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Abstract

Rationale:Genetic variation plays a significant role in the etiology of
sarcoidosis. However, only a small fraction of its heritability has been
explained so far.

Objectives: To define further genetic risk loci for sarcoidosis, we
used the Immunochip for a candidate gene association study of
immune-associated loci.

Methods: Altogether the study population comprised over 19,000
individuals. In a two-stage design, 1,726 German sarcoidosis cases and
5,482 control subjects were genotyped for 128,705 single-nucleotide
polymorphismsusing the Illumina Immunochip for the screening step.
The remaining 3,955 cases, 7,514 control subjects, and 684 parents of
affected offspring were used for validation and replication of 44
candidate and two established risk single-nucleotide polymorphisms.

Measurements and Main Results: Four novel susceptibility loci
were identified with genome-wide significance in the European case-
control populations, located on chromosomes 12q24.12 (rs653178;
ATXN2/SH2B3), 5q33.3 (rs4921492; IL12B), 4q24 (rs223498;
MANBA/NFKB1), and 2q33.2 (rs6748088; FAM117B). We further
defined three independent association signals in the HLA region with
genome-wide significance, peaking in the BTNL2 promoter region
(rs5007259), atHLA-B (rs4143332/HLA-B*0801) and atHLA-DPB1
(rs9277542), and found another novel independent signal near IL23R
(rs12069782) on chromosome 1p31.3.

Conclusions: Functional predictions and protein network
analyses suggest a prominent role of the drug-targetable

IL23/Th17 signaling pathway in the genetic etiology of
sarcoidosis. Our findings reveal a substantial genetic overlap
of sarcoidosis with diverse immune-mediated inflammatory
disorders, which could be of relevance for the clinical
application of modern therapeutics

Keywords: Immunochip; HLA; IL23; BTNL2; association

At a Glance Commentary

Scientific Knowledge on the Subject: Sarcoidosis is
a complex granulomatous disease with unknown etiology.
There is a considerable genetic contribution; however, only
a small fraction of the estimated heritability is explained,
with variants in HLA region conferring the largest effects.

What This Study Adds to the Field: The study
successfully identified four novel genetic risk loci for
sarcoidosis and refined the association signal in the HLA
region to three independent signals. Our results support the
hypothesis that sarcoidosis partly shares a genetic background
with other immune-related diseases. Thus, our findings
may inspire a revised classification of clinical disease
manifestations and subphenotypes. Our results further
implicate a role of genetic factors in many aspects of
sarcoidosis pathogenesis, especially in IL23/Th17
signaling, and may provide hypotheses on novel therapeutic
targets.

Sarcoidosis is a complex inflammatory disease
of mainly the lung with an unknown etiology
that affects mostly young adults (20–40 yr)
(1). It is characterized by heterogeneous
clinical manifestations with diverse organ
involvement and disease course. Previous
genome-wide association studies (GWAS)
and candidate gene-driven investigations
identified several genetic risk loci for
sarcoidosis, such as BTNL2 (2–4); ANXA11
(5–8); a locus on chromosome 11q13.1 (9);
and, most consistently, several loci in the
HLA region on chromosome 6p21 (10).
Some risk loci are shared for sarcoidosis and
other inflammatory or autoimmune
conditions. For example, allelic variation
of single-nucleotide polymorphism (SNP)
rs11209026 (Arg381Gln) in the IL23R
gene locus predisposes, among others, to
sarcoidosis, inflammatory bowel disease,
psoriasis, and ankylosing spondylitis (11–15).

Given the large overlap of the genetic
risk maps of complex inflammatory and
autoimmune diseases, the Immunochip array

was designed for genotyping
a comprehensive set of known immune-
associated variants and for fine-mapping
a subset of 186 selected risk loci (16, 17). This
array was successfully used before to identify
novel and shared risk loci for various
complex immune-related diseases (18–24).
We used the Immunochip to screen 1,726
German patients with sarcoidosis and 5,482
healthy control subjects for novel sarcoidosis
risk loci, followed by replication in four
independent European collections (4,605
cases and 12,673 control subjects) and
another three populations for replication
and subphenotype analysis (Table 1).

Methods

Patients and Control Subjects

The study sample comprised 5,681
sarcoidosis cases, all of which were diagnosed
according to international standards (25),
12,996 control subjects, and 684 parents of

affected offspring. Analyses were performed
in eight independent panels (A, B-I, B-II,
C-I, C-II, D, E, and F) (Table 1). A detailed
description and definition of the study
sample including sarcoidosis subphenotypes
is provided in the online supplement.

Immunochip Genotyping and

Quality Control

DNA samples of panel A were genotyped
using the Immunochip, comprising a total of
196,524 SNP assays (17). Quality control
excluded 67,819 SNPs and 143 individuals
from analysis. Principal component analysis
revealed no population stratification in the
remaining samples and no population
outliers were detected. Unless described
differently, genotype data of panels B, C, E,
and F were generated using Sequenom
Mass-ARRAY iPlex (Sequenom, Inc., San
Diego, CA) (26) and Taqman technology
(Applied Biosystems, Foster City, CA). In
every analysis step, SNPs that had more
than 5% missing data (call rate> 95%),
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a minor allele frequency less than 1%, and
exact Hardy-Weinberg equilibrium P less than
1024 were excluded. The control subjects of
panel C-III were genotyped using the Illumina
Immunochip custom array (The Genome
Institute, Singapore). Genotyping for panel D
was performed at the Oklahoma Medical
Research Foundation using the Illumina
Immunochip. The online supplement
provides further details.

Statistical Analysis and SNP

Selection

Data filtering and any statistical analysis
of genotype data was performed using
PLINK v.1.07, applying logistic regression
model throughout all case-control analysis,
including conditional analysis using an allelic
model for genotype coding (27). Most
promising SNPs (excluding ANXA11 and
HLA SNPs) were selected for follow-up and
joint analysis on ranking top with their
P value (P, 1024) in the association
analysis and a positive visual inspection
of regional plots. The study design is
visualized in the online supplement.
HLA-haplotypes were imputed using
HLA*IMP:02 with default parameters (28).
All statistical tests used in this study and
methods applied for in silico analyses are
described in the online supplement.

Results

After applying conservative and
established quality filters to panel A,
1,726 sarcoidosis cases, 5,482 control
subjects, and 128,705 SNPs were included
in the analysis of this dataset (Table 1; see
the METHODS section) and analyzed by

a logistic regression analysis. The 44
most promising SNPs were selected based
on ranked P values as described in the
METHODS section and investigated in a joint
analysis of all available European case-
control panels A, B-I, B-II, C-I, and C-II
(total of 4,605 cases and 12,673 control
subjects) (Table 1). This approach led to the
identification of four novel susceptibility loci
for sarcoidosis in Europeans with genome-
wide significant association signals (Table 2,
Figure 1). For the respective lead variants,
the effect sizes did not differ significantly
between the investigated populations as
assessed by the Breslow-Day test.

Novel Non-HLA Risk Loci with

Genome-Wide Significance

SNP marker rs653178 on chromosome
12q24.12 was associated with the smallest
P value in the joint analysis (P = 1.643
10210; odds ratio [OR] [95% confidence
interval (CI)], 1.19 [1.14–1.27]). The
potentially causative nonsynonymous
variant rs3184504 in the SH2B adaptor
protein 3 (SH2B3) locus was in high linkage
disequilibrium (LD) with the lead SNP
rs653178 and strongly associated in panel A
(r2 = 0.87; P = 3.423 1026; OR [95% CI],
0.83 [0.77–0.90]). For rs653178,
a subphenotype-differential effect was
observed for Löfgren syndrome in panel B-II
(P = 6.753 1023; OR [95% CI], 1.97
[1.20–3.24]). Complete results for the
subphenotype analysis are given in Table E1
in the online supplement.

Second, in the chromosome 5q33.3
region upstream of IL12B, SNP rs4921492
yielded a genome-wide significant result (P =
2.143 1029; OR [95% CI], 1.20 [1.13–1.27])
for sarcoidosis. Concerning subphenotypes,

this marker associated with nominal
significance with the involvement of the
central nervous system in panel F (P = 0.035;
OR [95% CI], 1.51 [1.03–2.23]) (see Table E2
for complete subphenotype results). Besides
the lead SNP rs4921492, five markers that are
in high LD with it are strongly associated
with sarcoidosis (see Table E3). One of those,
namely SNP rs12651787 (P = 9.593 1026;
OR [95% CI], 1.20 [1.10–1.29]), is in high LD
with rs1422877 (r2 = 0.97), which is predicted
to reside in a nuclear factor-kB binding site
and to confer allele-specific binding
probabilities for the transcription factor (TF)
RelA.

Third, SNP rs223498 located on
chromosome 4q24 near NFKB1 showed
a significant association in the joint
analysis (P = 1.283 1029; OR [95% CI], 1.19
[1.12–1.26]). In panel A, a neighboring SNP
(rs227375) was associated with the same
effect size (OR [95% CI], 1.19 [1.10–1.29]),
but did not represent an independent signal
as investigated by conditional regression
analysis (data not shown). The region was
sparsely covered with markers on the
Immunochip (17 SNPs in a region of 6250
kb around the lead SNP). According to
previous GWAS data (9), the association
signal may extend beyond MANBA and
NFKB1 (see Figure E1A). For rs223498, none
of the investigated sarcoidosis subphenotypes
was associated significantly (see Table E4).

Fourth, in the FAM117B gene region
on chromosome 2q33.2, marker
rs6748088 displayed a significant P value
in the joint analysis (P = 2.103 1028; OR
[95% CI], 1.18 [1.11–1.25]). Only four
markers were located in the 6500 kb-
region around the lead SNP. Consulting
previous GWAS data (9) did not allow

Table 1. Study Populations

Panel Descent

Cases Control Subjects

Number* Male (%)*
Mean (SD) Age
in 2014 (yr) Number* Male (%)*

Mean (SD) Age
in 2014 (yr)

A European (Germany) 1,726 (1,869) 39 (40) 62.9 (11.6) 5,482 (5,600) 51 (51) 57.2 (12.6)
B-I European (Germany) 573 (585) 49 (49) 55.7 (12.6) 3,327 (3,500) 47 (47) 48.7 (14.9)
B-II European (Germany) 266 (307) 46 (45) 61.0 (13.7) 266 (285) 50 (50) 58.3 (17.7)
C-I European (Czech Republic) 256 (267) 45 (46) 56.2 (13.1) 305 (330) 42 (43) 45.6 (9.6)
C-II European (Sweden) 817 (1,121) 57 (58) 54.1 (12.4) 2,040 28 53.6 (11.2)
D African American (USA) 781 26 47.9 (15.2) 876 22 38.9 (10.2)
E European (Germany) 342† 43 52.5 (7.2)‡ — — —
F European (Serbia) 920 (920) 47 53.3 (11.4) — — —

*Data are given after quality control, with data before quality control in parentheses.
†Number of trios (two parents with one affected offspring).
‡Given for the affected offspring.
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the restriction of the association signal to
a specific gene encoded in the region, but
suggests a second independent signal in
the genomic region (see Figure E1B).
Conditional regression analysis in this
dataset suggests an independent signal,
represented by rs17469010 (P = 0.002;
OR [95% CI], 1.68 [1.21–2.33]).
Subphenotype analysis did not reveal any
significant differential effects for this
marker (see Table E5).

The complete results for the 44
selected SNPs, including P values for the
Breslow-Day test, are listed in Tables E6
and E7. None of the four novel risk
variants showed a significant association
in the African American sample (panel
D). Power calculations revealed limited
power to replicate the findings in panel
D (rs653178, 14.6%; rs4921492, 42.7%;

rs223498, 26.1%; rs6748088, 21.4%). In
the German trio panel E, one of the newly
identified risk SNPs (rs4921492) showed
nominal significance (P = 0.039; OR [95%
CI], 1.27 [1.01–1.59]) (see Table E8). The
statistical power to detect the three
remaining association signals in panel E was
low with 17.6% (rs653178) and 14.0%
(rs223498 and rs6748088), respectively.

Candidates and Secondary Signals

One SNP in the TYK2 gene region,
rs34536443, was associated with nearly
genome-wide significance in the joint
analysis of the European case-control panels
(P = 5.483 1028; OR [95% CI], 0.64
[0.55–0.76]) (see Table E3) and showed the
same trend in the German trio panel E
(P = 0.086; OR, 0.55 [0.27–1.10]) (see Table
E4). It causes an amino acid change in the

TYK2 protein (Pro1104Ala) and has
therefore a high potential to be functionally
relevant. No data were available for this SNP
for the African American sample (panel D).
Subphenotype analysis in panel F suggests
an association with fibrosis compared with
patients with no fibrosis (P = 0.01; OR [95%
CI], 4.59 [1.33–15.76]; allele frequencyfibrotic =
0.06; allele frequencynonfibrotic = 0.01).

Furthermore, two SNPs in the known
sarcoidosis risk locus IL23R on
chromosome 1p31.3 were associated
with genome-wide significance in panel
A (rs12069782: P = 4.203 1028; OR
[95% CI], 1.30 [1.18–1.43] and
rs12090164: P = 4.513 1028; OR [95%
CI], 1.30 [1.18–1.42]) (see Tables E6 and
E7), of which rs12090164 was omitted
from follow-up because of complete LD
(r2 = 1). Subphenotype analysis did not
reveal any subphenotype-differential
effects (see Table E9). Conditional
regression analysis showed that the
association signal of rs12069782 was
independent of the association
previously reported (11, 29). The online
supplement provides more details. The
lead SNP rs12069782 was subjected to
replication in the European case-control
populations (panels B-I, B-II, C-I, and
C-II). In this analysis the ORs ranged
from 1.03 to 1.46, with P = 3.073 10210

(OR [95% CI], 1.24 [1.16–1.33]) in the
joint analysis of panels A, B, and C
(see Tables E6 and E7). However, the
association was not confirmed in the
African American panel D (power,
68.3%) or the German trio panel E
(power, 14.7%) (see Table E8).

Risk Variants in the HLA Region

The combined analysis of single markers in the
HLA region and imputed classical HLA alleles
in panel A revealed a total of 1,172 associated
markers of the extended HLA region (chr6:
25–35 Mb; P, 5.03 1028), comprising three
independent association signals (see online
supplement for complete results).

The BTNL2 Region

The strongest association in the HLA
region was represented by marker
rs5007259 in the BTNL2 promoter region
(P = 1.553 10235; OR [95% CI], 0.60
[0.55–0.65]) (Figure 2). In a recently
published association study comprising
panel D (samples of African American
[AA] origin) and additional sarcoidosis
patients and control subjects of

Table 2. Association Results for Newly Discovered Sarcoidosis Risk Variants

dbSNP ID rs653178 rs4921492 rs223498 rs6748088

Chromosome 12 5 4 2
Position 112,007,756 158,832,277 103,651,962 203,264,771
Candidate genes ATXN2, SH2B3 IL12B NFKB, MANBA FAM117B
A1 G A C C
A2 A C A T
Panel A
AFcases 0.55 0.39 0.51 0.34
AFcontrols 0.5 0.34 0.47 0.31
P value 1.363 1026 7.563 1027 6.683 1026 4.303 1024

OR (95% CI) 1.21 (1.12–1.30) 1.22 (1.13–1.32) 1.19 (1.10–1.29) 1.16 (1.07–1.26)
Panel B-I
AFcases 0.54 0.39 0.52 0.35
AFcontrols 0.49 0.35 0.48 0.30
P value 8.063 1023 0.019 0.012 1.343 1024

OR (95% CI) 1.19 (1.05–1.34) 1.17 (1.03–1.33) 1.18 (1.04–1.33) 1.29 (1.13–1.48)
Panel B-II
AFcases 0.54 0.4 0.5 0.37
AFcontrols 0.51 0.33 0.48 0.31
P value ns 0.039 ns 0.048
OR (95% CI) 1.13 (0.89–1.44) 1.33 (1.04–1.71) 1.08 (0.85–1.38) 1.29 (1.00–1.67)

Panel C-I
AFcases 0.58 0.38 0.44 0.36
AFcontrols 0.48 0.36 0.49 0.32
P value 8.943 1024 ns ns ns
OR (95% CI) 1.49 (1.18–1.89) 1.11 (0.87–1.41) 0.82 (0.64–1.03) 1.20 (0.94–1.54)

Panel C-II
AFcases 0.50 0.38 0.54 0.32
AFcontrols 0.48 0.35 0.48 0.30
P value ns ns 1.083 1025 ns
OR (95% CI) 1.12 (0.99–1.26) 1.14 (0.94–1.39) 1.30 (1.16–1.46) 1.10 (0.95–1.27)

Joint analysis
P CMH 1.643 10210 2.143 1029 1.283 1029 2.103 1028

OR (95% CI) 1.19 (1.14–1.27) 1.20 (1.13–1.27) 1.19 (1.12–1.26) 1.18 (1.11–1.25)

Definition of abbreviations: AF = allele frequency; CI = confidence interval; CMH=Cochran-Mantel-
Haenzel test; dbSNP=National Institutes of Health SNP database; ns = not significant; OR=odds ratio.
The position of the respective lead variant is given according to human genome build 19. OR refers to
allele 1 (A1), and P values are presented for the logistic regression model using an allelic model
for genotype coding. The threshold for genome-wide significance (P, 53 1028) in the CMH test
(P CMH) was applied to define a true association.

ORIGINAL ARTICLE

730 American Journal of Respiratory and Critical Care Medicine Volume 192 Number 6 | September 15 2015



European American (EA) origin (30),
marker rs5007259 was associated with
nominal significance in both subsets
(pAA = 3.803 1023; pEA = 7.053 1027).
Table E10 provides complete results on
overlapping signals in the HLA region.
Subphenotype analysis of rs5007259
revealed a nominally significant
association with Löfgren syndrome, with
OR ranging from 0.37 to 0.52. Complete
results for the subphenotype analysis of
this marker are given in Table E11.

The BTNL2 region was densely covered
by the Immunochip, allowing fine-mapping
of the major signal to the putative promoter
region of BTNL2 (see Figure E2). The
previously reported functional splice site
variant rs2076530 was significantly associated
(panel A; P = 9.643 10225; OR [95% CI],

0.65 [0.60–0.70]), however no longer
significant after including the allelic dosage
for rs5007259 as a covariate (i.e., conditioning
on rs5007259) (Pcond = 0.097). In contrast, the
association of rs5007259 remained highly
significant (Pcond = 5.003 10213). According
to FuncPred, the most strongly associated
variants in the promoter region are predicted
to reside in TF binding sites.

Analysis of HLA-haplotypes using
logistic regression analysis revealed
a significant association of HLA-DRB1-
haplotypes (*0101: P = 1.423 10218; OR
[95% CI], 0.48 [0.41–0.57] and *0301:
P = 4.993 10219; OR [95% CI], 1.65
[1.48–1.84]) with sarcoidosis, a finding
that has most consistently been reported
(reviewed in Reference 31). HLA-
DRB1*0301 was associated also in the small

sample of patients with Löfgren syndrome
(P = 2.253 10213; OR [95% CI], 4.20
[2.86–6.86]), confirming previous findings
(32). The BTNL2 SNPs rs5007259 remained
significantly associated after conditioning on
HLA-DRB1*0101 (P = 1.633 10223; OR
[95% CI], 0.65 [0.60–0.71]) and HLA-
DRB1*0301 (P = 5.633 10225; OR [95%
CI], 0.64 [0.59–0.70]) in our study
population. Vice versa, the association of
both haplotypes was diminished by
conditioning on rs5007259 (P = 2.293
1028; OR [95% CI], 0.61 [0.52–0.73] and
P = 5.433 1027; OR [95% CI], 1.34
[1.20–1.51]).

HLA-B and HLA-DPB1

When conditioning all markers and the
imputed haplotypes in the HLA region on
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rs5007259, marker rs4143332, which is
located upstream of HLA-B, yielded the
smallest P value (Pcond = 7.733 10218;
OR [95% CI], 1.64 [1.47–1.84])
(Figure 2). The most significantly
associated haplotype HLA-B*0801
showed an association signal of similar
strength (Pcond = 2.563 10217; OR
[95% CI], 1.63 [1.45–1.82]). Subphenotype
analysis of rs4143332 revealed
a significant difference in allele
frequency between patients affected by
acute and chronic sarcoidosis (OR,
<2.21), and an even stronger differential
effect for Löfgren syndrome (OR,
<2.85). Table E12 provides complete
results of the subphenotype analysis for
this marker.

Conditioning on both rs5007259 and
rs4143332 revealed a third independent
association signal with genome-wide
significance in the HLA region that is

represented by SNP rs9277542 (Pcond =
1.133 10210; OR [95% CI], 1.32
[1.21–1.44]) (Figure 2). In panel F, this
marker displayed a differential effect for
skin involvement (P = 7.133 1023;
OR [95% CI], 0.62 [0.44–0.88]). The
complete results for the subphenotype
association analysis are given in Table
E13. Marker rs9277542 is located in the
39-UTR of HLA-DPB1. None of the
surrounding highly associated markers
confer an amino acid change in the
encoded protein, but functional
predictions suggest a role in expression
regulation via allele-specific miRNA
binding (see Table E14) and alternative
splicing according to SNPinfo (33). The
online supplement and Data File E1
provide results of imputed
HLA-haplotype analysis, subphenotype
analysis, and complete information on
the association of HLA haplotypes.

Association signals of established
sarcoidosis risk variants are given in the
online supplement.

Protein Network Analysis

A network analysis of potentially
affected gene products was performed
using STRING (34). Proteins that were
included in the analysis were selected
based on the association and in silico
analysis presented in this manuscript
(i.e., BTNL2, HLA-DPB1, HLA-B,
MICA, ANXA11, IL23R, SH2B3, CRIP1,
IL12B, MANBA, NFKB1, and FAM117B)
or were previously described or
hypothesized as potentially affected
(i.e., TNF, HLA-DRB1, HLA-DQB1,
OS9, CYP27B1, KCNK4, CCDC88B, and
RAB23). The analysis identified one
prominent protein network, comprising
key molecules of the IL12/IL23 signaling
pathways (Figure 3).
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Sharing of Risk Loci and

Cumulative Heritability

Our study demonstrated a considerable
sharing pattern of sarcoidosis susceptibility
factors, especially of the IL23/IL12 signaling
pathway with other disorders and
phenotypes, such as ankylosing spondylitis,
inflammatory bowel disease, and psoriasis
(IL23R, IL12B, and TYK2); rheumatoid
arthritis (IL23R and TYK2); and multiple
sclerosis (IL12B and TYK2; reviewed in
Reference 17). However, the exact
association patterns are not identical for
these conditions as illustrated in
a comparison of the IL12B and IL23R
signal for sarcoidosis, psoriasis, and Crohn
disease (35) (see Figure E3). Sequential
conditional logistic regression analysis,
calculation of LD, and test for epistasis
proved the independence of the 11
sarcoidosis risk variants located in the
BTNL2, HLA-B, HLA-DPB1, ANXA11,
IL23R, ATXN2, IL12B, MANBA, FAM117B,
chromosome 11q13.1, and RAB23 regions
(see Figure E4). However, assuming
a prevalence of 40 per 100,000, the
cumulative heritability of the respective
11 lead variants was estimated to be only
2.78% (see Table E15).

Discussion

In our study, we successfully screened
the largest sarcoidosis case-control study
population to date for novel risk factors
and identified chromosomes 12q24.12

(ATXN2/SH2B3), 5q33.3 (near IL12B),
4q24 (MANBA/NFKB1), and 2q33.2
(FAM117B) as susceptibility regions for
sarcoidosis in the investigated European
samples. We further found a novel,
independent association signal on
chromosome 1p31.3 (IL23R). Because of
the extraordinary sample size and the
applied level of significance, our findings
are highly reliable to represent true
genetic risk factors for sarcoidosis in
Europeans. However, the analysis of the
associated markers in an African
American sarcoidosis population was not
successful, which could have power
(,68% throughout all tests), genetic, and
functional reasons. This discrepancy
points out the need for explicit
transancestry association studies to get
insight into the genetic architecture of
sarcoidosis across populations of diverse
ancestry. Analysis of sarcoidosis
subphenotypes revealed several findings
with nominal significance. However,
because of the large numbers of tests,
most of these results would not remain
significant after correction for multiple
testing and thus have to be investigated
in independent samples for validation.
Therefore these findings are not
discussed in detail here.

The identified sarcoidosis
susceptibility loci harbor genetic variants
that may be functionally relevant in the
context of sarcoidosis pathogenesis,
affecting either known or novel players.
First, variant rs3184504 on chromosome
12q24.12 induces an amino acid change
(R262W) in the SH2B3 protein, an intriguing
candidate. SH2B3 is involved in B-cell
proliferation (36) and the endothelial
response to TNF (37) and has not yet
been implicated in sarcoidosis pathogenesis.
The rs3184504*A risk allele is associated with
stronger activation of the NOD2 recognition
pathway in response to lipopolysaccharide
and muramyl dipeptide, suggesting SH2B3
may play a role in protection against bacterial
infection (38). Second, among the associated
markers in the chromosome 5q33.3 region,
SNP rs1422877 confers allele-specific binding
probabilities for the TF RelA, which could
influence the expression of neighboring genes
(e.g., of the IL12B gene that encodes the p40
subunit of the IL12 and the IL23 receptors).
Third, the lead SNP in the chromosome
1p31.3 region is located in the putative
promoter region of the IL23R gene and might
therefore influence IL23R expression.

Fourth, the associated variants on
chromosome 2q33.2 could affect the
expression of many genes, among them
BMPR2, which is involved in the
regulation of inflammatory processes in
the lung (39) and has been suggested
as a core mediator in sarcoidosis
pathogenesis in comparison with
idiopathic pulmonary fibrosis (40). Fifth,
allelic variation of the candidate risk
SNP rs34536443 (TYK2 Pro1104Ala) is
known to influence Th2 lymphocyte
polarization (41). The risk allele “C”
reduces TYK2 activity in T lymphocytes
and shifts the cytokine secretion toward
a Th2 cytokine profile. This shift is also
observed in severe sarcoidosis with
progressing pulmonary fibrosis (42).
Strikingly, the rare rs34536443-C allele is
strongly associated with fibrosis among
patients with sarcoidosis in panel F.
Because of the large effect size (OR, 4.6),
this finding provides potential for
clinical application as a marker for high-
risk patients, given a successful
independent replication. Functional
hypotheses on risk variants in the
remaining novel susceptibility regions
are given in the online supplement.
Because the identification of genetic
defects and deranged pathways does not
necessarily imply a direct link to
immunopathogenesis or therapy, further
experimental work is necessary to assess
these previously mentioned hypotheses
and to clarify the potential role of the
associated variants in the specific
molecular processes in sarcoidosis
pathogenesis and whether they represent
useful targets in a therapeutic approach.

A network analysis of the potentially
affected gene products defined in this
study identified one prominent protein
network, comprising key molecules of the
IL12/IL23 signaling pathway (reviewed in
Reference 17). From these data, we
hypothesize that the IL12/Th1 and
IL23/Th17 signaling pathways could be
affected by the described risk alleles.
Both Th1 and Th17 cells are present in
granulomas of patients with sarcoidosis
and are known to play a crucial role in
disease process (43, 44). This is in line
with emerging reports on the role of
Th17 T cells in sarcoidosis and confirms
Th1 cells as well-established players in
disease pathogenesis (44, 45).

Of note, the two loci IL12B and
IL23R are shared risk loci for sarcoidosis,
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Figure 3. Protein interaction network, which

was generated using STRING based on (1)

coexpression of the respective transcripts, (2)

experiments, and (3) information from (in parts)

curated pathway databases, applying

a confidence score .0.7. Colored nodes

represent proteins that are or may be affected by

sarcoidosis risk variants.

ORIGINAL ARTICLE

Fischer, Ellinghaus, Nutsua, et al.: HLA and IL23 Network Loci Add to Sarcoidosis Risk 733



the skin disease psoriasis, and the
granulomatous Crohn disease, yet with
differing association patterns. Given a more
detailed genetic investigation, this
information could be of value, because
targeting the IL12/IL23 signaling pathway
using the p40 antibody ustekinumab is
approved in psoriasis treatment and also
seems promising in the therapy of severe
Crohn disease (46, 47). However, for
sarcoidosis no such positive effect was
observed (48). Because genetic data were not
incorporated in this ustekinumab trial in
sarcoidosis, we hypothesize that genetic
information might aid the identification of
a subset of patients with sarcoidosis that
may have a higher chance to respond to
the treatment, alike reported for a variant in
the TNF locus and anti-TNF treatment
(49). Functional and clinical studies are
necessary to evaluate the usefulness of
ustekinumab in such a genetically defined
subcohort.

The HLA region has long been known
and is most consistently reported to be
associated with sarcoidosis. Our group
had reported the association of BTNL2
and suggested the splice variant rs2076530
as the underlying risk factor before (2).
Since then, this association has been
replicated in other European and non-
European populations (4, 50–55). However,
in this study the most strongly associated
variants were located in the BTNL2
promoter region and are predicted to reside
in TF binding sites. They may therefore
influence expression of BTNL2 by altering
TF binding. Thus, this result may point to
a different underlying mechanism, although
it confirms BTNL2 as a risk factor for
sarcoidosis.

The second independent signal in the
HLA region peaked near HLA-B with the
common haplotype HLA-B*0801 showing
the strongest effect, with lead SNP rs4143332
being significantly associated with acute
sarcoidosis and Löfgren syndrome, which is
in line with previous findings (56, 57). It is
part of the so-called “8.1 ancestral
haplotype” (HLA A*0101: Cw*0701: B*0801:
DRB1*0301: DQA1*0501: DQB1*0201),
which is common in Europeans and
includes a large number of genes related to
the immune system. The 8.1 ancestral
haplotype has been repeatedly reported in
the context of sarcoidosis susceptibility and
progression (56, 57) and is associated with
several other immune-related diseases (58),
such as systemic lupus erythematosus and
primary sclerosing cholangitis (21, 59).

The third signal in the HLA-region is
located in the 59-UTR region of HLA-
DPB1. This gene encodes a subunit of the
HLA-DP receptor that plays a central
role in the immune system by presenting
peptides derived from extracellular
proteins. HLA-DPB1 genotypes had been
linked to sarcoidosis before (60–63) and
the Glu69 variant (rs1042140) is known
to be associated with chronic beryllium
disease, a phenocopy of sarcoidosis (64).
In our study population, none of the
Glu69-containing haplotypes were
associated with genome-wide
significance (data not shown). Instead,
this is the first report that locates this
association at HLA-DPB1 to the 59-UTR
region of the gene, where the associated
markers are predicted to affect miRNA
binding and alternative splicing. The
online supplement provides information
for further functional hypotheses on

associated variants. Overall, the genetic
findings reported here are highly reliable,
setting a most solid ground for
subsequent experimental validation.

Altogether based on our study and
previous findings, we defined 11 sarcoidosis
risk loci (BTNL2, HLA-B, HLA-DPB1,
ANXA11, IL23R, SH2B3/ATXN2, IL12B,
NFKB1/MANBA, FAM177B, chromosome
11q13.1, and RAB23). However, the
cumulative heritability of the 11 lead
variants was estimated to be only 2.78%.
This means that additional genetic risk
factors for sarcoidosis remain to be
discovered, which may include common
variants with even smaller effects or risk
alleles with lower frequencies, which were
not targeted with the SNP selection strategy
applied in this study. The detected loci show
a considerable sharing pattern with other
disorders and phenotypes. This overlap is
supportive of the hypothesis that sarcoidosis
shares a common genetic background with
other immune-related diseases. Thus, our
findings may inspire a revised classification
of clinical disease manifestations and
subphenotypes and may provide hypotheses
for novel therapeutic targets. n
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Grohé C. BTNL2 gene variant and sarcoidosis. Thorax 2006;61:273–274.

4. Rybicki BA, Walewski JL, Maliarik MJ, Kian H, Iannuzzi MC;
ACCESS Research Group. The BTNL2 gene and sarcoidosis
susceptibility in African Americans and whites. Am J Hum Genet
2005;77:491–499.

5. Hofmann S, Franke A, Fischer A, Jacobs G, Nothnagel M, Gaede KI,
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