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IL-17-producing CD4* T helper (Th17) cells have recently been
defined as a unique subset of proinflammatory helper cells whose
development depends on signaling initiated by IL-6 and TGF-,
autocrine activity of IL-21, activation of STAT3, and induction of the
orphan nuclear receptor RORyt. The maintenance, expansion, and
further differentiation of the committed Th17 cells depend on IL-18
and IL-23. IL-17 was originally found produced by circulating
human CD45RO+ memory T cells. A recent study found that human
Th17 memory cells selectively express high levels of CCR6. In this
study, we report that human peripheral blood and lymphoid tissue
contain a significant number of CD4*FOXP3* T cells that express
CCR6 and have the capacity to produce IL-17 upon activation. These
cells coexpress FOXP3 and RORyt transcription factors. The
CD4+*FOXP3+CCR6™ IL-17-producing cells strongly inhibit the pro-
liferation of CD4* responder T cells. CD4*+CD25high-derived T-cell
clones express FOXP3, RORyt, and IL-17 and maintain their sup-
pressive function via a cell-cell contact mechanism. We further
show that human CD4*FOXP3*+CCR6~ regulatory T (Treg) cells
differentiate into IL-17 producer cells upon T-cell receptor stimu-
lation in the presence of IL-1, IL-2, IL-21, IL-23, and human serum.
This, together with the finding that human thymus does not
contain IL-17-producing Treg cells, suggests that the IL-17+*FOXP3+
Treg cells are generated in the periphery. IL-17-producing Treg
cells may play critical roles in antimicrobial defense, while control-
ling autoimmunity and inflammation.
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L-17 (also known as IL-17A) was identified in 1995 as a

cytokine produced by activated human CD45RO* memory T
cells (1, 2). IL-17F, a closely related member with 50% amino
acid sequence homology to IL-17A, was later discovered and is
also expressed in activated peripheral blood (PB) CD4* T cells
(3). IL-17 (A and F) induces production of a broad range of
proinflammatory cytokines and chemokines, including IL-6,
colony-stimulating factors, CXC chemokines, human pB-defen-
sin-2 and metalloproteinases (4), by a variety of cells. IL-17
regulates host defense against infectious organisms through
promoting granulopoiesis and neutrophil trafficking (5-7). In
humans, elevated levels of IL-17 have been associated with
inflammatory diseases, including rheumatoid arthritis, scleritis,
uveitis, asthma, systemic lupus erythematosus, and allograft
rejection (8—11). In mice, IL-17 contributes to the development
of experimental autoimmune encephalomyelitis (12, 13), colla-
gen-induced arthritis (14, 15), and colitis (16). IL-22, a product
of IL-17—-producing cells, on the other hand, induces acanthosis
and psoriasis (17, 18).

The IL-17-producing CD4" T helper cells (Th17) cells that
produce both IL-17A and IL-17F are now defined as a separate
subset (Th17) distinct from the Thl, Th2, and regulatory T
(Treg) cells, in terms of developmental regulation and function.
Th17 cell differentiation is induced by a combination of IL-6 and
TGF-B and is augmented by induction of IL-21, which acts in an
autocrine manner (19-22). Signaling induced by these cytokines
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results in phosphorylation of STAT3 and expression of the
orphan nuclear receptor RORwt, transcription factors that are
required for induction of IL-17 expression (19, 20, 22). The
maintenance, expansion, and further differentiation of the com-
mitted Th17 cells depend on IL-18 and IL-23 (19, 23-25). The
differentiation of naive T cells to Th17 cells can be inhibited by
IFN-y, IL-4, IL-27, IL-2, and retinoic acid, molecules critical for
the differentiation of naive CD4™" T cells into Th1, Th2, and Treg
cell pathways (13, 19, 26-29).

Although human IL-17-producing T cells were originally
found enriched in the CD4* CD45RA~-CD45RO* memory
CD4" T-cell population, it has been unclear whether they
overlap with other Th cell subsets, such as Th1, Th2 memory T
cells, or Treg T cells. Recently, human Th17 cells were defined
as a subpopulation of circulating CD4"CD45RO* memory T
cells that expressed high levels of the chemokine (C-C motif)
receptor 6 (CCR6) (30). Here, we report that human PB and
lymphoid tissue contain a subpopulation of CD4*FOXP3* Treg
cells that express CCR6 and have the capacity to produce IL-17
upon activation. These cells coexpress FOXP3 and RORwyt
transcription factors critical for Treg or Th17 cell development
and function (31-33). The CD4*FOXP3*CCR6'IL-17-
producing cells could strongly inhibit the proliferation of CD4+
responder T cells. We further show that isolated
CD4"FOXP3*IL-17-producing T-cell clones express FOXP3
and RORyt and maintain their suppressive function. In addition,
human CD4*FOXP3*CCR6~ Treg cells could differentiate into
IL-17 producer cells upon T-cell receptor (TCR) stimulation in
the presence of IL-13, IL-2, IL-21, and IL-23. This, together with
the finding that only PB and lymphoid tissue, but not thymus,
contain the IL-17-producing Treg cells, suggests that the IL-
17*FOXP3* Treg cells are generated in the periphery. IL-17-
producing Treg cells may play critical roles in antimicrobial
defense while controlling autoimmunity and inflammation.

Results

A Subpopulation of CD4+CD25*FOXP3* Treg Cells Has the Capacity to
Produce IL-17. Although human IL-17-producing T cells were
originally found enriched in the CD4"CD45RA~ CD45RO*
memory CD4* T-cell population (2), it is not known if they
overlap with Thl and Th2 memory T cells or Treg cells. To
analyze the capacity of different CD4" T cell subsets to secrete
IL-17, we fractionated PB CD4" T cells by flow cytometry into
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Fig. 1.

Identification of T-cell subsets that secrete IL-17 and express key factors required for Th17 cell differentiation. (A) ELISA of cytokines in supernatants

of T-cell subsets—CD4*CD25/°“CD45RA™" (naive), CD4*CD25°WCD45RA~ CRTH2~ (memory), CD4+CD25hgh (Treg), and CD4*CRTH2* (CRTH2)—sorted from
PBMCs and stimulated with PMA/ionomycin for 24 h. The purity of each T-cell subset was >95%. (B) Real-time RT-PCR of RORyt, FOXP3, T-bet, and GATA-3
transcripts. Expression level was normalized to GADPH expression level and adjusted to corresponding expression levels in CD4*CD25 CD45RA* naive T cells.
Data are from 5-6 experiments taken from 5-6 different healthy donors. Horizontal bars indicate the median.

CD4+CD25Meh (Treg), CD4+*CD25'°YCD45RA™ (naive),
CD4"CD25""CD45RA~ (memory), and CD4*CD25'o%-
CD294* (CRTH2) T cells and stimulated them with phorbol
myristate acetate (PMA)/ionomycin for 24 h. We found that, in
addition to memory CD4* T cells, Treg and CRTH2 cells
secreted a significant amount of IL-17 (Fig. 14). The isolated
T-cell subsets secreted the expected cytokine profiles upon
stimulation: Treg cells secreted IL-10 but not IL-22, IL-2, IFN-v,
or IL-4; CRTH2™ memory T cells, enriched for Thl cells,
secreted IL-10, IL-22, IL-2, and IFN-y but not IL-4; and
CRTH2" Th2 memory cells secreted I1L-4, IL-2, and IL-10 but
not IFN-vy or IL-22. In addition, by real-time PCR analyses, we
found that Treg cells and CRTH2 ™ memory T cells expressed the
RORMwt transcription factor required for Th17 cell differentia-
tion (Fig. 1B). These 3 T-cell subsets also expressed their
lineage-specific transcription factors FOXP3, T-bet, and
GATA3, respectively. These data suggest that all CD4" memory
T-cell subsets, including CRTH2 and Treg cells, may contain
cells that have the capacity to produce IL-17.

We next investigated the presence of FOXP3*1L-17* T cells
in PB and lymphoid tissue (tonsils) by flow cytometry. Human
PB CD4* T cells contained about 0.32 (*=0.08) % IL-
17*FOXP3™" and 2.63 (+1.22) % IL-17"FOXP3~ T cells. Hu-
man tonsil CD4* T cells contained about 2.4 (£ 0.5) %
IL-17*FOXP3™" and 4.68 (=1.08) % IL-17*FOXP3~ T cells.
The percentage of CD4" T cells expressing FOXP3 for PB is
about 8.6 (=1.7) %, of which 3.2 (=1.1) % expressed IL-17 (Fig.
2 A and B). Human tonsil CD4" T cells contained about 11
(*£2.5) % FOXP3* T cells, of which 25 (+2.3) % expressed IL-17
(Fig. 2 A and B). The frequency of the FOXP3*IL-17* T cells
was 7 times higher in tonsils than in peripheral blood lympho-
cytes (PBLs). By immunostaining of human tonsil frozen sec-
tions, we found the presence of cells expressing FOXP3 only
(green) and ROR+yt only (red) as well as both FOXP3 and
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RORwt (gold) (Fig. 2C). The percentage of FOXP3*RORyt*
double-staining cells in the total Foxp3* and RORyt™" cells is in
the range of 9 (=1) % (Fig. 2D), which is similar to that of
FOXP3*IL17" cells in the range of 13 (+1) % by FACS (Fig.
S1). These results confirm the presence of FOXP3-expressing
Treg cells that have the potential to make IL-17. Recently,
Acosta-Rodriguez et al. (30) showed that human Th17 memory
T cells selectively express high levels of CCR6 protein. We
therefore fractionated the CD4*CD25%eh T cells into CCR6™ or
CCR6™ cells. Intracellular staining (Fig. 2E) and ELISA (Fig.
2F) showed that IL-17-producing cells are predominantly found
among the CCR6" T cells. Furthermore, both
CCR6"CD4*CD25Megh and CCR6-CD4*+CD25Meh T cells
strongly inhibited the proliferation of CD4* responder T cells
(Fig. 2G), demonstrating that CD4+*CD25"e"FOXP3*IL-17+ T
cells are Treg cells.

FOXP3 and IL-17 Double-Positive CD4+ T-Cell Clones Express RORyt
and Display Suppressive Function. To characterize the
CD4"CD25Meh[L-17+ Treg cells further, we generated T-cell
clones from the PBL-derived CD4*CD25"gt Treg, CD4+CD25~
memory, and naive CD4* T cells, respectively, by limiting
dilution methods. By intracellular staining, 4 representative
clones derived from the CD4+tCD25"¢h Treg cells expressed
both IL-17 and FOXP3 or only FOXP3 after 2 months in culture
(Fig. 34). By contrast, other T-cell clones derived from
CD4+CD25"% T cells were either IL-17*FOXP3~ or IL-
17"FOXP3~. By double-immunofluorescence staining, we fur-
ther showed that FOXP3*IL-17* T-cell clones coexpressed
nuclear FOXP3 and RORyt, whereas FOXP3*1IL-17 T cell
clones expressed only FOXP3 (Fig. 3B). FOXP3~IL17* T-cell
clones expressed RORyt, and FOXP37IL-17" clones expressed
neither FOXP3 nor RORyt. The expression of FOXP3 and
ROR#yt proteins in FOXP3* or IL-17* T cells was further

Voo et al.
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Human tonsil contains a high percentage of FOXP3*IL-17" CD4" Treg cells. (A) Intracellular staining for FOXP3 and IL-17A proteins in PMA/ionomycin-

stimulated CD4* T cells isolated from PBL and tonsils. (B) Percentage of IL-17*FOXP3* T cells among total CD4"FOXP3* T cells. Arrowhead indicates
double-positive for ROR gamma t and FOXP3 expression. A star indicates statistical significance (P < 0.05). (C and D) Immunohistochemistry of FOXP3 and RORyt
proteins in human tonsil frozen sections. Horizontal bars indicate the median. (E) IL-17 producer cells are found in the CCR6*CD4*CD25hgh T-cell fraction. (F)
Only CCR6*CD4+CD25"9h cells secrete abundant IL-17 when stimulated with anti-CD3 (2 ug/mL) and anti-CD28 (1 ug/mL). Representative experiments of 2 donors
are shown. (G) CCR6*CD4*CD25Migh T cells suppress CD4+ responder T-cell proliferation. Data are representative of experiments with cells from 2 donors.

confirmed by Western blot analysis showing that FOXP3*IL-
17* and FOXP3*IL-17- T-cell clones expressed the FOXP3
protein (Fig. 3C), whereas FOXP3*IL-17* and FOXP3~1L-17*
T-cell clones expressed RORyt (Fig. 3D). In contrast, FOXP3~
T cells did not express FOXP3, and IL-17~ T cells expressed little
ROR#yt. Upon TCR stimulation, all T-cell clones secreted a
variable amount of IFN-v, whereas some clones secreted both
IL-17 and IL-10, IL-17 only, IL-10 only, or none (Table S1). We
next investigated whether the IL-17*FOXP3* T-cell clones
derived from the CD4*CD25"eh Treg cells maintain suppression
function. Fig. 3E shows that both IL-17"FOXP3* and the
IL-17"FOXP3* T-cell clones potently suppressed the prolifer-
ation of CD4*CD25 T cells induced by anti-CD3 and anti-
CD28, whereas FOXP3 IL-17% or FOXP3~IL-17~ T-cell clones
did not exhibit suppressive activity. To investigate the suppres-
sive mechanisms of these Treg cells, we tested a panel of
neutralizing antibodies to IL-10; IL-10Re; anti-TGF-B1,2,3;
CTLA-4; PD-1; or TGF- inhibitor and found that none of these
blocked suppression (data not shown). We next performed
transwell experiments and found that the suppressive function of
the IL-17* FOXP3* Treg clones and IL-17"FOXP3* Treg
clones was absent in such conditions, indicating that suppression
requires cell-cell contact (Fig. 3F).

IL-1B, IL-2, IL-6, IL-21, and IL-23 Act Cooperatively to Induce IL-17
Production by the CCR6-CD4+CD25"9h Treg Cells. An important
question is whether a subpopulation of CD4TCD25"eh Treg cells
acquires the ability to produce IL-17 in the thymus during Treg
development or in the periphery during inflammatory responses.
We therefore isolated T-cell subsets from human thymus and
assessed their capacity to produce IL-17 following activation,
using flow cytometry and ELISA analyses. We found that
CD4*CD8 CD25"eh CD4*CD8 CD25"%, CD4"CD8", or
CD4-CD8" T cells isolated from thymus failed to secrete
detectable amounts of IL-17 upon stimulation with PMA/
ionomycin for 24 h (Fig. 44). However, a significant amount of

Voo et al.

IL-17 was released from the CD4+*CD25"Meh fraction isolated
from PB, suggesting that the FOXP3* Treg cells may acquire the
ability to produce IL-17 in the periphery. To determine whether
the peripheral CD4*CD25Meh Treg cells can be induced to
differentiate into IL-17 producer cells, we isolated CCR6™ or
CCR6TCD47CD127-CD25Meh Treg cells from the PB and
cultured these cells with anti-CD3, anti-CD28, a low concentra-
tion of IL-2, and 10% (vol/vol) human serum (which contains
human TGF-B) in the presence of IL-13, IL-6, IL-21, or IL-23
for 15-18 days. We found that IL-2 alone did not induce any
Th17 cell differentiation from CCR6~-CD4"CD25"¢" Treg cells
(Fig. 4B), although IL-2 alone or in combination with other
cytokines significantly enhanced expansion of Th17 cells from
CCR6TCD47CD25Meh Treg cells (Fig. 4C). However, in the
presence of IL-18, CCR6-CD4"CD25"gh Treg cells could pro-
duce a low level of IL-17, and their IL-17 production was further
enhanced with the addition of IL-6, IL-21, or I1L-23 (Fig. 4B).
Flow cytometry analysis of these cells shows that the majority of
the IL-17 producer cells are FOXP3~ (data not shown). These
data suggest that IL-18 and IL-6 together could induce
CCR6-CD47CD25heh Treg to differentiate into IL-17 producer
cells in the presence of human serum.

Discussion

In this study, we have performed a thorough analysis of the ability
of CD4" T-cell subsets from human PB, tonsils, and thymus to
produce IL-17. Unexpectedly, we found that up to 3% of FOXP3+
Treg cells in PB and 25% of FOXP3* Treg in tonsils have the
capacity to produce IL-17 upon activation. We further showed that
the IL-17-producing Treg cells preferentially express CCR6, coex-
press FOXP3 and RORt, and strongly suppress responder CD4*
T-cell proliferation. Interestingly, the level of FOXP3 expression in
the FOXP3*IL-17" cells appears to be lower than that of the
FOXP3*IL-17 cells in CD4" T cells isolated from PB, suggesting
that high FOXP3 expression might contribute to inhibition of Th17
differentiation. Although we do not rule out the contribution of

PNAS Early Edition | 3 of 6

IMMUNOLOGY


http://www.pnas.org/cgi/data/0900408106/DCSupplemental/Supplemental_PDF#nameddest=ST1

SINPAS

yd

A FOXP3* FOXP3* FOXP3- FOXP3- C . . ) ] . .
L7+ ILA7- L7 ILA7- FOXP3* FOXP3* FOXP3- FOXP3- CD4* CD4
A IL-17* IL47-  IL17* L7 CD25 CD25*
b 57| o e e =
% g ae o a © —
2'? s gﬁ 2L, FOXP3 i i - o -—
o [ =4 )
gl 57| & | 2 3 [-ACtin S S S w— —
- ™ r
8 ~ 5 34 a
© 61| 5
S e i g D FOXP3*  FOXP3* FOXP3  FOXP3 CD4*
a = SE . ITINE L7+ ILA7- L7 IL17-  CD25*
i 53| 3 s RORA e s = - o
& . < - S == z
< = e i} F] p-Actin
>
IL-17 E E
B Anti- Anti- No
DAPI RORyt FOXP3 FOXP3* Transwell Transwell
17+ "
FOXP3* FOXP3
L7+ FOXP3* L7
IL-17- N
FOXP3* FICI’_X:;?
IL-A72 FOXP3- i
L7+
FOXP3- -
L7 FOXP3- Flf_’ﬁ';f"
L7
’ |-
FI‘E’?;;"' CFSE CFSE i

Fig.3. Characterization of PBL-derived FOXP3*IL-17*CD4* T-cell clones. (A) Intracellular staining for FOXP3 and IL-17A proteins in representative CD4* T-cell
clones derived from CD4*CD25"gh (FOXP3*IL-17+ and FOXP3*IL-17" lines) or CD4*CD25'°" T cells (FOXP3~IL-17+ and FOXP3~IL-17" lines). (B) Immunofluores-
cence microscopy of CD4* T-cell clones fixed and stained with antibodies specific for human FOXP3 (green) and RORyt (red). DAPI (blue) was used to counterstain
the nuclei. (Original magnification: X400.) (C and D) Western blot analysis for FOXP3 and RORyt expression in T-cell clones as in A. Freshly sorted
CD4*CD25'""CD45RA™ naive and CD4*CD24Mah T cells serve as a negative or positive control for FOXP3, respectively. IL-17~ T cells serve as a negative control
for RORyt. The B-actin protein serves as a protein loading control. (E) FOXP3*CD4* T-cell clones suppressed proliferation of conventional CD4*CD25'°" responder
T cells. Carboxyfluorescein succinimidyl ester-labeled CD4+CD25'°%CD127+ responder cells were cultured with Treg cells at a ratio of Treg/responder cells (1:2).
(F) T-cell suppression requires cell-cell contact. Equal numbers of Treg cells and CD4* responder cells were used in the transwell experiments. The Treg cells were
either cultured together with the responder cells as a positive control for suppression activity or cultured in inner wells. Results represent 1 of 2 independent
experiments.

FOXP3*IL-17 cells to the CCR6+CD4+CD25"eh T-cell suppres-  the IL-17*FOXP3" T-cell clones after 2 months of culture coex-
sion activity, our data suggest that both FOXP3*IL-17* and  pressed FOXP3 and RORyt proteins as well as the ability to
FOXP3*IL-17" T cells are equally suppressive, because the  produce IL-17 and to suppress CD4* T-cell proliferation. Although
strength of suppression of CCR6* or CCR6-CD4+CD25"e" Tcells ~ our transwell assay indicates that the inhibition is cell-contact
on effector T-cell proliferation is similar in 3 of the Treg/effector ~ dependent, we do not rule out the possibility that Treg cells might
ratios tested. To demonstrate the presence of IL-17-producing Treg  also adsorb IL-2 to their IL-2 receptor and block proliferation of
cells at the clonal level further, we established a number of T-cell responder CD4* T cells. We conclude from these data that
clones, including IL-17"FOXP3*, IL-17"FOXP3*, IL- IL-17-producing Treg cells may represent a significant subset of
17*FOXP3~, and IL-17"FOXP3~ clones. We demonstrated that ~ human CD4" Th cells that display the functional features of both
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Treg and Th17 cells (e.g., IL-17 production, CCR6 expression,
suppressive activity).

Although FOXP3* Treg cells are critical for control of
autoimmunity and inflammation (34), Th17 cells have been
implicated in mediating inflammation and autoimmune diseases
(4). The biological significance of T cells that display the function
of Treg and the opposing function of Th17 is unclear. One of the
key functions of IL-17 is to promote neutrophil differentiation
from hematopoietic progenitor cells and neutrophil trafficking,
critical mechanisms for innate immune defense against bacterial
and fungal infection. Our finding that some FOXP3* Treg cells
acquire the ability to produce IL-17 suggests that Treg can
potentially contribute to the antimicrobial innate immune de-
fense while controlling inflammation and autoimmunity at the
same time, particularly at mucosal sites. IFN-vy, a major product
of Th1 cells, is critical for the initiation of cell-mediated immu-
nity against intracellular pathogens and the induction of some
autoimmune diseases (35, 36). Interestingly, many IFN-y—
producing Thl cells were found to produce IL-10, an anti-
inflammatory cytokine, in antimicrobial immune responses (37).
This phenomenon has been called self-control of Th1 cells, which
is a critical mechanism for effective antimicrobial immune
responses while limiting self-tissue damage (37). Indeed, it has
been shown that IL-10-deficient mice acutely infected with
Toxoplasma gondii induced a lethal Thl immune response ac-
companied by overproduction of IL-12, IFN-vy, and TNF-« (38).

In the mouse, the nuclear receptor RORyt is expressed in
CD4*"CD8* thymocytes but not in single-positive CD4 or CD8
thymocytes (39). Accordingly, we did not detect any IL-17
produced by the single-positive thymic T-cell populations tested,
including the FOXP3* Treg thymocytes. There was also no IL-17
produced by human double-positive thymocytes, suggesting that
the expression of RORwyt is insufficient for T-lineage cells to
acquire the ability to produce IL-17 in thymus. Our data suggest
that peripheral CCR6-CD4"CD25"gh Treg cells stimulated in
the presence of IL-18 and IL-6 differentiated into IL-17 pro-
ducer cells in the presence of 10% (vol/vol) human serum, which
contains TGF-p critical for human Th17 differentiation (40).
This, together with the finding that a significant number of Treg
cells in PB and particularly in tonsils produce IL-17, suggests that
the IL-17"FOXP3* Treg cells are generated at mucosal sites
during inflammation. Indeed, a recent study in mice by Zhou et
al. (41) has demonstrated the presence of FOXP3*RORyt* T
cells that have the ability to produce IL-17 in the lamina propria
of the small intestine. The identification of IL-17-producing
FOXP3* Treg cells in both mice and humans suggests that Th17
and FOXP3* Treg lineages are related in ontogeny. Both
lineages appear to depend on TGF-p for their differentiation
and/or maintenance, and additional cytokines may determine
whether they become Th17, Treg, or dual-function effector T
cells (41). FOXP3* Treg cells may thus actively contribute to
antimicrobial innate immunity by producing IL-17, while they
control inflammation and autoimmunity at the same time.
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Materials and Methods

Purification of CD4* T-Cell Subsets. Adult blood buffy coats from healthy
donors were obtained from the Gulf Coast Regional Blood Center in Texas.
CD4" T cells were enriched using a CD4 T-cell isolation kit (Miltenyi Biotec)
according to manufacturer’s procedures. We isolated CRTH2 T cells from
enriched CD4* T cells by staining with biotin-CRTH2 antibody, followed by
biotin-microbeads. Flow-through cells from LS column (Miltenyi Biotec) were
stained with streptavidin-PE, APC-Cy7-CD4 antibody, and FITC-labeled lineage
mixture antibodies against CD14, CD16, CD19, CD56, CD11¢, and y8-TCR and
were sorted on a FACSAria (BD Bioscience) into a single fraction of
CD4"CRTH2*. Cells retained in the LS column were eluted and stained with
same FITC-labeled lineage mixture antibodies plus APC-Cy7-CD4, PE-Cy7-
CD25, PE-CD127, and biotin-CD45RA and were then washed and stained with
streptavidin-perCP-Cy5.5. Stained cells were sorted into 3 fractions of
CD127-CD4*CD25"9" (top 2-3%, average of 90% FOXP3*) Treg cells,
CD4*CD25'°""CD45RA " naive T cells, and CD4+CD25'°CD45RA~CRTH2~ mem-
ory T cells.

Treg Cell Culture. CCR6™ or CCR6~ CD4+CD25"i9h Treg cells were cultured for
5-6 days in 96-well flat-bottomed plates (Falcon) at a cell density of 5 X 10*
cells per well in RPMI 1640 medium containing 10% (vol/vol) human AB serum
(GemCell), 40 IU/mL IL-2, neutralizing anti-IFN-y (5 uwg/mL; 25718; R&D Sys-
tems), and anti-IL-4 (5 pg/mL; R&D Systems), along with plate-bound anti-CD3
(2 ng/mL) and soluble anti-CD28 (1 wg/mL). Where indicated, IL-13 (10 ng/mL),
IL-6 (20 ng/mL), IL-21 (50 ng/mL), or IL-23 (20 ng/mL) was added to the cultures.
Fresh culture medium containing the indicated cytokines was added every 5-6
days. On days 15-18, 5 X 10% cells were stimulated with plate-bound anti-CD3
(2 pg/mL) and anti-CD28 (1 wg/mL) and analyzed for IL-17 cytokine release.

Generation of Human PBL-Derived CD4* Treg Cell Clones. CD4" T-cell clones
were generated from flow cytometry-sorted CD4+CD25M9h (top 2%) cells by
limiting dilution methods as described (42) using 0.5 T cell per well and 5 X 10*
cells per well of irradiated allogeneic peripheral blood mononuclear cells
(PBMCs; 7,000 rad) as feeder cells in lymphocyte stimulation medium contain-
ing RPMI 1640 (Invitrogen) supplemented with 2 mmol/L L-glutamine, 0.05
mmol/L B-mercaptoethanol, 10% human male AB serum (GemCell), 300 lU/mL
IL-2, 75 ng/mL anti-CD3, 15 ng/mL anti-CD28, and 100 ng/mL anti-inducible T
cell costimulator (ICOS). On day 14, one-fifth of the cells from each well with
cell outgrowth were washed and restimulated with 3 pg/mL plate-bound
anti-CD3 and 1 ug/mL soluble anti-CD28 in T-cell assay medium containing
RPMI 1640 plus 4% (vol/vol) human AB serum and 2 mmol/L L-glutamine. IL-17
release from T cells was measured by ELISA. High IL-17 producer cells were
then expanded, as previously described (42), using the same lymphocyte
stimulation medium as above but supplemented with irradiated allogeneic
1.6 million/mL PBMCs (irradiation with 7,000 rad) and 0.3 million/mL EBV B-cell
lines LCL111 and 112 (23,000 rad). Th17 T-cell clones derived from
CD4*CD25'"°" cells were generated as above, except that 5 ng/mLIL-18and 10
ng/mL IL-23 were added in the expansion medium. The clonality of T-cell
clones was determined with RT-PCR or monoclonal antibodies against the V3
regions. All T cells were confirmed to be free of mycoplasma by a PlasmoTest
kit (InvivoGen).
For more information, see S/ Matierals and Methods.

Statistical Analysis. A standard two-tailed t test was used for statistical analysis
with P values of 0.05 or less considered significant.
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