM. Note that NLC-EM and NLC-NMF ran on
the subgraph that was processed by CPM, making the comparison
biased in favor of CPM. Furthermore, NLC-EM andNLC-NMF out-
performed LC as well using the same quality assessment (Fig. 8B).
Besides, the performances of NLC-EM and NLC-NMF were com-
petitive with that of the most related method LModel in both these
two cases, shown in Fig. 8(A) and Fig. 8(B), respectively.

Word association network. The second large network deals with
words and the associations among words that people typically intend
to use. The network was constructed from the University of South
Florida Free Association Norms data set28 and contained 5,017 nodes
(words) and 29,148 links (association between pairs of words)9.
We usedWordNet, which is an online lexical reference database29,

as the domain metadata for quality assessment of community struc-
tures. In WordNet, words are organized in sets of cognitive syno-
nyms, known as Synsets, each of which represents one lexical
concept. In our analysis, we considered two words to be semantically
related or similar when they belong to the same Synset. To assess the
quality of a community structure, we computed the enrichment of
similarity between a pair of nodes10

Enrichment~
m i,jð Þh iall i,j within same community

m i,jð Þh iall pairs i,j
, ð1Þ

where m(i,j) 5 1, if words i and j belong to the same Synset, or 0,
otherwise. In other words, the enrichment is the average similarity
between all pairs of nodes that belong to a community, divided by the
average similarity between all pairs of nodes. It quantifies howmuch
a community structure differs from the baseline structure (the whole
network) from the perspective of semantic similarity. The larger the
enrichment, the better a community structure is.
We first compared NLC-EM, NLC-NMF, LModel and CPM, fol-

lowing the same comparison scheme as in the PPI network analysis.
As shown in Fig. 9(A), the enrichments of the results fromNLC-EM,
NLC-NMF, LModel and CPM were 33.0076 6 0.7332, 33.5391 6

0.8724, 17.3054 6 0.3515 and 28.0801, respectively, showing that
NLC-EM (NLC-NMF) improved by 90.7% (93.8%) over LModel
and by 17.5% (19.4%) over CPM, even though the comparison was
in favor of CPM as the subgraph analyzed was chosen by CPM. In the
second comparison against LModel and LC, the result from NLC-
EM and NLC-NMF had enrichment values of 73.37976 1.0431 and
72.56186 0.6993, respectively, both of which were greater than that
of 71.1465 6 1.0173 from LModel and that of 71.5827 from LC
(Fig. 9B). Note that the mean values and standard deviations of
NLC and LModel were based on 50 trials, and CPM and LC are
deterministic algorithms so that they do not have standard devia-
tions. Therefore, NLC is more effective than the three popular exist-
ing methods in revealing semantic associations among words in the
large word network.

Discussion
While finding node and link communities together has been
alluded to in early work, in this paper we presented a relatively
thorough approach to developing methods for identifying hybrid
node-link communities and analyzed its performance for char-
acterizing complex network structures. An effective model and
algorithm were developed to identify such hybrid communities.
The hybrid scheme was able to overcome the inherent drawbacks
of the node and link schemes, such as inability to support multiple
roles that a node may play or forcing nodes to have unjustified
relationships, which have limited the applicability of the node
and link schemes. The analyses on several real networks, including
a large protein-protein interaction network and a large word asso-
ciation network, demonstrated the superior performance of the
hybrid scheme in revealing subtle and intricate network structures
in real networks. The new NLCmethod, whose software is available

Figure 8 | Comparison of NLC-EM, NLC-NMF, LModel and CPM (A) and NLC-EM, NLC-NMF, LModel and LC (B) on a large budding yeast PPI
network in terms of the number of enriched GO terms that were statistically significant with FDR below a threshold. Error bars show the standard

deviations from 50 runs, and CPM and LC are deterministic algorithms without standard deviations.
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from the authors, can be used separately to find node, link and
hybrid node-link communities.
Stochastic models have been proposed, separately, for node com-

munities21,23,30–34 and link communities13. However, they often fail to
model the two types of communities together. Here, we developed a
unified model of node and link communities. Different from the
existing models that extend the classic stochastic blockmodel35, our
new model generalizes the null model of modularity5 to incorporate
the ability of describing mixed communities which the original null
model does not possess. The centerpiece of the proposed model is an
expected node degree function, which is optimized to fit the node
degrees of a given network by using two different methods, i.e., an
expectation-maximization algorithm and a nonnegative matrix fac-
torization approach.
The most relevant previous work is the model proposed by Ball,

Karrer & Newman13, which mainly focuses on the detection of link
communities, and can be extended to node communities in principle.
It may also be suitable for detecting node and link communities
simultaneously. Although the Ball’s model and our model presented
here seemed to be similar, they have several key differences. First, the
main purpose of our model is not only to accommodate the coexist-
ence of node and link communities, but also to support the develop-
ment of a hybrid node-link community scheme, which is our main
contribution beyond the existing work for finding node or link com-
munities separately. Second, although we used the idea of Ball’s
model that decomposes and combines probabilistic communities
to describe networks, we employed a different way to describe each
probabilistic community. Specifically, the Ball’s model is parameter-
ized by a set of parameters hik’s, where hik denotes the propensity of
node i to have links in the k-th community; and then it takes hikhjk as
the expected number of links in the k-th community connecting
nodes i and j, which is based on some statistically analysis. On the
other hand, our model is parameterized by a set of parameters dik’s,
where dik is defined as the expected node degree of i in the k-th

community; and then it takes dikdjk=
X

s
dsk as the expected number

of links in the k-th community between nodes i and j, which is based
on the widely accepted null model of modularity5. Third, in general

one can map dik~hik
X

j
hik from the Ball’s model to our model.

Then the Ball’s model assigns a node to a community for which the

value of djk=
Xn

j~1
djk is the largest. This means that one should first

calculate the proportion of a node i with respect to all the nodes in

each community k (dik=
Xn

j~1
djk), and then select the community

for node i in which the proportion is the largest. Roughly speaking,
the community membership of node i is determined by its import-
ance to the community compared with other nodes. In contrast, our
model assigns a node to a community for which the value of

dik=
Xc

r~1
dir is the largest, which means we select the community

k for a node i to which this node devotes most of its contribution

(dik=
Xc

r~1
dir). Intuitively, in our model, node i chooses to join a

community according to the resources that it devote to the commun-
ity. Therefore, the node community structure derived from our
model is different from that of the Ball’s model. Fourth, our model

has a constraint
X

k
dik~di for each node i, i.e., the sum of the

expected degrees of node i in all the communities equals to the actual
degree of node i in the given network; while the Ball’s model is not
subject to such constraints. In the ‘‘Parameter learning based on
expectation-maximization algorithm’’ section, this constraint can
be automatically satisfied by using a Poisson distribution (Eqs. (8)
and (9)), which results in the same EM algorithm as that proposed by
Ball. But in the ‘‘Parameter learning based on nonnegative matrix
factorization’’ section, when using a squared loss instead of a Poisson
distribution to fit the model to the given network, the objective
function of our model will have an effective constraint term (Eqs.

(10) and (12)); while the Ball’s model corresponds to A{hhT
�

�

�

�

2

F

without this constraint. The extra constraint will make the solution
space of these two objectives different and hence correspond to dif-
ferent community results. Finally, our model may be more easily
extended to some newly appeared community detection variations.
To be specific, by extending the null model, modularity Q has been
applied in many new community detection problems, e.g., semi-
supervised community detection36, dynamic community detection37,
space-based community detection38, and community detection
with structure and content39. Because we also use the null model as
the base, one may easily use similar extension of the null model as
did in these previous works to extend our model to these new
problems.

Figure 9 | Comparison of NLC-EM, NLC-NMF, LModel and CPM (A) and NLC-EM, NLC-NMF, LModel and LC (B) on word association network in
terms of the Enrichment defined by Eq. (1). Error bars show the standard deviations from 50 runs, andCPMand LC are deterministic algorithmswithout

standard deviations.
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OurNLCmethod can be regarded, in principle, as an approach for
detecting overlapping communities of nodes. Recently, a number of
approaches for overlapping community detection have been pro-
posed. One of such approaches is based on the idea of clique per-
colation theory, i.e. that a cluster can be interpreted as the union of
small, fully connected subgraphs that share nodes9,24,40. Another type
of methods discovers each natural community that overlaps by using
some local expansion or optimization approaches19,41,42. A third type
of methods, namely link community detection, partitions links
instead of nodes to discover community structures10–14; a node is
considered to overlap with other nodes if the links connect to it
belong to more than one cluster. Besides, many model-based meth-
ods23,30–34, which maintain probabilistic community membership of
nodes, can also be extended to find overlapping communities. Of
particular interest is the model proposed by Yang & Leskovec23,34.
To better model overlapping communities, they remove the con-
straint that the sum of probabilities for each node belonging to
different communities must be one, and describe networks with
dense community overlaps which have been observed in real data-
sets but not been considered by other models. However, this type of
methods often requires a threshold for the probabilistic member-
ships so as to get a community structure, which is difficult to
determine for real applications18. Departure from the existing
methods, our NLC method is for finding hybrid node-link com-
munity. Compared with other partitioning schemes, such as node
community methods that focus mainly on nonoverlapping com-
munities and link community methods that typically produce
highly overlapping communities, the new hybrid scheme produces
community structures with varying degrees of overlaps, and hence
can better describe the true community structures of complex net-
works. Besides, the hybrid node-link community detection can be
also taken as a type of new methods to find overlapping communit-
ies of nodes in networks.
A practical issue in network structure analysis is the lack of

information of the number of communities to be targeted for.
Neither a robust criterion nor an efficient method for this problem
seems to be currently available21. A statistical method for model
selectionmay in principle be able to find the number of communities,
but it is at present too computationally demanding to be applicable to
most but some small networks13. In our current study, we used two
methods to determine the number of communities. First, we adopted
the MDL as a yardstick to look for such network structures that can
be encoded inminimum sizes. Second, for large networks, we devised
a scheme of performing recursive bipartitioning until a terminal
condition was met so that no number of communities needed to
be determined a priori.
We presented two methods (i.e., NLC-EM and NLC-NMF) to

learn the parameters of themodel. The EM-based algorithm typically
uses less memory but needs more time to converge than the NMF-
based algorithm. While it is difficult to predict ahead of time which
algorithm may provide better community results, the running time
and memory requirement may be used as the criteria for choosing
one of these algorithms for a given application. If the quality of
resulting community structures is the main concern, we may run
both algorithms and integrate their results following the ensemble
learning paradigm (such as the consensus clustering method pro-
posed by Lancichinetti & Fortunato43) to obtain a refined and better
community structure, a direction we will take in our future work.
Synthetic benchmarks have been designed for node communit-

ies4,44,45 and link communities13, separately. However, no suitable
synthetic benchmark for hybrid node and link communities, such
as that shown in Fig. 10(A), is current available. The designing of this
type of benchmarks may be difficult because we not only need to give
the node and link memberships, but also have to consider the final
hybrid node-link community structure. We will also leave it to our
future work.

Methods
A key element of our method NLC is a probabilistic model to fit a given network. We
are particularly interested in such a model that can accommodate both node and link
communities. For clarity, we first describe the model and the algorithms for estim-
ating its parameters. We then consider how to infer the hybrid node-link community
structure from the model constructed.

Stochasticmodel of node and link communities.Themodel.Ourmodel consists of a
set of probabilistic node and link communities that best fit a given network. In this
model, a node (or a link) has a probabilistic membership in a node (or link)
community, and the nodes (or links) that have high probabilities of a common
membership form a probabilistic node (or link) community. In this formulation, we
only need to focus on expected memberships. Specifically, given a network with n
nodes, the model G can be specified by a set of parameters {di1, di2,…,dic} for each
node i, for i5 1,2,…,n, and a total of c communities, where dik is proportional to the
expected membership of node i in the k-th probabilistic community Gk. That is, if Gk

is a node community, dik is the expected node degree of i in Gk, otherwise (i.e., Gk is a
link community), dik is the expected number of links belonging to Gk that node i

connects to; dik’s in both cases are equivalent. Then we will have
X

k
dik~di for each

node i, where di is the node degree of i in the given network.
It is critical to note that a community in the model has no further subdivision and

can be regarded as a random graph with no community structure. Therefore, a
random-graph null model (namely null model of modularity)5, which describes a
random graph with a sequence of node degrees and with edges drawn at random
among the nodes, can be adopted to characterize each of the communities. Following
this null model, the expected number of links (or expected linkweight) between nodes
i and j in Gk can be evaluated as

ŵk
ij~

dikdjk
P

s dsk
: ð2Þ

The expected number of links between nodes i and j in the given network can then be
written as

ŵij~

X

k
ŵk
ij~

X

k

dikdjk
P

s dsk
: ð3Þ

Note that multiple links between two nodes and self-edges are allowed here, which is
typical for random graph models for simplicity13,21,46. The property of multiple links
makes the model applicable to some weighted networks.

Intuitively, if node i is most likely to be a member of a given node community, it
should have a high probability to connect with other nodes in that community, and
consequently, nodes with a large proportion of membership to a common com-
munity tend to be densely connected to form the node community. Likewise, nodes
with a large proportion of membership to a link community, as they have large
numbers of adjacent links of a common type, tend to be highly connected through the
same type of links to form the link community.

Parameter learning based on expectation-maximization algorithm. Our next step is to
learn the parameters of the model to describe the community structure implied by dik’s.
Inspired by Ball’s work13, this problem can be formulated by maximizing the likelihood
of generating the given network from the model. Because the number of links between
two nodes, wij, is Poisson distributed with its expectation ŵij

13,21, the probability for

generating a graph G with adjacency matrix A 5 (wij)n3 n following (3) is

P G djð Þ~P
i,j

P

k
dikdjk
P

s
dsk

� �wij

wij !
exp {

X

k

dikdjk
P

s dsk

� �

: ð4Þ

The best fit between the expected graph following (3) and the given network can be
achieved by maximizing the likelihood function in (4). To be effective, the max-
imization is typically done with the logarithm of the likelihood, which has no effect on
the position of the maximum. Applying logarithm to (4), rearranging, and dropping
additive and multiplicative constants, we derive the log likelihood

L~
X

ij

wij log
X

k

dikdjk
P

s dsk

� �

{

X

ijk

dikdjk
P

s dsk

� �

: ð5Þ

Since direct maximization of (5) is nontrivial, we adopt an expectation-max-
imization (EM) algorithm47. By applying Jensen’s inequality to (5), we construct an
auxiliary function,

�L dik,qij,k
� �

~

X

ijk

wijqij,k log
dikdjk=

P

s dsk

qij,k
{

dikdjk
P

s dsk

� �

ƒL djk
� �

, ð6Þ

where the probabilities qij,k can be freely chosen, provided that they satisfy
X

k
qij,k~1. Thus �L is a lowered bound of L and the equality holds at
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qij,k~
dikdjk=

P

s dsk
P

r dirdjr=
P

s dsr
� � : ð7Þ

To maximize L, assume the current estimation of dik to be d̂ik . We have

L d̂ik

� �

~�L d̂ik,q̂ij,k

� �

, where q̂ij,k is derived from d̂ik using (7). Then we keep q̂ij,k fixed

in �L and maximize �L with respect to dik under the constraints
X

k
dik~di .

Introducing Lagrange multipliers ci to incorporate these constraints, the Lagrange
form of �L becomes

~L~�Lz
X

i
ci

X

k
dik{di

� �

: ð8Þ

By taking partial derivative of ~L in (8), we obtain,

dik~
X

j
wijq̂ij,k: ð9Þ

Therefore we have �L dik,q̂ij,k

� �

§�L d̂ik,q̂ij,k

� �

. Nowwe can re-estimate the value of qij,k

using dik, which leads to L dikð Þ~�L dik,qij,k
� �

§�L dik,q̂ij,k

� �

§�L d̂ik,q̂ij,k

� �

~�L d̂ik

� �

.

By alternating between the equations (7) and (9), the objective function L mono-
tonically converges to a local minimum of the log-likelihood function.

Parameter learning based on nonnegative matrix factorization. Here we introduce an
alternative method to learn the parameters of the model. We use a squared loss,

instead of a Poisson distribution, to derive their objective functions. Then the prob-
lem of fitting the model to the data of G can be cast as the following optimization
problem,

min dik§0 A{Â
�

�

�

�

2

F
~

X

ij
wij{

X

k

dikdjk
P

s dsk

� �2

,

s:t:
X

k
dik~di

ð10Þ

where jj.jjF denotes the Frobenius norm. The best fit between the expected graph with

adjacency Â~ ŵij

� �

n|n
and a given network G with adjacency A 5 (wij)n3 n can be

achieved by optimizing (10). We use a nonnegative matrix factorization (NMF)
method to solve the optimization in (10), as described as follows.

We first introduce an auxiliary matrix X, where Xik is defined as

Xik~dik=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j
djk

r

: ð11Þ

The loss function in (10) can be rewritten as a constrained NMF problem,

min X§0 A{XXT
�

�

�

�

2

F
, st: XXT1n~d, ð12Þ

where d 5 (d1, d2,…, dn)
T. It is nontrivial to directly optimize (12) with the hard

constraints. We relax this optimization problem by introducing a penalty term that
represents the hard constraints into the objective function, arriving at minimizing the
following objective function,

Figure 10 | An illustration of NLC-EM for identifying hybrid node-link community structures. (A) A given network G with two link communities (in

red and blue) and one node community (in green). (B), (C) and (D) The expected graph of the red, blue and green community. Note that the width

of a link corresponds to its expected values, and the values smaller than 1.0e2 3 are omitted. (E) The expected graph of G, which is an ensemble of the

expected graphs of the red, blue and green communities. (F) The inferred node and link communities colored in nodes or links respectively, and the final

hybrid communities noted by three cycles.
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O Xð Þ~
1

2
A{XXT
�

�

�

�

2

F
z

l

2
XXT1n{d
�

�

�

�

2

2
ð13Þ

where l is a hyperparameter that reflects the importance of the hard constraints.
Violation to more hard constraints incurs a higher penalty to the objective function. In
our experiments, we first get an initial value of X0 by setting l5 0. We then restart the
optimization with X5 X0 and set l to a relatively large number, e.g., 1000, to minimize
the chance of violating the degree constraints. The purpose of the initialization is to
restrict the search for a model to start from some good approximations. Similar to other
forms of NMF, the objective function in (13) is not convex w.r.t. X, so that it is
computationally intractable to find global minima. Therefore, the gradient descent
method is adopted to search for local minima, which can be implemented in a mul-
tiplicative updating algorithm similar to the method for SNMF48. In order to derive the
updating rule, a Lagrange multiplier matrix H for the nonnegative constraints on X is
introduced to (13), resulting in the following equivalent objective function,

L Xð Þ~
1

4
Tr XXTXXT
� �

{
1

2
Tr ATXXT
� �

z
l

2
Tr 1TnXX

TXXT1n
� �

{lTr 1TnXX
Td

� �

zTr HTX
� �

For any stationary state, we have

LL

LX
~XXTX{AXzl1n1

T
nXX

TXzlXXT1n1
T
nX{l1nd

TXzld1TnXzH

Using complementary slackness condition (H)ik(X)ik 5 0, we have the following
equation,

XXTX{AXzl1n1
T
nXX

TXzlXXT1n1
T
nX{l1nd

TXzld1TnX
� �

ik
Xð Þik~0:

This leads to the following update rule for X:

Xik~Xik

Azl1nd
T
zld1Tn

� �

X
� �

ik

XXTXzl1n1TnXX
TXzlXXT1n1TnX

� �

ik

 !1
4

ð14Þ

When the update rule converges, shown in Theorem 1 below, the solution satisfies the
Karush-Kuhn-Tucker (KKT) conditions49.

Theorem 1. FunctionO in (13) is non-increasing under the updating rule in (14). O is
invariant under these updates if and only if X becomes stationary (see Supplementary
Information for proof).

Finally, when the method converges, the parameters dik of the model can be
computed using (11) as follows,

dik~Xik

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

j
djk

r

~Xik

X

j
Xjk: ð15Þ

Inferring hybrid community structure. Even with a model of node and link
communities constructed for a given network, it is not straightforward to infer
community structures. This entails inferring the nodes or links, respectively, in a node
or link community, and determining the type (i.e., node or link) of each of the
communities. For clarity and efficiency, we consider these two issues separately.

Inferring community structure given the types of communities. Determining the
structure of a community amounts to determining its members. Assume that the type
of each of the communities is known. We first define two sets of variables: Si

k

represents the probability or probabilistic membership that node i belongs to the k-th
communityGk, and Rij

k denotes the probability that a link,i, j. belongs toGk. Then,
Si

k can be evaluated as

Ski~
dik
P

r dir
, ð16Þ

and Rij
k can be written as

Rk
ij~

ŵk
ij

ŵij
~

dikdjk


P

s dsk
P

r dirdjr


P

s dsr
� � , ð17Þ

The probabilistic memberships of communities are used to infer deterministic
memberships of communities, thus forming deterministic communities defined as
{H1, H2,…,Hc}. If Hk is a node community, it will consist of all nodes i satisfying
argmaxr{Si

r j r5 1,2,…,c}5 k; ifHk is a link community, it will contain all links,i, j.
satisfying argmaxr{Rij

rj r 5 1,2,…,c} 5 k.

Determining the types of communities. Determining the type of each of the com-
munities separately seems to be nontrivial, and may not necessarily give rise to a
global optimality for the whole network either. Here we adopt a globalmethod for this
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problem. Since there are c communities, each of which can be either a node or link
community, there are a total of 2c possible combinations of hybrid node-link com-
munities. In order to identify the best among these combinations, we need a quality
metric to measure the quality of a candidate combination of communities.

The map equation for overlapping communities16 measures how well we can
compress a description of flow in the network when it is partitioned into communities
with possible overlaps. The idea follows the principle of Minimum Description
Length (MDL) that any regularity in the data can be used to compress the data17. If
one can find a way to encode the path of a random walk on the network and consider
the overlapping community structure as the regularity (that a random walker is
statistically likely to spend long periods of time within certain clusters of nodes), the
description length of the path can be used to evaluate the quality of the overlapping
communities. In the map equation, the encoding rule for the path description can be
described as follows. It uses the codebook at two levels: the first level code describes
the communities with overlaps and the second level code distinguishes a specific node
from others in the same community. In this strategy, a community code (first level)
should be recorded in the path description when the random walk enters a new
community, and the random walk inside the community can be uniquely described
by only recording the second level code. Besides, an exit code should be assigned to
each community and it should be recorded when the random walk exits the com-
munity, so that the first level code and the second level code can be distinguished (see
Supplementary Information for detail).

The map equation measures how well we can compress a path description in the
network when considering the significance of community structure, thus it can be
used to determine which partitioning scheme – node community, link community or
hybrid community – can subtract more unknown information and better represent
the organization structure of the network. Therefore, we adopted the map equation16

here to determine the type of communities. For clarity, we use Vk or Ek to explicitly
indicate that the k-th deterministic community Hk is a node or link community,
respectively. Assume that H 5 {Hk j k 5 1,2,…,c} is a candidate hybrid node-link
community structure, whereHk is eitherVk or Ek. Let L(H) be the value ofMDL forH.
A straightforward way to finding the best hybrid node-link community structure is to
enumerate all possible combinations forH to find the one with the minimum value of
MDL. This exhaustive search may become computationally expensive for large net-
works. Here we offer an alternative, an effective heuristic, to this search problem,
which takes the following steps.

S1 Initialize a candidate hybrid community structure H: for community k, ran-
domly assign either Vk or Ek to Hk;

S2UpdateH: for community k, swap the currentHk to the other community (Vk or
Ek) if doing so reduces L(H);

S3 Repeat S2 until L(H) cannot be reduced further, or the maximal number of
iterations has been executed.

A working example of NLC. Here we illustrate the procedure of our NLC method
with an example. For simplicity, we present the results of NLC-EM here. The
observed network is shown in Fig. 10A. Given the model parameters dik (see Table 3
and discussion below), we can form the expected graphs of all the communities of the
observed network (Fig. 10B, 10C and 10D) according to (2). Further, we can form the
expected graph of the whole network G (Fig. 10E) according to (3), which is an
ensemble of the expected graphs of all its communities. However, since the model
parameters are unknown a priori, we fit network and its expected graph by optimizing
(4) to learn the best dik (Table 3). Subsequently, we infer all the node and link
communities according to (16) and (17), and identify the final network community
structure (Fig. 10F) based on the principle of minimum description length.

As shown in Fig. 10(F), our NLC method can not only infer the node and link
communities (colored on nodes and links, respectively), but also derive the hybrid
node-link community structure (noted by three cycles) which faithfully corresponds
to the ground-truth. In comparison, the node community detection methods com-
pared6,21 only inferred node partitions, corresponding to colors on nodes in Fig. 10(F);
the link community detection methods10,13 only inferred link partitions, corres-
ponding to colors on links in Fig. 10(F); and both of them cannot perfectly classify the
network. This may further validate the flexibility and effectiveness of our hybrid node
and link community scheme compared with single type of schemes.
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9. Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping
community structure of complex networks in nature and society. Nature 435,
814–818; DOI:10.1038/nature03607 (2005).

10. Ahn, Y.-Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale
complexity in networks. Nature 466, 761–764; DOI:10.1038/nature09182 (2010).

11. Evans, T. S. & Lambiotte, R. Line graphs, link partitions, and overlapping
communities. Phys. Rev. E 80, 016105; DOI:10.1103/PhysRevE.80.016105 (2009).

12. Kim, Y. & Jeong, H. Map equation for link communities. Phys. Rev. E 84, 026110;
DOI:10.1103/PhysRevE.84.026110 (2011).

13. Ball, B., Karrer, B. & Newman, M. E. J. Efficient and principled method for
detecting communities in networks. Phys. Rev. E 84, 036103; DOI:10.1103/
PhysRevE.84.036103 (2011).

14. He, D., Liu, D., Zhang, W., Jin, D. & Yang, B. Discovering link communities in
complex networks by exploiting link dynamics. J. Stat. Mech. P10015;
DOI:10.1088/1742-5468/2012/10/P10015 (2012).

15. Knuth, D. E. The Stanford GraphBase: A Platform for Combinatorial Computing.
(New York, NY, USA: ACM Press, 1994).

16. Esquivel, A. V. & Rosvall, M. Compression of flow can reveal overlapping-module
organization in networks. Phys. Rev. X 1, 021025; DOI:10.1103/
PhysRevX.1.021025 (2011).

17. Grünwald, P. D. The Minimum Description Length Principle. (Cambridge, MA,
USA: The MIT Press, 2007).

18. Xie, J., Kelley, S. & Szymanski, B. K. Overlapping community detection in
networks: the state of the art and comparative study. ACM Comput. Surv. 45,
Article No. 43; DOI:10.1145/2501654.2501657 (2013).

19. Lancichinetti, A., Fortunato, S. & Kertész, J. Detecting the overlapping and
hierarchical community structure in complex networks. New J. Phys. 11, 033015;
DOI:10.1088/1367-2630/11/3/033015 (2009).

20. Zachary, W. W. An information flow model for conflict and fission in small
groups. J. Anthropol. Res. 33, 452–473 (1977).

21. Karrer, B. & Newman, M. E. J. Stochastic blockmodels and community structure
in networks. Phys. Rev. E 83, 016107; DOI:10.1103/PhysRevE.83.016107 (2011).

22. Leskovec, J. Stanford Network Analysis Project. ,http://snap.stanford.edu.,
Date of access:11/ 06/ 2014.

23. Yang, J. & Leskovec, J. Overlapping community detection at scale: a nonnegative
matrix factorization approach. Paper presented at the 6th ACM International
Conference on Web Search and Data Mining, Rome, Italy. New York, NY, USA:
ACM Press (2013, February 4– 8).

24. Shen, H., Cheng, X., Cai, K. & Hu, M. Detect overlapping and hierarchical
community structure in networks. Physica A 388, 1706; DOI:10.1016/
j.physa.2008.12.021 (2009).

25. Xenarios, I. et al. DIP: the Database of Interacting Proteins. Nucleic Acids Res. 28,
289–291; DOI:10.1093/nar/gkh086 (2000).

26. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The gene
ontology consortium. Nat. Genet. 25, 25–29; DOI:10.1038/75556 (2000).

27. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57,
289–300; DOI:10.2307/2346101 (1995).

28. Nelson, D. L., McEvoy, C. L. & Schreiber, T. A. The University of South Florida,
word association, rhyme, and word fragment norms. ,http://w3.usf.edu/
FreeAssociation/., Date of access:21/ 06/ 2013.

29. Fellbaum, C.WordNet: An Electronical Lexical Database. (Cambridge, MA, USA:
The MIT Press, 1998).

30. Newman, M. E. J. & Leicht, E. A. Mixture models and exploratory analysis in
networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569; DOI:10.1073/
pnas.0610537104 (2007).

31. Airoldi, E. M., Blei, D. M., Fienberg, S. E. & Xing, E. P. Mixed membership
stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014; DOI:10.1145/
1390681.1442798 (2008).

32. Ren, W., Yan, G., Liao, X. & Xiao, L. Simple probabilistic algorithm for detecting
community structure. Phys. Rev. E 79, 036111; DOI:10.1103/PhysRevE.79.036111
(2009).

33. Shen, H., Cheng, X. & Guo, J. Exploring the structural regularities in networks.
Phys. Rev. E 84, 056111; DOI:10.1103/PhysRevE.84.056111 (2011).

34. Yang, J., McAuley, J. & Leskovec, J. Community detection in networks with node
attributes. Paper presented at the 13th IEEE International Conference on Data
Mining, Dallas, Texas, USA. Piscataway, NJ, USA: IEEE Press. (DOI:10.1109/
ICDM.2013.167)(2013, December 7– 10).

35. Nowicki, K. & Snijders, T. A. B. Estimation and prediction for stochastic
blockstructures. J. Am. Stat. Assoc. 96, 1077–1087; DOI:10.1198/
016214501753208735 (2001).

36. Eric, E. & Rachael, M. A spin-glass model for semi-supervised community detection.
Paper presented at the 26th AAAI Conference on Artificial Intelligence, Toronto,
Ontario, Canada. Atlanta, Georgia, USA: AAAI Press. (2012, July 22– 26).

37. Dinh, T.N., Nguyen,N. P. &Thai,M. T. An adaptive approximation algorithm for
community detection in dynamic scale-free networks. Paper presented at the 32nd
IEEE International Conference on Computer Communications, Turin, Italy.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8638 | DOI: 10.1038/srep08638 13

http://snap.stanford.edu
http://w3.usf.edu/FreeAssociation
http://w3.usf.edu/FreeAssociation


Piscataway, NJ, USA: IEEE Press. (DOI:10.1109/INFCOM.2013.6566734)(2013,
April 14– 19).

38. Expert, P., Evans, T. S., Blondel, V. D. & Lambiotte, R. Uncovering space-
independent communities in spatial networks. Proc. Natl. Acad. Sci. USA 108,
7663–7668; DOI:10.1073/pnas.1018962108 (2011).

39. Liu, X., Murata, T. & Wakita, K. Detecting network communities beyond
assortativity-related attributes. Phys. Rev. E 90, 012806; DOI:10.1103/
PhysRevE.90.012806 (2014).

40. Evans, T. S. Clique graphs and overlapping communities. J. Stat. Mech. P12037;
DOI:10.1088/1742-5468/2010/12/P12037 (2010).

41. Lee, C., Reid, F., McDaid, A. & Hurley, N. Detecting highly overlapping
community structure by greedy clique expansion. Paper presented at the 4th
International Workshop on Social Network Mining and Analysis, Washington,
DC, USA. New York, NY, USA: ACM Press (2010, July 25).

42. Jin, D. et al. AMarkov random walk under constraint for discovering overlapping
communities in complex networks. J. Stat. Mech. P05031; DOI:10.1088/1742-
5468/2011/05/P05031 (2011).

43. Lancichinetti, A. & Fortunato, S. Consensus clustering in complex networks. Sci.
Rep. 2, 336; DOI:10.1038/srep00336 (2012).

44. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E 78, 46110; DOI:10.1103/
PhysRevE.78.046110 (2008).

45. Lancichinetti, A. & Fortunato, S. Benchmarks for testing community detection
algorithms on directed and weighted graphs with overlapping communities. Phys.
Rev. E 80, 016118; DOI:10.1103/PhysRevE.80.016118 (2009).

46. Newman, M. E. J., Strogatz, S. H. & Watts, D. J. Random graphs with arbitrary
degree distributions and their applications. Phys. Rev. E 64, 026118; DOI:10.1103/
PhysRevE.64.026118 (2001).

47. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum-likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B Stat. Methodol. 39,
1–38; DOI:10.2307/2984875 (1977).

48. Wang, F., Li, T., Wang, X., Zhu, S. & Ding, C. H. Q. Community discovery using
nonnegative matrix factorization. Data Min. Knowl. Discov. 22, 493–521;
DOI:10.1007/s10618-010-0181-y (2011).

49. Boyd, S. & Vandenberghe, L. Convex Optimization. (Cambridge, UK: Cambridge
University Press, 2004).

50. Newman, M. E. J. Real-world network data in Newman’s homepage. ,http://
www-personal.umich.edu/,mejn/netdata/., Date of access:21/ 06/ 2013.

Acknowledgments
The work was supported in part by National Basic Research Program (973 Program) of

China (2013CB329301), Natural Science Foundation of China (61303110, 61133011,

61373035, 61173155 and 31300999), National High Technology Research and

Development Program (863 Program) of China (2013AA013204), the municipal

government of Wuhan, Hubei, China (2014070504020241 and the Talent Development

Program), and an internal research grant of Jianghan University, Wuhan, China, as well as

by United States National Institutes of Health (R01GM100364).

Author contributions
D.H. andW.Z. designed the study; D.H., D.J. and Z.C. performed the experiments, analyzed

the data and prepared the figures; D.H., D.J. andW.Z. wrote the paper. All authors reviewed

the manuscript.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/

scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article:He, D., Jin, D., Chen, Z. & Zhang, W. Identification of hybrid node

and link communities in complex networks. Sci. Rep. 5, 8638; DOI:10.1038/srep08638
(2015).

This work is licensed under a Creative Commons Attribution 4.0 International

License. The images or other third party material in this article are included in the

article’s Creative Commons license, unless indicated otherwise in the credit line; if

the material is not included under the Creative Commons license, users will need

to obtain permission from the license holder in order to reproduce thematerial. To

view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8638 | DOI: 10.1038/srep08638 14

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/
http://www.nature.com/scientificreports
http://www.nature.com/scientificreports
http://creativecommons.org/licenses/by/4.0/

	Identification of hybrid node and link communities in complex networks
	Introduction
	Results
	Comparison of the three community schemes
	Zachary's karate club
	American college football network
	Les Misérables

	Comparison with the existing methods
	Applications to large networks
	Protein-protein interaction network
	Word association network


	Discussion
	Methods
	Stochastic model of node and link communities
	The model
	Parameter learning based on expectation-maximization algorithm
	Parameter learning based on nonnegative matrix factorization
	Theorem 1

	Inferring hybrid community structure
	Inferring community structure given the types of communities
	Determining the types of communities

	A working example of NLC

	Acknowledgements
	References


