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Abstract

Background: Plasmodium falciparum causes the most severe form of malaria and affects 3.2 million people annually.

Due to the increasing incidence of resistance to existing drugs, there is a growing need to discover new and more

effective drugs against malaria. Despite the global importance of P. falciparum, vast majority of its proteins are

uncharacterized experimentally. Application of newer approaches using several “omics” data has become successful for

exploring the biological interactions underlying cellular processes. Till date not many system level study has been

published using P. falciparum protein protein interaction. Hence, the purpose of this study is to develop a standardized

pipeline for structural, functional, and topographical analysis of large scale protein protein interaction network (PPIN) in

order to identify proteins important for network topology and integrity. Here, P. falciparum PPIN has been utilized as a

model for better understanding of the molecular mechanisms of survival and pathogenesis of malaria parasite.

Methods: Various graph theoretical approaches were implemented to identify highly interacting hub and central

proteins that are crucial for network integrity. Further, potential network perturbing proteins via an in-silico knock-out

(KO) analysis to isolate important interacting proteins (IIPs), which in principle, can elicit significant impact on the global

and local environments of the P. falciparum interaction network.

Results: 177 hubs and 132 central proteins were identified from the malarial (proteins: 1607; interactions: 4750) PPI

networks. Using the in-silico knock-out exercise 131 and 99 global and local network perturbing proteins were also

identified. Finally, 271 proteins from P. falciparum were shortlisted as important interacting proteins (IIPs), which not

only play crucial role in intra-pathogen network integrity, stage specificity but also interact with various human proteins

involved in multiple metabolic pathways within the host cell. These IIPs could be used as potential drug targets in

malarial research.

Conclusion: Graph theoretical analysis of PPIN can be a very useful approach to identify proteins that are important

for regulation of the interactions required for an organism’s survival. Important interacting proteins (IIPs) identified using

P. falciparum PPIN provides a useful dataset containing probable candidates for future drug target analysis.
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Background
Malaria is endemic to over 100 nations and territories in

Africa, Asia, Latin America, the Middle East, and the

South Pacific. Plasmodium falciparum transferred by a

mosquito vector is by far the deadliest of the four

human malarial parasite species. Though the intricate

details of the pathogenesis are not yet clear, effective

drugs against P. falciparum were in use since 1920.

However, in present time traditional first-line treatments

such as choloroquine and sulphadoxine/pyrimethamine

have lost much of their effectiveness in many countries

[1-3]. As a consequence new and more expensive anti-

malarial drugs, including combination therapies, such as

artemisinin-based combination therapy (ACT) were de-

veloped [4,5]. Development of a successful drug is highly

dependent on the in-depth understanding of the organ-

ism’s biological processes. Exploring the protein-protein

interactome of the parasite at the system level could be

a useful strategy in unravelling its critical biological pro-

cesses. New approaches like this will not only enhance

the knowledge base about the underlying mechanism of

parasite’s survival, but also will help us to identify pro-

teins crucial for pathogenesis.

In the genomic and post-genomic era, increasing avail-

ability of genome and proteome information has led to

the emergence of a new system biological approach

where proteome level protein-protein interaction data is

used for understanding an organism’s biology. In this

approach PPINs or other biological networks are con-

structed and analysed to explore the organism specific

structure and function of those networks [6-8]. Interest-

ingly, these biological networks (e.g., protein-protein

interaction, gene regulatory, signalling, and metabolic

network) were found to follow the principles of graph

and information theory [9,10]. According to graph the-

ory a network’s compactness and capability of relaying

information can be captured by the centrality analysis

[9-12]. Network centrality indices reflect the nature of

the network and node centrality indices reflect the prop-

erty of the nodes. Node centrality indices are generally

reflected via degree, closeness, radiality, betweenness, ec-

centricity, stress, wienner index, centroid, assortavity

and clustering coefficient of the nodes whereas network

centrality indices are usually represented by the average

distance, connectivity, diameter, and clustering coeffi-

cient of the overall network [13-15].

It is generally observed that scale-free biological net-

works are robust towards random node removal and

there are only few nodes in the network that are found

to be crucial for network’s integrity [16-23]. Centrality

calculation was important according to the centrality

and lethality rule proposed by Albert L. Barabasi, which

postulates that more central the protein is more lethal

its removal could be for the network [24,25]. Hence,

centrality analysis could lead to the identification of

most important nodes for network integrity and subse-

quent perturbation of these important interacting pro-

teins (IIPs) may lead to significant disruption of the

network and/or the information flow through the net-

work. In the last decade several studies were performed

to explore, understand and establish the principles of

network biology using biological network of different

size and type [26-32]. The real time in vivo condition of

a living cell was more closely reflected by these networks

than investigating a cell’s physiology and function in

small fraction by exploring interaction between two pro-

teins or investigating a signalling pathway in great detail.

Hence, in this study, PPIN from malaria parasite P. fal-

ciparum, a pathogenic apicomplexa, has been analysed

to standardize a protocol for extracting nodes crucial for

the network’s topological integrity as well as for the

organism’s survival. Further, as a reference, similar ana-

lysis on PPIN extracted from the model non-pathogenic

bacteria Escherichia coli has also been performed. In a

scale-free protein-protein interaction network few pro-

teins are connected with many neighbours where as

other are connected with few [29,33,34]. These highly

connected proteins are termed as hubs. Hubs were clas-

sified into many types based on the different approaches

they were identified [35-38]. Here, hubs were classified

into date and party hubs based on their spatiotemporal

connectivity derived by their co-expression pattern

[34,39]. In this study, a combined centrality score, termed

as cumulative centrality score (CCS) was developed and

all nodes were ranked according to their CCS. Proteins

having significantly higher CCS than others were identi-

fied as central proteins (CP). An in-silico perturbation

analysis of each node was performed and a node per-

turbation score was calculated measuring the network

centrality parameters of the perturbed and unperturbed

network. Perturbation potential of each node was esti-

mated by the global network perturbation score (GNPS)

as well as local network perturbation score (LNPS). Care-

ful combination of these network parameters (hubness,

centrality and perturbation potential) led to the identifica-

tion of crucial nodes for the overall integrity of the PPIN.

Finally, proteins that were found to be crucial for the PPIN

as well as organism’s survival were considered to be most

important and termed as important interacting proteins

(IIPs). 271 and 220 proteins were identified as IIPs how-

ever, 16 and 19 proteins were found to be common in

hubs, central and perturbing protein datasets in Plas-

modium and E. coli PPIN, respectively. In P. falciparum,

all of the 16 proteins were found to be part of core

housekeeping proteome and involved in key homeo-

static processes whereas nine among the 19 E. coli

proteins were found to be essential genes. As new drug

targets and mechanistic details of the parasite’s biology
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are still required, this kind of system level PPIN analysis

could shed important insight towards better under-

standing of the complex life cycle of Plasmodium.

Methods
Construction of the network

Protein-protein interactions from P. falciparum (malaria

network, MN) and E. coli (E. coli network, EN) with ex-

perimental evidences and high confidence scores [score

> = 0.7] were extracted from the STRING database [40]

and from a previous study [41]. Construction of MN

and EN was validated by comparing them with the ran-

dom networks generated by Barabasi-Albert (BA) prefer-

ential attachment algorithm [42,43]. For each biological

network 10 random networks were created and average

of the 10 network parameters were used for comparison.

All the centrality parameters for the random networks

are provided in Additional file 1: Table S1.

Degree distribution

Degree distribution is an important indication of net-

work architecture as scale free and random networks

possess their distinctive degree distribution. Degree Dis-

tribution, P(k) of a network was defined as fraction of

nodes in the network with degree k. If there are N nodes

in total in a network and nk of them have degree k, then

P kð Þ ¼ nk=N

The degree distribution of random MN and EN net-

works were calculated using the above mentioned for-

mula. The degree distribution of MN and EN followed

power law (P(k) ~ k−γ where γ is a constant) approxima-

tion whereas the degree distribution of the random net-

works were much smaller and followed the Poisson

distribution. f(k) = λ ke –λ / k! (where λ > 0) (see Additional

file 2: Figure S1).

Identification of hubs

Hubs were defined as proteins that have higher connect-

ivity than others in the network. It was observed that

hub proteins tend to be more important in network and

were found to possess special biological properties [37].

The threshold degree to define a hub was set by two dif-

ferent and independent statistical approaches. In the first

approach, all the degrees were normalized into z-score

and the distribution was found to be positively skewed

ranging from −0.6 to +12 for MN. The fraction of the

degree population that contributes to this positive skew

were extracted and separated. Rest of the population

ranging from −0.6 to + 0.6 was found to have a normal

symmetrical bell shaped distribution. The fraction of

population degree having the z-score > = 1 was consid-

ered to possess significantly higher degree than rest of

the population. In case of both the networks the lowest

degree that has a z-score of 1 was 15. So, with this

approach proteins having degree 15 or higher were con-

sidered as hubs (see Additional file 3: Figure S2A).

In the second approach, Mann–Whitney U test was

performed to ensure if the threshold level was set cor-

rectly [44,45]. In the Mann–Whitney U test randomly

20 hubs and 20 non-hubs were selected at each of the

degree threshold ranging from 5 to 20. Then the hubs

and non-hubs were ranked based on their centrality

scores. Based on this ranks, U value was calculated

(formula mentioned below) and its significance was

checked at 1% level. The whole process was repeated

thousand times for each degree threshold. Finally,

degree 15 was selected because hubs were found to be

more central than non-hubs in more than 80% times

at significance level 0.01with degree threshold of 15.

This means that the nodes having degree 15 or higher

are significantly different from nodes having degree

lower than 15 in terms of their centrality (see Additional

file 3: Figure S2B).

U1 ¼ n1n2þ
n1 n1þ 1ð Þ

2
−R1

U2 ¼ n1n2þ
n2 n2þ 1ð Þ

2
−R2

Where U1 and U2 are U value of sample 1 and sample

2; n1 and n2 are the sizes of sample 1 and sample 2; R1

and R2 are the sum of ranks of sample 1 and sample 2.

The test statistic for the Mann–Whitney U Test is

denoted as U and is the smaller of U1 and U2. The

calculated U value is compared against a standard U

table and two samples are considered significantly

different when the calculated U value is smaller than

the critical value of U.

Identification of date and party hubs

Based on the spatiotemporal interaction pattern between

the hubs and their interactors, hubs were classified as

“date hubs” and “party hubs”. Hub interacting with all

its neighbours at the same time and location were de-

fined as party hub whereas hub that interacts with its

neighbours at different time and location were defined

as date hub [34]. Proteins interacting with each other at

the same place and time are likely to be expressing

together, hence co-expression analysis was implemented

to identify the “date” and “party” hubs.

From different experiments eight expression profiles

of Plasmodium genes were collected from PlasmoDB

database [46]. Similarly, 11 expression profiles of E. coli

genes were collected from GEO database [47]. Pearson’s

correlation coefficient (PCC) of co expression between
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hub and its first level interactors were calculated for

each dataset using the following formula [48].

r ¼
1

n−1ð Þ

Xn

1

X−μXð Þ Y−μYð Þ

δyδx

Where r is the Pearson’s correlation coefficient; X and

Y are the values of two variables measured; μX and μY

are the mean of X and Y; δ is standard deviations and n

is the size of the sample.

Hubs with PCC > =0.5 were designated as party hubs

and hubs with PCC <0.5 were considered as date hubs. 8

sets of date and party hubs were identified using 8 expres-

sion datasets. Finally, those hubs were selected for further

analysis, which were commonly estimated as date or party

hubs in 6 or more datasets (see Additional file 4: Table S2,

Additional file 5: Table S3, Additional file 6: Table S4).

Topological overlap of nodes was estimated to validate

the classification of hubs. A pair of nodes in a network

is said to have high topological overlap if they are both

strongly connected to the same group of nodes. All to

all topological overlap (TOij) matrix for 1607 nodes has

been computed. Similarly, topological overlap of a mod-

ule formed by a node X and all of its first level interac-

tors were calculated using the following formula [49].

TOij ¼

Xu

0

aiuaju þ aij

minki; kjð Þ þ 1−aij

Where α is the adjacency matrix value, i and j are the

nodes for which TO is calculated, u is any other node,

ki and kj are the degrees of node i and j.

TOM ¼
1

N

Xn

1

TOij

Where N is the number of interaction in each module

and TOM is topological overlap of module.

Analysis of functional similarity

Functional involvement of date and party hubs along

with their interactors were investigated where each hub

and its first level interactors (directly interacting) were

regarded as a unit module and functional similarity be-

tween each hub and its interactors were checked using

GO ontology [50].

Plasmodium falciparum proteins were annotated by

homology based method. A BLASTp [51] search was

done against the NCBI non-redundant (NR) sequence [52]

and gene ontology (GO) database [50] using E-value filter

< = 1e-05, query-coverage filter > = 50% and sequence

identity filter > = 40%. Among the 1604 proteins form-

ing the Plasmodium interaction network, 1030 proteins

were annotated with biological function using the above

mentioned homology approach. Fisher’s exact test [53]

was performed to calculate the significance of GO term

association to the MN proteins. All the associated GO

terms were grouped into different categories and 21

categories were obtained for cellular component terms

and 18 categories are obtained for biological process.

For each 39 categories, 2x2 contingency table was con-

structed and Fisher’s exact P-value was calculated. For

all the biological processes and cellular components

P-value was observed to be lower than 0.01 validating

that the association of GO terms were not by chance

(see Additional file 7: Figure S3).

GO molecular function, molecular process and cellular

compartmentalization of each hub and its first level

interactors were extracted and compared. The similarity

of GO ontologies among the hub and its interactors

were calculated by matching the ontology keywords. The

distribution of GO ontologies among the hub and its

interactor proteins were represented in a percentage

scale. Similarly, entropy and skewness of the GO ontol-

ogy distribution within the hub and interactors were

calculated using the following formulae.

Entropy ¼ −

X
P Y ið Þ logP Y ið Þ

Where Yi is information content of a random variable

Y from a finite sample; P(Yi) is the probability mass

function of Yi.

Skewness ¼

XN

i¼1

Y i−μY ið Þ3

N−1ð Þδ3

μYi is mean of Yi; δis the standard deviation of Y and N

is the sample size.

Calculation of cumulative centrality score

Centrality values of the network were calculated to

understand the topology and dynamics of the network.

In this study 10 node centrality indices (degree, close-

ness, radiality, betweenness, eccentricity, stress, weinner

index, centroid, assortavity and clustering coefficient)

were calculated and four network centrality parameters

(average distance, connectivity distribution, diameter and

average clustering coefficient) were considered to measure

the network centrality. The distribution of centrality pa-

rameters were shown as box whisker plot in Additional

file 8: Figure S4.

Centrality values of each node were calculated using

an in-house program. All the centrality values were nor-

malized between 0 to1. A principal component analysis

(PCA) was done (see Additional file 9: Figure S5) and

three centrality parameters, betweenness, clustering coeffi-

cient and closeness were selected from the three selected
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principal components. Combined score (CS) was calcu-

lated by summing up the three parameters for each node.

As a node’s centrality is heavily influenced by its neighbor-

hood, a cumulative centrality score (CCS) was calculated

by adding the CCS of a node and its directly connected

neighbors. This CCS was considered as a measure of a

node’s centrality. Global network centrality score (GNCS)

was calculated as an average of CCS for the network.

CS ¼
X

CBetweenness þ CCloseness þ CClustering coefficient

CCS ¼
Xn

1

CS

Where n is the Number of first degree interactors,

CS is the combined score and CCS is the cumulative

centrality score.

LNCS ¼
1

N

XN

1

CCS

Where LNCS is the local network centrality score and

N is the number of nodes in local sub graph.

GNCS ¼
1

N

XN

1

CCS

Where GNCS is the global network centrality score

and N is the number of nodes in the global network.

Construction of local sub graph

For the creation of local sub graph, each protein having

degree ≥ 2 were extracted along with its second level of

interactors. For P. falciparum, 1,049 and for E. coli, 869

local sub graphs were formed. Clustering coefficient and

network centrality score were calculated for each of the

network. The topological viability of the local sub graphs

was validated by linear relationship between clustering

coefficient and LNCS. Non-radial connectivity pattern

was indicated by positive values of both clustering coeffi-

cient and LNCS (see Additional file 10: Figure S6).

Calculation of global and local network perturbation score

In-silico perturbation of the node was done by an in-

house program, which sequentially removed single node

and its interaction from the global as well as local (sub

graph) networks. The consequence of a node’s removal

was estimated on the integrity of the network and was

measured by a network perturbation score (NPS). The

network perturbation score (NPS) was calculated in two

steps. In step one, NPS was simply measured by sub-

tracting the global network centrality score (GNCS) of a

network before and after perturbation of a particular

node; higher the difference, higher the perturbation

ability. Global and local perturbation score for each

node i (GNPSi and LNPSi) were calculated performing

the perturbation in the global MN network and/or on

the local sub graphs extracted via previously mentioned

protocol. In step two, the perturbation score was

re-ranked using the edge-weight considering the fact

that a protein with higher average edge weight would be

more impactful upon perturbation. To do this com-

bined score (range 0.1 to 0.999) of interaction from

STRING database was considered as edge weight and a

combined edge-score for each node in MN was calcu-

lated using the following formula. This combined edge-

score and network perturbation score (GNPSi and

LNPSi; calculated in step one) were combined by

multiplication.

S xð Þ ¼ 1−
Yi

0

1−Si

Where SX is the combined edge score for node x, i is

the number of interactor of node x. Si is the STRING

combined score for x-i interaction.

Correlation of different scores

Correlation coefficient of z-scores of CCS, GNPS and

LNPS of the same node were calculated to investigate

the interdependence of the scores (see Additional file 11:

Figure S7).

Stage Specific interactions

Stage specific proteins were extracted from mRNA ex-

pression datasets [54,55]. The presence and absence of a

gene was determined using the same protocol as refer-

ence 52. The proteins and their corresponding stages are

mentioned in Additional file 12: Table S5. Expression

levels of genes were normalized to 0 to 1 scale using the

formula mentioned below.

X 0 ¼
X i−min Xð Þ

max Xð Þ−min Xð Þ

Where X' is the normalized value of Xi and min(X)

and max(X) are minimum and maximum value of the

population.

Results and discussion
Construction and validation of the PPI network

Protein-protein interactions from P. falciparum (malaria

network, MN) and E. coli (E. coli network, EN) with ex-

perimental evidences and high confidence scores [score

> = 0.7] were extracted from the STRING database [40]

and from a previous study [41]. Construction of MN

and EN was validated by comparing them with the ran-

dom networks generated by Barabasi-Albert (BA) prefer-

ential attachment algorithm [43]. MN and EN were

found to have scale free organization as their degree
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distribution followed power law. On the contrary both

set of 10 corresponding random networks referred as

malaria random networks (MRN 1 to 10) and E. coli

random networks (ERN 1 to 10) showed binomial de-

gree distribution. In Table 1 the topological properties

of the MN and EN along with their randomized coun-

terparts (MRN and ERN) are listed whereas the rela-

tive differences of various network properties are

provided in Additional file 2: Figure S1, Additional file 8:

Figure S4. The average clustering coefficients of the

MN and EN were found to be quite low (0.12 and 0.07,

respectively). High average degree, low clustering coef-

ficient and low average distance of the PPINs denoted

the radial pattern of interaction between hub and

interacting partners.

Identification and classification of hubs

In a biological scale free network some proteins interact

with many and some interact only with a very few part-

ners. Hubs are proteins, which have higher degree (inter-

action) than others in the network, [30,33] thus may

play crucial role in the regulation of network [33,34]. In

this study, proteins interacting with more than 15 pro-

teins were considered as hubs for both MN and EN. The

degree threshold for defining a hub is determined by a

rigorous two step statistical analysis (see Methods). In

MN and EN, 177 and 126 proteins were identified as

hubs. The functions of hubs were described in Figure 1

as pi-charts and the hubs are highlighted onto the net-

work in different colour according to their biological

function. Both the network possess non-modular dense

connectivity pattern. The largest component contains

99% and 98% of the nodes in MN and EN, respectively.

Based on the spatiotemporal interaction pattern be-

tween the hubs and their interactors, hubs were classi-

fied as “date hubs” and “party hubs”. Among the 177

hub proteins 52 hubs having the average Pearson correl-

ation coefficient (PCC) of co-expression 0.5 or greater

were selected as party hubs whereas 104 hubs with PCC

value less than 0.5 were defined as date hubs (see

Additional file 4: Table S2, Additional file 5: Table S3).

For rest of the hubs date and party status were not cer-

tain hence those were termed as ambiguous hubs.

Most of the party hubs were found to be ribosomal

subunit (34) followed by RNA polymerase subunits (3),

proteasome subunits (3), and splicing factors (3) along

with miscellaneous proteins (4) including 3 proteins

with unknown function. Date hubs showed a more

varied functional involvement. Among the date hubs

there were few ribosomal (9) and proteasome subunit

(6) along with various other proteins like, enzymes (5),

surface antigens (7), transcription factors and RNA

polymerase subunits (8), translation factors (4), etc.

(Figure 2A and 2B). In both the MN and EN all the

hubs were connected and forming a core interactome

of hubs surrounded by radially placed non-hub pro-

teins (Figure 2C). Connectivity analysis revealed that

in the MN, more than 66% interaction involved at-least

one hub and 28% of interaction involved hubs as inter-

acting pairs whereas in EN more than 69% interaction

involved at-least one hub and 31% of interaction in-

volved hubs as interacting pairs (Figure 2D). Both the

networks were assortative in nature as hubs formed a

densely connected core interactome (28% and 31% in

MN and EN, respectively) whereas non-hub nodes

were connected to hubs and resided at the periphery of

the network. Even, date hubs were connected with

more date hubs and party hubs were connected with

party hubs (Figure 2E and 2F). On the contrary in case

of EN though similar connectivity patterns among the

hubs were observed yet no party hubs were found. In

case of EN all the hubs have PCC of co-expression less

than 0.5 (see Additional file 6: Table S4). This could be

because of the lack of larger structural complexes like

proteasome and spliceosome in E. coli. However, E. coli

ribosomal subunits were also not found to be express-

ing in a correlated manner. Topological overlap score

for each protein and its interactors were calculated and

TOM or average topological over lap of a module (see

Methods) was calculated for each hub and non hub

protein. TOM scores for hubs were found to be much

higher than nonhub proteins. Party hubs were found to

have much higher topological overlap than date hubs

validating the co-expression based classification of

date and party hubs (see Additional file 13: Figure S8).

Functional involvement of date and party hubs along

with their interactors were investigated where each hub

and its first level interactors (directly interacting) were

regarded as a unit module and functional similarity be-

tween each hub and its interactors were checked using

GO ontology [50]. GO cellular compartment (C), mo-

lecular function (F) and molecular process (P) ontologies

for each module were extracted and a similarity function

Table 1 Topological properties of Plasmodium and E. coli

PPI Networks

Network parameters MN MRN EN ERN

No of nodes 1607 1607 1505 1505

No of edges 4750 4750 4085 4085

Average degree 5.9 5.2 5.34 5.1

Average shortest path 4.39 4.5 4.14 4.5

No of hubs 177 612 126 526

Degree threshold for defining hub 15 11 15 9

Average clustering coefficient 0.12 0.001 0.07 0.006

Max degree 77 18 61 16

Diameter 12 9 14 9
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for each module was calculated by comparing the GO

ontologies among the hub and its interacting proteins.

Distribution of fraction of proteins in each unit module

involved in same ontology category was expressed by

this similarity function (see Methods). Interestingly, no

date hub was found to be involved in less than 5 GO

processes whereas in case of all party hubs at least 50%

of interactors were found to be involved in the same GO

processes. Figure 3A shows that for all the party hubs,

50% of its ineractors are involved with a single GO

processes such as translation, protein metabolism,

transcription, and pathogenesis. Similar distribution of

cellular components was also observed for party hubs

and their interacting proteins (Figure 3C). On the

other hand much more varied representation of cellu-

lar processes and localizations were observed for the

identified date hubs and their interactors (Figure 3B and

3D). Further quantifications involving the types of pro-

cesses and localization in terms of entropy and skewness

suggest much higher entropy and lower skewness for the

date hubs than those of party hubs (Figure 3E-3H).

Identification of central proteins

Centrality values of the network were calculated to

understand the topology and dynamics of the network.

In this study 10 node centrality indices (degree, close-

ness, radiality, betweenness, eccentricity, stress, weinner

index, centroid, assortavity and clustering coefficient)

were calculated and four network centrality parameters

(average distance, connectivity distribution, diameter

and average clustering coefficient) were considered to

measure the network centrality. The distribution of cen-

trality parameters were shown as box whisker plot in

Additional file 8: Figure S4. The distributions of central-

ity parameters for MN and EN were evidently different

from that of their random versions (Additional file 8:

Figure S4). In both PPINs, narrow range of clustering

coefficient and low mean value of the same indicated the

radial pattern of connectivity. Power law distribution of

degree confirmed the scale free nature of this biological

network. Narrow distribution of closeness and eccen-

tricity also reconfirmed the assortative nature of MN

network. The difference between a scale free network

and a random network of same size were also distinctly

evident in this plot.

Two large matrix of 10 parameters for 1607 nodes

(for MN) and 1505 nodes (for EN) ranging in different

scale were created by the node centrality calculation.

Using all these parameters a combined centrality score

was calculated (see Methods) and normalized into 0 to 1

scale. The score was named as cumulative centrality

score (CCS); higher the CCS more central the node is.

All nodes in the network were ranked according to the

CCS and nodes that have CCS significantly higher than

others were extracted by a statistical z-score analysis. In

MN and EN, 132 and 129 central proteins (CP) were

Figure 1 Hub Proteins in MN and EN. (A-B) Functions of hub proteins of MN and EN are plotted as pi-charts. Each function is highlighted in

different colour. (C-D) Same hubs are highlighted on the network according to their function.
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Figure 2 Differential connectivity pattern of date and party hubs. (A-B) Function of date and party hubs of MN are plotted as pi-chart. (C-D)

Connectivity analysis of both MN and EN;%Hub-Interactor denotes the percentage of interactors which are also hubs;% Interactome denotes the

percentage of total interaction. (E) Connectivity analysis of date and party hubs.% Hub-interactome denotes the percentage of core interactome

contributed by hubs only. (F) Date and party hubs are highlighted on the network and their connections are also highlighted in different colour.

Panel E and F suggest that party hubs are more connected to party hubs and date hubs are more connected to date hubs whereas date-party

connections are comparatively lesser.
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found to have significantly higher CCS than others

(Figure 4A and Additional file 14: Figure S9A). These

two sets of central proteins were designated as CP-

MN-132 and CP-EN-129 in MN and EN, respectively.

Interestingly, not all CP were found to be hubs; 106

among 132 CPs are hubs while 32 and 53 are date and

party hubs, respectively. Functions of proteins belong-

ing to CP-MN-132 and CP-EN-129 sets were found to

have similar kind of functions as plotted in Figure 4B

and Additional file 14: Figure S9B. Apart from the node

centrality score CCS, other network level centrality score

such global network centrality score (GNCS) and local

network centrality score (LNCS) (see Methods) were cal-

culated and utilized in perturbation analysis.

Identification of GNPP and LNPP

An in-silico knock-out analysis was performed on the

MN and EN to investigate the role of the crucial proteins

in sustenance of the network integrity at the global and

local sub graph level. A temporary local sub graph was

created for each node considering the node and its 2nd

level interactors as a separate small network with the pur-

pose of investigating perturbation effect of same node in

global and local environment. The effect of node removal

was measured by a global network perturbation score

(GNPS), which reflects the change in network centrality

before and after perturbation of a node from the network.

The same scoring method was also applied in the local

networks and local network perturbation scores (LNPS)

were calculated. Proteins that have higher GNPS than

others were identified by statistical z-score analysis (see

Methods) and termed as global network perturbing pro-

teins (GNPPs). In MN and EN 131 and 106 proteins

were identified as GNPPs, respectively and were named

as GNPP-MN-131 and GNPP-EN-106 (Figure 5A and

Additional file 15: Figure S10A). In GNPP-MN-131, 99

Figure 3 Localization and functional similarities among date and party hubs. (A-D) Similarity between hubs and their interactors in terms

of their cellular localization and functional involvement. Each column represents the similarity of one hub and its interactors; their functional involvement

and cellular localization are expressed as percentage along the Y axis; each colour on one column represents percentage of one cellular

component or one biological process. (E-H) Box-whisker plots to show the differences in the skewness and entropy of the similarity function

between the date and party hubs.
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proteins were found to be hubs. Functions of proteins

of both GNPP-MN-131 and GNPP-EN-106 were plot-

ted as pi-charts in Figure 5C and Additional file 15:

Figure S10C.

A local network perturbation score (LNPS) was calcu-

lated for 1049 proteins in MN and 875 proteins in EN.

Proteins that have higher LNPS than others were identi-

fied by statistical z-score analysis (see Methods) and

termed as local network perturbing proteins (LNPPs).

In MN and EN 99 and 91 proteins were identified as

LNPPs, respectively and were named as LNPP-MN-99

and LNPP-EN-91 (Figure 5A and Additional file 15:

Figure S10A). Functions of proteins of both GNPP-

MN-131 and GNPP-EN-106 were plotted as pi-charts

in Figure 5D and Additional file 15: Figure S10D.

From the above experiments it was observed that party

hubs were more central than date hubs. The effect of

perturbation when measured in global network, was

almost same for party and date hubs but in local sub-

graphs date hubs showed much higher perturbation effect

than the party hubs (see Additional file 16: Figure S11).

Identification of important interacting proteins (IIPs)

So far, we described how proteins important for network

integrity were identified from various independent per-

spectives. Next, the scores (CCS, GNPS and LNPS) of

each protein were compared to investigate the relation-

ship among the scores. The CCS and GNPS have a cor-

relation coefficient of 0.7 but the LNPS is not correlated

Figure 4 Centrality analysis in MN. (A) Distribution of global

cumulative centrality score (CCS) of Plasmodium proteins normalized

as z-score. (B) Distribution of different functions of the proteins belonging

to CP-MN-132.

Figure 5 In-silico perturbation analysis in MN. (A) Distribution of global and local network perturbation score (GNPS and LNPS) normalized

as z-score in MN. (B) Fraction of hubs in GNPP-MN-131 LNPP-MN-99 data sets. (C-D) Distribution of different functions of proteins belonging to

GNPP-MN-131 and LNPP-MN-99 protein sets.
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with any of them (see Additional file 11: Figure S7). Hubs

were proteins with degree 15 and above having higher

connectivity than other nodes in the network, CPs were

proteins central to the network, whereas GNPPs and

LNPPs were proteins which elicited measurable perturb-

ation effect on global and local network environments,

respectively. These four sets of proteins tagged as HUB,

CP, GNPP, and LNPP were overlapping (Figure 6B and

Additional file 17: Figure S12B); hence a total number of

271 and 220 unique proteins were identified in MN and

EN that were present at least in one of the four sets. These

protein sets were termed as IIP-MN-271 and IIP-EN-220.

Almost 80% and 90% of these proteins from MN and EN

have some known functional relevance. Similarly, large

fractions (75% and 74%) of the total interactions in the

MN and EN were contributed by these 271 and 220 pro-

teins. Thus a highly connected core interactome was con-

stituted by these 271 and 220 proteins in both MN and

EN (Figure 6C and Additional file 17: Figure S12C).

Details of these IIP-MN-271 proteins are provided in

DatasetS1 (see Additional file 18: Dataset S1), which is a

database for malarial important interacting proteins [56].

However, only 16 and 19 proteins were extracted from

these 271 MN and 220 EN proteins, which belonged to

the all four constituent set (i.e., HUB, CP, GNPP and

LNPP). These proteins are termed as MN-16 and EN-19.

These 16 proteins are involved in 515 interactions with

318 other proteins which as a whole constituted a signifi-

cant fraction of the network (12%) (Figure 6D). Interest-

ingly, these proteins were found to be the most important

housekeeping proteins and part of the central homeostatic

process. There are three proteasome subunits among

which two have endopeptidase activity and one is a regula-

tory subunit. Seven ribosomal subunits were also present,

among which three are part of large subunit, three are part

of small subunit and one is part of large subunit of mito-

chondrial ribosome. Among these proteins, three proteins

were identified which have no homologues in human and

possess virulent properties. These three proteins are

PF10_0232 - a chromodomain helicase protein, PFI1475w

– a merozoite surface protein (MSP1), PF13_0228 - a 40S

ribosomal subunit. PF10_0032 has similarities with viru-

lence proteins from Candida albicans and Vibreo cho-

lerae. This ATP dependent helicase protein is located in

nuclear chromatin and involved in nucleosome assembly

and regulation during chromatin remodelling. PF10_0032

interacts with 57 other proteins which include replication

factors, surface antigens like ETRAMP 7.5 and MSP-1,7,9,

ubiquitin ligase, DNA binding chaperones, transcription

factor, other helicase and many conserved protein with

unknown function. PFI1475w - merozoite surface protein

1 is a GPI anchored membrane protein and part of

Figure 6 Identification of important interacting proteins (IIPs) of MN. (A) Distribution of different functions in 271 proteins important for

network topology. (B) Overlap between the selected proteins by different methods is presented in the Venn diagram. (C) 271 important interacting

proteins are highlighted according to their selection by different methods. (D) Interaction network of MN-16. In C and D panels, these16 proteins are

highlighted in red colour and interactions among themselves are denoted by black lines. Interaction among these 16 proteins and other proteins of

IIP-MN-271 are denoted by red lines. Rest of the interactions among IIP-MN-271 proteins and other nodes are denoted by blue lines.
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erythrocyte invasion machinery. This well-known viru-

lence factor had 51 interacting partners including apico-

plast ribosomal protein and DnaJ protein, QA-SNARE

protein, transcription factors, secretory protein, nucle-

ase, other MSPs, response proteins, calmodulin, ubiquitin

ligase, chromosome maintenance, proteasome subunits,

and many conserved Plasmodium protein with unknown

function. PF13_0228 is a protein of small subunit of 40S

ribosome and interacts with 42 proteins which include E3

ubiquitin ligase, chromodomain helicase, rhoptry neck

protein, serine protease and esterase, RNA methyltransfer-

ase, erythrocyte binding protein, liver stage antigen, RNA

polymerase I, AAA family ATPase, chromosome associ-

ated protein along with many other ribosomal subunit.

On the other hand, 19 proteins of EN-19 set had a

total of 743 interactions with 380 (24%) number of part-

ners which as a whole constituted 18% of the network

(Additional file 17: Figure S12D). Interestingly, these

proteins also were found to be the most important

housekeeping proteins and part of the central homeo-

static process of E. coli. Nine among these 19 proteins

were found to be essential for E. coli. All the proteins in

MN-16 and EN-19 resided in the top 100 bin when their

PageRank [57] were calculated and analysed. Detailed

information about MN-16 and EN-19 are listed in

Additional file 19: Table S6, Additional file 20: Table S7.

Stage specific networks

As intra human life cycle stages of P. falciparum occur

at different host tissues it will not be irrational to expect

involvement of different sets of proteins to create a stage

specific PPIN. Hence, stage specific proteins along with

their PPI were extracted for six intra-human stages such

as sporozoite, merozoite, trophozoite, schizont, ring

stage and gametocyte [54,55]. Only those interactions

were considered as stage-specific where both the inter-

acting partners were expressed in the same stage. Total

3,598 interactions among 1,507 proteins were found

where both the partners were present (expressing) in the

same stage. Apart from 315 interactions which were

unique to any of the six stages all the other interaction

were overlapping among two to six stages. The number

of nodes and edges present in each stage were men-

tioned in Table 2. Stage specific expression pattern of

IIP-MN-271 proteins can be viewed in DatasetS1 [56].

Among the MN-16 proteins 7 were present in all stages,

PF13_228 and PF10_111 were absent in merozoite stage,

PF11_0303 was absent in merozoite and sporozoite stage

whereas PF10_0038 was absent in gametocyte, merozoite

and sporozoite stage. Presence of hubs, CPs, GNPPs and

LNPPs were investigated across different life cycle

stages. These important proteins were distributed evenly

in all life cycle stages (Figure 7). For all of these six life

cycle stages, six unique networks were constructed and

analysed. Average centrality values of these networks are

presented in Additional file 21: Table S10. Average net-

work centrality values of these are quite similar reason

of which may be presence of a common core of interac-

tions in all of them, However, the networks were compares

among themselves and a wide range of interactions were

found to be overlapping among them (see Additional

file 22: Figure S13).

Host interacting proteins

Among the 1604 proteins in the MN network, 152 were

found to interact with human host proteins. All these in-

teractions were established by an inter-species yeast two

hybrid assay [58]. Among these 152 proteins, 35 were

found to be part of the 282 important interacting pro-

teins for the MN network. These 35 proteins interact

with 91 human and 351 Plasmodium proteins forming a

total 644 interactions (Table 3). Among these 91 human

partners 39 were mapped onto 65 KEGG [59] pathways

including signalling pathways (8), infection mechanism

(11) and metabolic pathways (6) as the most frequent

ones. Among the signalling pathways Hedgehog signal-

ling, NOD signalling, MAPK signalling, and TOLL-like

receptor signalling pathways were found to contain at least

one protein that interacts with one or more Plasmodium

proteins. Similarly, pathways involved in general infection

(e.g., bacterial infection, toxoplasmosis, trypanosomiasis

and viral infection) and cellular communication (e.g.,

Table 2 Number of proteins and interactions in different life cycle stages of Plasmodium falciparum

Name of stage For MN For MN-14

(Node:1605, Interaction:4750) (Node:303, Interaction:523)

Number of stage
specific interaction

Number of stage
specific node

Number of unique
interaction

Number of stage
specific interaction

Number of stage
specific nodes

Number of unique
interaction

Sporozoite 1458 617 9 248 140 2

Merozoite 1155 438 1 190 100 0

Trophozoite 3074 1126 66 378 218 1

Ring stage 2638 909 35 364 204 2

Schizont 3079 1132 99 388 225 4

Gametocyte 2635 1062 105 334 201 7
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endocytosis, phagocytosis, cell-cell adhesion, and tight

junctions) were also found to be affected by these host

interacting proteins from P. falciparum. Malfunction

of these pathways might result into characteristic clin-

ical manifestations of malaria (see Additional file 23:

Table S8). Host interactions of MN-16 proteins were

investigated separately. All the 16 proteins were found

to have no direct host connection but their 1st level

interactors had direct interaction with many human

proteins. In Figure 8 such a scenario is described using

PFI1475w (MSP1) as an example. PFI1475w, which is

expressed in all life cycle stages of Plasmodium inter-

acts with different proteins in different stages creating

a dynamic interaction pattern across the life cycle. 12

among these 51 interactors were found to interact with

34 human proteins which in turn were part of 22

different pathways. Detailed information about MSP1

and other proteins were described in Additional file 24:

Table S9.

Conclusion
The search of an effective method to identify important

protein(s) within a network was started since two de-

cades ago but only a few centrality based methods were

reported [26,32]. However, due to the heterogeneous

structure and organization of different networks no gen-

eric method could be established. Here, in this study we

made an attempt to establish a protocol for finding pro-

teins that are crucial for PPI network topology. Incorp-

oration of biologically rational filtration system further

led us to identify proteins, which could be crucial for an

organism’s survival. In case of P. falciparum, 16 proteins

were identified, among which three have the potential to

be therapeutic targets. The gene essentiality index for P.

falciparum is not available but identification of similar

housekeeping enzymes as IIPs in E. coli indicated that

this method could actually identify set of proteins, which

are important for an organism’s survival. The import-

ance of the IIPs was again validated when they were

Figure 7 Distribution of important proteins across different life cycle stages. In this diagram, stage specific expression pattern of proteins

from Hub (A), CP (B), GNPP (C) and LNPP (D) set are presented as a radar chart. In all the panels, stage(s) are plotted as single points at the

periphery where G stands for gametocyte, SP stands for sporozoite, SC stands for schizont, T stands for trophozoite, M stands for merozoite and R

stands for ring stage. Numbers of proteins from each of the stage(s) are plotted along the Y axes.

Table 3 Number of Plasmodium proteins that interact with human proteins

Number of interactors
in Human

Number of interaction
between Human and
Plasmodium proteins

Number of interactor
in Plasmodium (MN)

Number of
intra-pathogen
interaction

Plasmodium proteins having host partners152 257 367 515 996

IIP-271 having interacting host partner 35 77 103 351 541
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compared with PageRank of the nodes in both of the

network [57]. PageRank is an algorithm generally used

for finding important websites in the internet, a giant

scale free network. All the proteins in both MN-16 and

EN-19 were suggested to be within the top 100 ranks

indicating that these nodes are important for the con-

nectivity and flow of information through the corre-

sponding PPI network. Identification of date and party

hubs is important and all the date hubs in the Plasmo-

dium network were connected and a long chain of hubs

were formed. A heavily connected core interactome of

hubs was observed in these networks where hubs were

connected more with each other than being connected

to non hubs. Interestingly, although both the networks

(MN and EN) were observed to be scale free yet none of

them possess modular architecture like the yeast PPIN

[34,60-62]. Absence of modular architecture in both the

organisms and absence of party hubs in E. coli indicated

that the PPIN of different organisms might have differ-

ent architecture and connectivity. However, none of the

interaction network was complete enough to draw a

conclusion about its architecture as these large scale

proteome analysis experiments could not capture more

than 25% to 30% of the whole proteome. The actual

interaction pattern will be established only when all the

PPI of an organism could be captured and assembled. In

this study, crucial proteins were identified from four dif-

ferent independent perspectives and then combined

Figure 8 A schematic diagram of MSP1 and its interactions in Plasmodium and human. A A schematic Venn diagram for identification of

important proteins. PFI1475w (MSP1) is one of the IIPs identified using this protocol and presented here as an example. In the panel B intra

Plasmodium stage specific interactions of MSP1 are represented as schematic circular networks in six different boxes where each box represent a

particular life cycle stage marked at the bottom right corner of the box. Unique stage specific interactors are marked separately in the boxes. In

panel C human partners of these MSP1 interacting proteins are presented. The numbers on the proteins corresponds to the name mentioned at

Additional file 23: Table S8. Pathways of the Plasmodium interactors (from panel B) and human proteins (from panel C) are represented as two

bar charts (panel D and E, respectively). The proteins are represented here as small circles and their corresponding stages are represented as a

circular colour pattern at the circumference of the circle. The stage(s) where the particular protein is expressed is filled with corresponding colour

and other stage(s) are left blank.
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together to identify proteins that are important for the

overall integrity of the organisms’ interactome. Combin-

ation of all the centrality parameters was critical to find

out truly central proteins. Interestingly all the MN-16

proteins were found to be part of homeostatic pathways,

which are minimal for an organisms survival indicating

that these proteins could be part of the primordial pro-

tein set for the organism. Extraction of stage specific in-

teractions makes it evident that proteins of Plasmodium

interacts with different partners at different stages and

generates a dynamic PPIN. There is a future scope to

investigate this interaction dynamics for better under-

standing of P. falciparum biology. Our protocol was

standardised on the intra pathogen PPIN to identify the

IIPs but this can be practically applied over any PPIN as

well. Further, interacting partners of the parasitic IIPs

were found within the human cell and shown that the

human interactors mostly act as crosstalk protein among

various metabolic, signalling and disease pathways. This

in turn establishes the importance of IIPs in Plasmodium

life cycle. However, to get a better idea about the influ-

ence of the parasitic proteins within the host cell, future

study should be concentrated where the tripartite host

pathogen interaction network comprising of (i) inter-

action among parasitic proteins, (ii) interaction among

host proteins and (iii) interaction among host and pathogen

proteins can be constructed and subsequently analysed.

Additional files

Additional file 1: Table S1. Topological Properties of random network.

In this table all the network centrality parameters of randomized networks

are generated.

Additional file 2: Figure S1. Degree distribution of MN and EN along

with their random counterparts MRN(1–10) and ERN(1–10). Degree

distribution of MN and EN is distinctly different from the random networks

as random networks follow binomial degree distribution while MN and EN

follow a power law degree distribution.

Additional file 3: Figure S2. Identification of Hubs. In this approach (1) for

determination of degree threshold for hub, z-score of degree is plotted as a

positively skewed normal distribution having z-score at X axis and probability

density function of z-score at the Y axis. Green lines denote mean median and

mode if the fraction of the distribution that contributes to the skewness of the

graph is omitted, the rest of the distribution turns out to be standard normal

with mean median and mode (green line) at 0 (inset). The z-score threshold

after which the distribution becomes skewed is 0.7; so z-score of 1 which

correspond to degree 15 is considered as the threshold z-score for hub

definition (A). Approach 2 for Hub identification is described as a flow chart (B).

Additional file 4: Table S2. Date hubs of Plasmodium falciparum. In

this table date hubs of MN are mentioned along with their name and

correlation coefficient.

Additional file 5: Table S3. Party hubs of Plasmodium falciparum. In

this table party hubs of MN are mentioned along with their name and

correlation coefficient.

Additional file 6: Table S4. Date hubs of E. coli. In this table date hubs

of EN are mentioned along with their name and correlation coefficient.

Additional file 7: Figure S3. Distribution of Fisher exact P-value for GO

categories. Fisher’s exact P-value has been calculated for 18 biological

process (green) and 21 cellular component (red) categories using 2x2

contingency table.

Additional file 8: Figure S4. Distribution of centrality parameters for

MN and EN along with their random counterparts shown as box whisker

plots. Boxes are 2nd and 3rd percentile of the distribution and whiskers are

standard deviations. Mean is presented by a small square on the distribution

and median is a straight line on the boxes. Maximum and minimum values

are denoted by a ‘X’ sign. For all plots P-value MN and MRN are less than 0.01

indicating the significance of difference between the centrality parameters of

MN and MRN. P-value for EN and ERN is also less than 0.01 in all cases

indicating that E. coli PPINs are essentially different from the ERNs.

Additional file 9: Figure S5. Principal component analysis. All (9)

centrality parameters were normalized to 0 to 1 scale and an all-to-all

correlation matrix was constructed. Three principal components were

identified and one parameter from each component was selected

(highlighted by blue rectangle) for further calculation of combined

centrality score.

Additional file 10: Figure S6. Relationship between LNCS and

clustering coefficient. The plot is generated for 1049 local sub graphs

created from MN. From the proportional increase of local network

centrality score to clustering coefficient it is clearly evident that the

constructed sub graphs are not randomly connected rather they have a

non-radial connectivity like scale free networks. This also validates that

the network centrality score described in this article is a true indicator of

centrality.

Additional file 11: Figure S7. Relationship of CCS, GNPS and LNPS.

Centrality score and global network perturbation score are correlated but

none of them is correlated with local network perturbation score.

Additional file 12: Table S5. Normalized expression profile of

Plasmodium Proteins in different life cycle stages. This is the expression

profile of Plasmodium Proteins in 6 life cycle stages.

Additional file 13: Figure S8. Topological overlap of hub and non hub

modules. Distribution of TOM scores of date hubs, party hubs and non

hub proteins.

Additional file 14: Figure S9. Centrality analysis in EN. Distribution of

global cumulative centrality score (CCS) of E. coli proteins normalized as

z-score (A). Distribution of different functions of proteins belonging to

CP-EN-121(B).

Additional file 15: Figure S10. In-silico perturbation analysis in EN.

Distribution of global and local network perturbation scores (GNPS and

LNPS) normalized as z-score in EN (A). Fraction of hubs in GNPP-EN-106

and LNPP-EN-91 data sets (B). Distribution of different functions of proteins

belonging to GNPP-EN-106 and LNPP-EN-91 protein sets (C-D).

Additional file 16: Figure S11. Differential perturbation effect of date

and party hubs in global and local networks. Distribution of perturbation

scores (normalized as Z-score) of party and date hubs in global and local

networks. Correlation coefficient of GNPS and LNPS of is 0.4 for party

hubs and 0.1 for date hubs (A-B). Distribution of perturbation scores of

party and date hubs for global and local networks shown as box whisker

plots (C-D).

Additional file 17: Figure S12. Identification of important interacting

proteins (IIPs) of EN. Distribution of different functions in 220 proteins

important for network topology (A). Overlap between the selected proteins

by different methods is presented in the Venn diagram (B). 220 important

proteins are highlighted according to their selection by different methods

(C). Interaction network of EN-19 (D). In C and D panels, EN-19 proteins are

highlighted in red colour and interactions among themselves are denoted

by black lines. Interactions among these 19 proteins and other proteins of

EN-220 are denoted by red lines. Rest of the interactions among EN-220

proteins and other nodes are denoted by blue lines.

Additional file 18: Dataset S1. MIIP: Malarial Important interacting

Proteins. This is a brief description of MIIP database.

Additional file 19: Table S6. Details of MN-16. In this table the topological

and functional details of MN-16 proteins are provided.

Additional file 20: Table S7. Details of EN-19. In this table the topological

and functional details of EN-19 proteins are provided.
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Additional file 21: Table S10. Average Network Centrality parameters

of 6 stage specific Networks. For each of the six life cycle stages six

unique PPI network has been constructed analysed using graph theory

principle. The table contains the average network centrality parameters for

each of the stage.

Additional file 22: Figure S13. Pairwise overlap of interactions among

six life cycle stages. Pairwise overlaps of interactions among six life cycle

stages are presented in the colour matrix. Six stages are represented by 6

colours as indicated in the name of the stage. The central hexagon (grey)

indicates the common core among all stages and the first block on the arms

of hexagon (grey in colour) contains the total number of unique interactions.

The other consecutive blocks represent the overlapping interaction with

other 5 stages represented by blocks of corresponding colour.

Additional file 23: Table S8. Pathway details of Human and Plasmodium

Proteins. In this table 35 IIPs which have interaction with human proteins

are reported along with their human partners along with their pathways.

Additional file 24: Table S9. Interaction details of PFI1475w (MSP1) in

Plasmodium and human. This table shows the complex interaction pattern

of a virulent Plasmodium protein and its corresponding human interactions.
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