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In this work, a new methodology is presented for reconstructing the impact 

force history using Artificial Neural Networks (ANNs) and spectral 

components of sensor data recorded by piezoceramic sensors. A large set of 

data, required for training the ANNs, were generated by using an efficient 

nonlinear Finite Element (FE) model of a sensorised composite stiffened panel. 

Impact experiments were performed on a composite plate equipped with 

surface-mounted piezoceramic sensors to validate the numerical modelling 

approach. Using the FE model of the panel, data were generated for impacts 

which are likely to occure during life-time of an aircraft, containing large mass 

(e.g. dropping tool) and small mass (e.g. debris) impacts at various locations, 

i.e. in bay, on the foot of stringer and over/under stringer. Even though the 

panel undergoes large deformation during impact (nonlinear response), the 

established networks predict the impact force history and its peak with 

reasonable accuracy. 
 

Keywords: impact, force reconstruction, structural health monitoring, artificial 

neural network, composite stiffened panel 

 

1 Introduction 

In the aviation industry, real-time characterisation of impact events has direct 

influence on design, production and maintenace costs. The impact characterisation 

contains estimating the location and magnitude of the impact by using the data 

collected via sensors. This is an inverse problem; the input to the system is estimated 

from its response. In practice, the response of the structure subjected to an impact is 

recorded via embedded or surface-mounted sensors. These data are subsequently 

analysed with a suitable algorithm to locate the impact and determine the peak impact 

force or possibly reconstrcut the impact force history. Determination of the impact 

location on composite stiffened panels has been addressed in several studies (Dae-Un 

et al. 2000; Worden et al. 2000; Haywood et al. 2005; Park et al. 2009; Sharif-

Khodaei et al. 2012). The focus of this paper is on determination of the impact force.  

In the last three decades, several methods have been proposed to reconstruct the 

impact force from the response of the system by taking advantage of the convolution 

integral. A detailed review of some of these methods can be found in (Inoue et al. 

2001). In (Doyle 1987; Inoue et al. 1991; Martin et al. 1996), the frequency domain 

deconvolution method was employed to estimate spectral components of the impact 

force, and then the time history of the force was obtained by using the inverse fast 

Fourier transform. Doyle (1997) used wavelet functions in conjunction with the 

convolution integral to develop a new algorithm for estimating the impact force 

history. This method provided more accurate results than the frequency domain 

deconvolution method. Park et al. (2009) proposed a method that is applicable to 

complex structures. In this method, the relationship between the impact force and the 

sensor data was represented by a linear finite difference model, and the unkowns of 
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the model were determined by using a set of training data, which were obtained 

experimentally. This method was also based on the convolution integral. 

Identification of multi-site impacts, based on using the convolution relation, has been 

addressed in (Adams et al. 2002; Jankowski 2009). 

Artifitial Neural Networks (ANNs) have also been used to predict the peak impact 

force using different features of the sensor signal (Jones et al. 1997; Staszewski et al. 

2000; Worden et al. 2000; Haywood et al. 2005). ANNs are mathematical models that 

can be trained to model complex nonlinear relationships between the inputs and 

outputs. Once trained, they provide real-time predictions, similar to other pattern 

recognition techniques, which can be crucial for some applications such as adaptive 

impact absorption systems (Sekuła et al. 2013). In (Staszewski et al. 2000), 80 

impacts were carried out on a composite panel at random locations in order to provide 

data for training. The level of the force was kept below 0.1 N in order not to damage 

the plate. For the ANN with the best performance, the mean error of the estimated 

peak force on the test data was 28%. In a previous study by the authors (Ghajari et al. 

2012), an ANN was established and trained for detecting impact events on various 

locations of an aircraft composite stiffened panel. In contrast to the majority of 

previous studies, both small mass and large mass impacts were considered. The mean 

error of the peak force measured on the test data was slightly better than previous 

studies, approximately 26%. 

The force reconstruction methods based on the convolution integral are restricted 

to linear cases, which implies that impact forces should be so small that they do not 

cause large deflections (geometric nonlinearity) in the structure. However, aircraft 

panels are very likely to undergo large deflections during life-time impacts, such as 

dropping tool, debris impact or hail strike. In addition, there are no other efficient 

methods that can be applied to real-time reconstruction of the impact force when there 

is geometric nonlinearity. 

To overcome this problem, in the present paper, a new methodology based on 

Artificial Neural Networks is presented to reconstruct the force history of impacts 

which cause large deflections in the panel. A large set of data, required for training 

the networks, were generated by using an efficient nonlinear Finite Element (FE) 

model of a composite stiffened panel. Different types of impacts that occur during 

life-time of an aircraft were simulated. The impacts were applied at various locations 

(in bay, on the foot of stringer, over/under stringer) and from inside and outside of the 

panel. ANNs were established to reconstruct the force and to estimate the peak force. 

The effects of signal features, network architecture, noise and sensor distribution on 

the performance of the ANNs are investigated. Signal processing techniques are 

employed to reveal possible differences between sensor signals recorded in small 

mass and large mass impacts, which can be used to categorise impacts. 

The paper is organised as follows: in section 2, the frequency domain 

deconvolution method is explained. Results of impact experiments on a sensorised 

composite plate and validation of the modelling approach are presented in section 3. 

In the same section, the applicability of the frequency domain deconvolution method 

to impact force reconstruction of thin plates is examined. Section 4 is dedicated to 

describing the proposed ANN based methodology for force reconstruction and 

determination of the peak force. Some discussions are presented in section 5 

following by concluding remarks in section 6. 
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2 Force reconstruction using frequency domain deconvolution 

An aircraft stiffened  panel is typically composed of a skin, stiffeners and stringers. 

During an impact, part of impactor’s kinetic energy  converts to strain waves 

propagating in the skin from the impact location. These waves, which can be 

measured with surface bonded piezoceramic sensors, contain some information about 

the impact event. For instance, the time that it takes for the strain wave to reach a 

sensor (time of arrival, ToA) has a direct relation with the distance between the 

impact location and the sensor. Analysis of ToAs of a few sensors with the 

triangulation method or ANNs (Dae-Un et al. 2000; Sharif-Khodaei et al. 2012) leads 

to precise determination of the impact location. 

Sensor signals also contain some information about the impact force. To reveal 

these information, it may be assumed that the dynamical system (s) is linear time-

invariant (LTI), which means for any two input signals f1(t) and f2(t) and any real 

constant a: 

  [  ( )    ( )]   [  ( )]   [  ( )]  [   ( )]    [  ( )] (1) 

 

and if u1(t) = s[f1(t)] then u1(t-T) = s[f1(t-T)], where t and T are time. The latter 

condition is normally satisfied for composite stiffened panels subjected to impacts, as 

there is no significant time-dependent variable, such as a rate-sensitive material, in the 

system. The former conditions are satisfied when deflection of the panel under impact 

loading is not large. As a rule of thumb, deflection of thin-walled structures is large 

when it exceeds the thickness of the plate (Abrate 2001). This condition will be 

discussed later.  

Essentially, all LTI systems can be represented with a time convolution integral. 

Assuming zero initial conditions, u(0) = 0, this integral is: 

  ( )   ∫  (   ) ( )   
  (2) 

 

The input, f(t), can be the impact force history and the response, u(t), can be the in-

plane strain measured with a sensor. In the frequency domain, the convolution 

equation becomes: 

  (  )    (  ) (  ) (3) 

where:  (  )     ∑ (  ) 
          

 (  )     ∑ (  ) 
          

 (  )     ∑ (  ) 
          

(4) 

 

The above equations are discrete spectral representations of the force, sensor signal 

and system. Capital letters are used to indicate the frequency domain representation of 

quantities. The circular frequency is: 
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       (   )    (5) 

 

where N is the total number of data points and Δt is the sampling time-step. Equation 

(3) suggests a relatively simple solution to the force reconstruction problem; given 

frequency domain representations of the system and the sensor signal, the components 

of the spectral force can be obtained from: 

  (  )    (  )  (  ) (6) 

 

If S(ωn) is zero, the inverse problem becomes ill-conditioned. Martin and Doyle 

(1996) have proposed a remedy for this problem, which will be discussed in 

section  3.2. An inverse Fourier transform of the spectral force will provide the 

reconstructed force in the time domain. S depends on the material properties and 

geometry of the problem. For simple problems, it can be determined by using 

analytical solutions (Doyle 1987). However, for complex problems, experiments or 

numerical simulations should be performed to accurately determine S(ωn) (Inoue et al. 

1991; Gopalakrishnan et al. 1994). 

3 Force reconstruction for impacts on a composite plate 

The frequency domain deconvolution method was used to reconstruct the force 

history of impacts on a composite plate. The impact events and wave propagation 

were simulated with the Finite Element (FE) method. An advantage of using the FE 

method is that the validity of assumptions made for force reconstruction, particularly 

the linearity of the system, can be easily examined. To validate the accuracy of the FE 

model, impact tests were carried out on the sensorised composite plate and the results 

were compared to numerical predictions. 

3.1 Validation of the FE model 

The plate was made of HTA/6376C carbon fibre reinforced epoxy resin, with a 

[0/+45/-45/90/02/90/0/+45/-45/0/90]S lay-up and a 3.4 mm thickness. This laminate 

has applications in skin-stringer aircraft panels. Two circular piezoceramic sensors 

(PIC 255), 10 mm diameter and 0.5 mm thickness with wrap-around electrodes, were 

bonded on the plate with an epoxy resin (Araldite 2011). Material properties of the 

composite lamina and the sensor are presented in Table 1.  

 

Table 1 Material properties of the composite lamina and sensor 

HTA/6376C 
E1 [GPa] E2 [GPa] ν12 G12 = G13 [GPa] G23 [GPa] ρ [kg/m

3
] 

137 9.9 0.3 5.2 3.1 1300 

PIC 255 
E [GPa] ν ρ [kg/m

3
]    

100 0.38 7800    

 

 

The plate was supported in a fixture with a 200 mm by 200 mm window, 

representing a typical stringer pitch in aircaft panels. Impacts were carried out using 

an Instron impact system. The impactor had a 10 mm radius tup and its mass was 2.41 

kg. The impactor was dropped at the centre of the plate from a height of 43 mm (0.92 

m/s initial velocity). Impact energy was kept low in order to avoid damaging the plate. 
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The impact force and sensor data were recorded at a frequency of 200 kHz. The 

experiment was repeated three times. Very good repeatability of the results was 

observed, which indicates that the plate was not damaged during the impacts. 

The impact test was simulated, using the ABAQUS FE software (2010). The plate 

was meshed with 2 mm general purpose shell elements (S4R) and the compsite lay-up 

was defined with through-thickness integration points. Following suggestions made 

by (Sharif-Khodaei et al. 2012), instead of modelling the small sensor with solid 

elements, which drastically decreases the time step and consequently increases the 

simulation time, one through-thickness integration point was added to the shell 

elements at the location of the sensor to represent the sensor. Figure 1 shows the 

dimensions of the plate, location of the sensors and boundary conditions. The 

impactor was modelled with discrete-rigid elements. The softened penalty algorithm, 

with the pressure-overclosure formulation, was used to model the contact between the 

plate and the impactor. The pressure-overclosure data were determined by using the 

following relation, which was derived based on the Hertzian contact theory in (Sharif-

Khodaei et al. 2012): 

              (7) 

 

In this equation, p  is the contact pressure, y is overclosure of slave nodes (nodes of 

the impactor), R is the radius of the impactor and kH is the contact stiffness, which is 

dependent on the mechanical properties of the impactor and the laminate. Contact 

stiffness was determined as 6.6 x 10
8
 Nm

3/2
 by using the relations presented in 

(Olsson 2001) and scaling the resulting value with respect to the theoretical and 

experimental values of kH obtained for the contact between a steel sphere  and a  

carbon-fibre reinforced polymer laminate (Pierson et al. 1996). 

 

 

Figure 1 Dimensions of the plate (in mm), location of sensors and boundary conditions. 
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The experimental and FE results are superimposed in Figure 2. The numerical 

sensor signals were scaled by the ratio of the peak of the sensor signal measured 

experimentally to that of the sensor signal predicted numerically, both at sensor 

1.There is reasonable agreement between the predicted and experimental impact 

forces. The FE model predicts slightly higher impact force after 2 ms, which can be a 

result of high transverse shear stiffness of shell elements. Using more than one 

continuum shell element (ABAQUS 2010) through the thickness of the plate may 

improve the predicted force history. Sensor signals contain the first arrived strain 

wave as well as reflections of the wave from the supports and edges of the plate. 

Boundary conditions significantly influence the reflected waves. However, perfectly 

modelling boundary condirions is not trivial. Hence,  discrepancies between simulated 

and experimental signals are expected. Nonetheless, the accuracy of the FE model for 

simulating impact-induced wave propagation in composite plates is adequate. 

 

 

 
  

  

Figure 2 Experimental and FE results for the 2.41kg-0.92m/s impact on the composite 
plate. 

 

3.2 Force reconstruction 

The frequency domain deconvolution method was used to reconstruct the impact 

force history. This method requires spectral components of the system (S). These 

components were obtained from the steady-state dynamic solution to the numerical 

model of the plate excited with a harmonic force at the plate centre. Figure 3 shows 

the magnitude of S at a range of frequencies. Several peaks in this plot indicate 
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reflections of the strain wave from boundaries. Sharp peaks of S would cause a 

problem if the frequency at which F is evaluated does not coincide with the frequency 

at which S is known. In addition, the presence of the boundaries would produce an S 

that can have zeros. This would potentially cause singularities when evaluating 

components of F from eq. (6. However, Martin and Doyle (1996) have shown that the 

adverse effects of reflections can be alleviated by using the data recorded by two 

sensors, as follows: 

    [  ̅     ̅         ]  (8) 

 

The horizontal line indicates complex conjugate.  

 

 

Figure 3 Magnitude of spectral components of the system. 

 

According to Davies and Olsson (2004), when the maximum plate mass affected 

by impact is smaller than half of the impactor mass, the impact is large mass and the 

response is quasi-static. In these conditions, significant spectral components of the 

force and response correspond to frequencies that are lower than the first natural 

frequency of the system. In the studied problem, the plate mass, between the supports, 

was approximately 0.18 kg, which is significantly smaller than the impactor mass. 

According to eq. (5), the frequency of the 12
th

 spectral component, given 20 ms signal 

duration, is approximately 550 Hz. This frequency is slightly larger than the first 

natural frequency of the system, 537 Hz. Therefore, only first twelve spectral 

components were used in eq. 8 and the rest were set to zero. This also filters the 

signals from high frequency components and provides a smooth result. 

Deflection of thin plates subjected to impacts can be large and, therefore, the 

nonlinear membrane stiffness of the plate, which affects the contact force, deflection 

and strain field (Chen et al. 1985), must be considered in numerical solutions. For 

validation of the FE model, nonlinear stiffening terms were included (nonlinear 

model). To investigate the influence of these terms on force reconstruction results, 

another simulation was carried out without including these terms (linear model). 

Sensor signals were post-processed with the frequency domain deconvolution method 

and the contact force history was reconstructed. 
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The reconstructed and actual forces are plotted in Figure 4. The accuracy of the 

method is very good for the linear model. For the nonlinear model, however, the 

reconstructed force is significantly smaller than the actual force. For this model, 

maximum deflection of the plate was nearly 60% of its thickness, which indicates that 

there was moderate geometric nonlinearity in the system.  

 

 

  

Figure 4 Force reconstruction results for the composite plate. 

 

 

The delamination threshold force of the plate can be determined using the 

following relation (Olsson 2001): 

     √         (9) 

 

In this equation, GIIc is the mode II interlaminar toughness and D
*
 is the effective 

plate stiffness approximated by: 

    √      (   )    ;           (        ) √       (10) 

 

Using GIIc = 0.7 kJ/m
2
 (Faggiani et al. 2010), the delamination threshold of the 

laminate is 3700 N. The peak impact force was nearly three-folds smaller than this 

threshold. Nonetheless, large deflection of the plate drastically influenced the 

outcome of force reconstruction. 

4 Impact force identification with artificial neural networks 

As it was shown in the previous section, when a panel undergoes large deflection 

under impact loading, the force reconstruction methods that are based on the 

convolution integral cannot be used anymore. The generalised form of this integral, 

which can represent nonlinear time-invariant dynamic systems, is a series of infinite 

sum of convolutional integrals, called the Volterra series. This series has been used to 

model nonlinear systems (Tromp et al. 1990; Silva 2005; Balajewicz et al. 2010). 

Instead of exploring the possibility of using this series for impact identification of 

nonlinear systems, the neural network technique was used in this study to predict the 

force history and the peak force. The neural network technique can be used to define 

complex relationships between inputs and outputs. An artificial neural network is a 



9 

mathematical model which adapts its structure during a learning process. A 

comprehensive introduction to ANNs can be found in (Bishop 1995; Haykin 2007). 

4.1 Impact data 

To develop and train a neural network capable of identifying impacts of foreign 

objects on aircraft panels, a large number of sensor data from various impact 

scenarios, i.e. small mass and large mass impacts, at various locations on the panel are 

required. However, it is extremely costly and time consuming to obtain these data 

experimentally. In a previous study (Sharif-Khodaei et al. 2012), a nonlinear FE 

model of a 2045 mm by 1070 mm stiffened panel, made of unidirectional and woven 

carbon/epoxy composite plies, was developed and used to simulate impacts at various 

locations. Figure 5 illustrates the impact locations, which were approximately 50 mm 

apart. A total of 1265 different impacts, including large mass impacts from the inside 

of the panel, representing e.g. tool drop, and small mass impacts from the outside of 

the panel, representing e.g. runway debris impacts, were simulated. Description of the 

impacts are presented in Table 2.  

 

 

 
Large mass impacts (from inside) 

 
Small mass impacts (from outside) 

Figure 5 Location of all simulated impacts. 
 

 

 

 
 

a) 4 sensors in corners of the panel b) 4 sensors in mid-panel  

 
c) 8 sensors d) 12 sensors 

Figure 6 Different sensor distributions. 
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During impacts, force history was recorded. In addition, strain data were collected 

at 300 different sensor positions in order to provide data for sensor optimisation 

studies, such as (Mallardo et al. 2013). However, in the current study, four different 

sensor distributions, shown in Figure 6, were used in order to study their influence on 

the performance of the ANNs. 
 

 

Table 2 Impact scenarios 

Impact 

type 

Impactor’s 
diameter 

(mm) 

Impactor’s 
mass (kg) 

Impactor’s 
velocity (m/s) 

Impactor’s 
kinetic energy 

(J) 

No. of 

impact 

scenarios 

Large 

mass 

25.4 1 3 4.5 225 

2 2 4 210 

3 2 6 210 

Small 

mass 

12.7 0.001 25 0.31 220 

0.003 10 0.15 200 

0.010 10 0.5 200 

Total number of impact scenarios 1,265 

 

4.2 Artificial neural network establishment 

Two different networks were established using MATLAB (2011): A) the impact force 

reconstruction network and B) the peak impact force prediction network. For network 

A, a few number of spectral components of the sensor data and the same number of 

spectral components of the impact force were selected to form, respectively, the input 

layer and the output layer of the ANN. It should be noted that spectral components, 

except the zero frequency component, are complex numbers (see eq. 4). Hence, each 

spectral component was represented with its real and imaginary parts in the input 

layer (see Figure 7). Network A was established for large mass impacts only, because 

a large number of spectral components of the sensor signal and force should be used 

to precisely reconstruct the force of small mass impacts, which will render the training 

process extremely time consuming. For network B, different features were extracted 

from the sensor signal in order to find the network with the optimum performance. 

 

 

Figure 7 MLP network to reconstruct impact force (network A). 
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The ANNs were feedforward Multi-Layer Perceptron (MLP). They were trained 

with a back propagation learning algorithm. To ensure that the ANNs can make 

reasonable predictions for new inputs (to generalise the networks), a validation phase 

was performed on the trained networks (Haykin 2007). Finally, performance of the 

ANNs was assessed through the test phase. For each phase a different set of impact 

data was used. The total available data was randomly divided into 50% training set, 

25% validation set and 25% test set. 

4.3 Network perfromance 

The training phase of an ANN starts with assigning a set of random weights to the 

connections, which are repeatedly adjusted according to a learning rule until the error 

converges to a set limit. Therefore, every time a network is trained, its performance is 

different. To obtain a robust representation of network performance, each ANN was 

trained several times (cycles) and its error, on test data, was determined for each 

cycle. The error function was defined as the normalised mean absolute error between 

the predicted force and the target force. In (Mallardo et al. 2013), it was shown that 

the cumulative distribution of the errors does not significantly change after 100 cycles 

of training. Hence, each network was trained for 100 cycles, and the mean of the error 

distribution was used to represent the network performance. In addition, the network 

with the smallest error, among the 100 trained networks, was reported as the best 

network. 

4.4 Results 

The influence of different signal features, architecture of the network and noise in 

sensor signals on the performance of ANNs were studied. The study was performed 

on the composite stiffened panel with 4 sensors in the corners (Figure 6, a). After the 

features and architecture of the best network was determined, the effect of number 

and position of sensors was also investigated.  

4.4.1 Signal features  

The inputs to the networks are discrete sensor signals, which contain redundant 

information about the impact force. Too many input parameters can result in 

overfitting whereas lack of data would avoid reaching convergance and 

generalisation. Therefore, often signal pre-processing techniques are used to 

select/extract appropriate features from the discrete sensor data  

For network A, signal features were a few components of the FFT of sensor data. 

The effect of increasing the number of spectral components from 8 to 12 on the 

network performance was studied. As can be seen in Table 3, this effect is negligible. 

Hence, 8 spectral components were selected as an efficient number of input/output 

parameters per sensor for the rest of this study. Figure 8 shows two examples of 

simulated (target) and predicted force histories, selected from two different impact 

scenarios. One impact was in the bay and the other was over the foot of a stringer. 

The normalised mean absolute error (nmae) between the predicted force and the target 

force is nearly 18% for both cases. 

The results of using different input parameters for network B are also presented in 

Table 3. It can be concluded that the case B6 results in the best network performance. 

For this network, four input parameters are used per sensor: Maximum of the detailed 

and approximated coefficients of the Discrete Wavelet  Transform (DWT) (level 4 

Daubechies wavelet) together with the maximum value of the sensor signal and its 

correspoding time. These signal features were used for the rest of the study. 
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Table 3  Influence of different signal features on performance of ANNs 

Case Network 

architecture 

Signal features Mean error [%] 

(average for 100 

cycles) 

Mean error [%] 

(best network out of 

100 cycles) 

A1 [60:20:10:60] 8 spectral components 58.95 15.78 
A2 [76:20:10:76] 10 spectral components 60.35 17.13 

A3 [92:20:10:92] 12 spectral components 57.61 15.97 

B1 [8:20:10:1] Max signal + corresponding time 35.34 28.04 

B2 [4:20:10:1] Max signal 40.45 23.19 

B3 [8:20:10:1] Max filtered signal* + max signal 40.92 21.13 

B4 [8:20:10:1] Max approx. coefficient of DWT 

transform + max signal 

33.45 22.16 

B5 [12:20:10:1] Max approx. + detailed coeff. of 

DWT transform + max signal 

27.56 19.4 

B6 [16:20:10:1] Max approx. + detailed coeff. of 

DWT transform + max signal + 

time corresponding to max signal 

26.15 18.22 

* 4
th

 order low-pass Butterworth with cut-off frequency of 80 kHz. 

 

 

  
(a) (b) 

Figure 8 Examples of force history prediction with network A, a) 3kg-2m/s impact in the 
bay, nmae = 18.5% and b) 2kg-2m/s impact over the stringer foot, nmae = 17.9%. 

 

4.4.2 Network Architecture 

Architecture of an ANN, e.g. the number of hidden layers, number of neurons per 

layer and type of activation functions, infuences its training time and performance. 

Unfortunately, there are no set rules to find the optimum network architecture for a 

given problem. Therefore, a parametric study was carried out to find the influence of 

the architecture of the ANNs on their performance.  

The number of hidden layers and neurons per layer were varied to test the network 

performance for each case. The results are presented in Table 4. For network A, the 

best performance was associated with a network with one hidden layer of 10 neurons 

(case A6). For network B, the best performance was obtained with two hidden layers 

of 10 and 5 neurons, respectively (case B7).  

The training algorithm used so far  was Levenberg-Marquardt (LM) 

backpropagation. Other algorithms were also used to train the networks, namely:  

 GDA: Gradient descent backpropagation 

 SCG: Scaled conjugate gradient backpropagation 
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 BR: Bayesian regulation backpropagation 

 CGF: Conjugate gradient backpropagation with Fletcher-Reeves updates 

As it can be seen in Table 4, for network A trained with the SCG and GDA algorithms 

(cases A7 and A9), the mean error for 100 training cycles was significantly smaller 

than the mean error of the other cases. In addition, this error was similar to the mean 

error of the best network. This implies that SCG and GDA algorithms result in 

consistent networks with respect to the mean error. For network B, the LM learning 

algorithm provided the best perfromance (case B7), which agrees with the findings of 

(Lyn Dee et al. 2011).  

 

 

Table 4 Influence of different network architecture on performance of ANN 

Case Layers Training algorithm Mean error [%] 

(average for 100 

cycles) 

Mean error [%] 

(best network out 

of 100 cycles) 

A4 [60:10:5:60] LM 50.38 16.36 

A5 [60:20:60] LM 64.32 13.66 

A6 [60:10:60] LM 51.36 13.03 

A7 [60:10:60] CGF 19.44 17.09 

A8 [60:10:60] BR Did not converge  

A9 [60:10:60] SCG 18.96 15.61 

A10 [60:10:60]  GDA 66.58 29.47 

B7 [16:10:5:1] LM 25.89 18.28 

B8 [16:20:1] LM 31.22 21.86 

B9 [16:10:1] LM 30.7 22.45 

B10 [16:10:5:1]  CGF 34.37 26.91 

B11 [16:10:5:1]  BR 114.42 114.39 

B12 [16:10:5:1]  SCG 36.18 27.09 

B13 [16:10:5:1]  GDA 49.44 35.86 

 

4.4.3 Influence of noise 

Under real load conditions, there may be considerable levels of noise in sensor data 

due to the environmental and technical factors. Therefore, to produce sensor signals 

comparable to life-time scenarios, white Gaussian noise was added to the data. The 

amount of added noise was 5% of the maximum sensor signal (a signal-to-noise ratio, 

SNR, of 26 dB). Network A9 (Table 4) was trained for 100 cycles using the noisy 

data. The mean error was evaluated as 18.76%, which is almost equal to the mean 

error of network A9. This indicates that the effect of the added noise on the 

predictions of the network is negligible. This can be explained by recalling the fact 

that only first 8 spectral components of the sensor signal were extracted and used in 

the input layer, which effectively filtered the signal from large frequency components, 

including noise. 

Some of the input features to  network B were obtained from the Wavelet 

transform of the sensor signal, which has a filtering effect. The Wavelet transform is 

constituted by different levels. One factor that affects the selection of the number of 

levels is the SNR. Moreover, the  mother wavelet  must be carefully chosen to better 

approximate and capture the transient spikes of the original signal. Therefore, the 

level of decomposition and the choice of mother wavelet function on the perfromance 

of network B, established with noisy data, were studied. The type of wavelet functions 

which were considered are Daubechies (db), Haar, Biorthogonal (bior), Symlets 
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(sym), Coiflets (coif) and Discerete Meyer (dmey). The input parameters used for 

estabishing the ANN were the same as case B6 (Table 3). The results showed that 

presence of noise did not significantly change the performance of the network because 

the signals were processed with the DWT. In addition, different types of mother 

wavelet signals and decomposition levels had marginal influence on the training of 

the networks. The mother wavelet function which resulted in the best network 

performance was the Haar wavelet. This mother wavelet is the simplest wavelet 

function and represnets the same wavelet as Daubechies level 1. 

4.5 Categorization of impact scenarios 

It has been demonstrated (Olsson 2000) that the impact response of plates is governed 

by the impactor-plate mass ratio, which leads to the categorisation of impacts to small 

mass and large mass. Small mass impacts have short durations and cause a flextural 

wave controlled response in the plate, whereas large mass impacts have long 

durations and cause a quasi-static response in the plate. This leads to very different 

contact forces and sensor signals during large mass and small mass impacts. The 

contact force and structural response of large mass impacts were represented with a 

few components of their frequency domain spectrum, but for small mass impacts 

many more spectral components were needed.  

Network A was trained for large mass impacts. However, network B was trained 

with both types of impacts. The performance of this network was improved by 

establishing ANNs for small mass impacts and large mass impacts, as can be seen in 

Table 5.  The error of the large mass network (case B14) is less than one-half the error 

of the small mass network (case B15) or the combined network (case B7). This can be 

attributed to different impact responses. The question which remains is how to 

identify the type of impacts by using the sensor data. 

 

Table 5 ANNs trained with different impact data 

Case Layers Impact data Mean error [%] 

(average for 100 

cycles) 

Mean error [%] 

(best network out of 

100 cycles) 

B14 [16:10:5:1] Large mass impacts – with noise 12.34 9.98 

B15 [16:10:5:1] Small mass impacts – with noise 28.03 20.76 

 

 

 

The quasi-static and wave controlled responses of a plate subjected to respectively  

large mass and small mass impacts suggest that spectral components of the strain data 

(structural response) also contain different energy distributions. In large impacts, the 

spectral sensor data probably contain large energies at lower frequencies. To examine 

if there is any distinction between dominant spectral components (in terms of energy) 

of sensor data recorded during large mass and small mass impacts, the dominant 

spectral component of each sensor signal was determined for each impact. Then, the 

spectral component with the smallest frequency was selected to represent the 

dominant spectral component of the impact. In total, 1265 dominant components were 

determined and their corresponding frequency was plotted in a histogram, which is 

presented in Figure 9 for four corner sensors (Figure 6, a). It can be observed that the 

small mass impacts have a very scattered  dominant frequency, while the large mass 

impacts have a more unified behaviour. This may further explain why the error of the 

ANN trained for small mass impacts was much higher than the error of the ANN 
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trained for large mass impacts. The histogram also reveals a distinct threshold 

frequency between the two types of impacts. Similar histograms were obtained for the 

other sensor distributions shown in Figure 6. 

 

 

Figure 9 Dominant frequencies of impacts – four corner sensors. 
 

4.6 Influence of sensor topology on error distribution  

The number and position of sensors may greatly influence the performance of the 

ANNs. To find the best sensor distribution, an exhaustive search or an optimisation 

analysis should be carried out (Staszewski et al. 2000; Mallardo et al. 2013). In this 

study, however, four different sensor distributions, shown in Figure 6, were 

considered. As it was shown in section  4.5, large mass impacts have more unified 

behavior, which results in smaller error for the trained network. Therefore, the 

influence of sensor typology on impact identification was studied using the large mass 

impact network.  The network architectures were the same as those of cases A9 and 

B14 presented in Table 4 and Table 5, respectively. The mean error of each network 

is presented in Table 6. This table indicates that as a result of increasing the number 

of sensors, the mean error slightly decreases.  

 

Table 6 Influence of sensor topology on performance of ANNs 

Case Layers Sensor distribution Mean error [%] 

(average for 100 

cycles) 

Mean error [%] 

(best network out of 

100 cycles) 

A11 [60:10:60] 4 sensors in mid-panel 16.33 13.45 

A12 [120:10:120] 8 sensors 15.63 13.71 

A13 [180:10:180] 12 sensors 15.34 13.46 

B16 [16:10:5:1] 4 sensors in mid-panel 15.69 12.09 

B17 [32:10:5:1] 8 sensors 12.05 8.73 

B18 [48:10:5:1] 12 sensors 11.94 8.54 
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a) 4 sensors in corners 

 
b) 4 sensors in mid-panel 

c) 8 sensors 
 

d) 12 sensors 

Figure 10 Error distribution for different sensor topologies. 

 

In Figure 10, performance of network B is presented as a surface plot of the mean 

error on the testing data at corresponding impact locations. Comparing cases (a) and 

(b), it can be seen that when sensors are placed close to the centre of the panel, 

estimations for impacts which occur outside of the sensor network, i.e. close to edges, 

have higher errors than when sensors are placed in corners of the plate, thus 

surrounding all impacts. When sensors are in corners of the panel, some peak errors 

can be identified near the middle of the panel. Most of these peaks were removed by 

adding more sensors to the ANNs, i.e. cases (c) and (d). 

Another way of representing the results of the trained networks is by plotting the 

Cumulative Distribution Function (CDF), which presents the probability of detection 

of the trained network against the mean error. CDF is obtained by integrating the 

Probability Density Function (PDF). To obtain the PDF for each trained ANN, a large 

number of data is needed. This is impossible to obtain experimentally and the 

computational cost is extremely high. Therefore, to generate new sets of impact data, 

which have not been used in the training phase, Gaussian noise was added to the full 

range of simulated sensor data (at each discrete value). Altogether, for each trained 
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network configuration shown in Figure 6, 123,500 input data were generated. The 

CDFs evaluated for network B (peak force prediction) are shown in Figure 11. As can 

be seen, the best trained network is the one with 12 sensors. It is worth noting that the 

mean error of the case with 8 corner sensors is similar to that of the case with 4 corner 

sensors, suggesting that solely increasing the number of sensors does not necessarily 

improve the performance of ANNs.   

   

 

Figure 11 Probabilistic behaviour of the error function for different trained ANNs – 
network B. 

 

5 Discussion 

Accurate and reliable identification of the impact force would eventually result in 

lower design, production and maintenance costs of aircraft structures. Several 

methods have been suggested for indentifying the impact force (Doyle 1987; Inoue et 

al. 1991; Martin et al. 1996; Doyle 1997; Park et al. 2009), which are all based on the 

convolution relation. This relation is valid for linear dynamic systems, such as thin-

walled structures which undergo small deflection under loading. However, it was 

shown in this paper that a composite plate, representing a typical bay of aircraft 

panels, can undergo large deflection under an impact with a load level that is well 

below the delamination threshold of the plate. This agrees with the results of (Chen et 

al. 1985; Abrate 2001). As a result, the frequency domain deconvolution method 

failed to provide a reasonable prediction of the impact force history. These findings 

suggest that convolution-based methods are not applicable to force identification of 

aircraft panels subjected to threatening impacts of foreign objects. 

It should be noted that the focus of this study was on geometric nonlinearity due to 

large deflection. Nonlinearities related to damage growth have not been considered. 

Impact force identification in presence of structural damage will be the subject of a 

future study.  

The artificial neural network technique, which is able to establish nonlinear 

relationships between inputs and outputs, was used to reconstruct the impact force and 

estimate the peak impact force for in-service impacts, including large mass and small 

mass impacts. Estimation of the contact force with ANNs has been reported in 

(Chandrashekhara et al. 1998), where a nonlinear FE model of a composite plate 
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(127x127 mm2) was developed and used to generate strain-force data for training and 

testing the network. Only small mass impacts at one location were simulated. 

Furthermore, the aim was to estimate the impact force at some time intervals of one 

force history by using the force data of the same force history at other time intervals. 

Hence, the proposed networks are probably not able to predict the force history of a 

new impact. In the current study, however, the ANNs were established for a 

composite stiffened panel (2045x1070 mm
2
) subjected to different types of impacts. 

Furthermore, the networks did not need the impact location a priori. The performance 

of the force reconstruction network (network A) and peak force prediction network 

(network B) can probably be improved by using data from impacts at the same 

location but with a different force magnitude. In addition, since spectral components 

of the force and sensor signals are complex numbers, complex-valued ANNs may 

provide better results for force reconstruction (network A). Future work may focus on 

developing a code for establishing such networks and applying them to the impact 

force reconstruction problem. 

The best trained network for estimating peak impact force resulted in 17% mean 

error on the test set. This is a significant improvement as compared with 26% and 

28% mean error reported by (Ghajari et al. 2012) and (Staszewski et al. 2000), 

respectively. In (Ghajari et al. 2012), both small mass and larges mass impacts were 

considered, but in (Staszewski et al. 2000), the impact force was  extemely low 

(maximum 0.1 N). By establishig a separate network for large mass impacts, the mean 

error was decreased to less than 10%. The mean error, however, remained high 

(approximately 20%) for the ANN established for small mass impacts. Furthur work 

needs to be carried out to improve this network. 

It was shown that the number and position of sensors affect the prediction error. 

The error was decreased when sensors surounded the impact area. In addition, 

although increasing the number of sensors decreased the error, its effect was not as 

much as the effect of sensor position. The availability of data for a large number of 

sensors and the simple structure of the ANNs, which reduces the training time, makes 

the proposed FE-based methodology suitable for future studies on optimisation of 

sensor distribution. 

6 Conclusions 

It is shown that methods based on the convolution integral (linearity assumption) 

produce accurate results for impacts that cause small deflections in composite panels. 

However, they fail to provide reasonable results for moderate impacts, which occur 

during manufacturing or operation, because these impacts cause large deflections. 

ANNs have been etablished to identify the force of large mass and small mass impacts 

on a composite stiffened panel. A parametric study has been performed to reveal the 

influence of signal features, network architecture, noise and sensor distribution on the 

performance of the ANNs. Even though the panel undergoes large deflections under 

impacts, the networks have been able to predict the peak impact force with acceptable 

accuracy. Categorising impacts into large mass and small mass, and training separate 

networks for each of them has improved the predictions. Frequency of the dominant 

spectral component (with respect to energy) of the sensor signal appears to be a 

suitable parameter to distinguish between large mass and small mass impacts. 
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