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ABSTRACT

This paper introduces an automatic classification system for the
identification of individual classical guitars by single notes played
on these guitars. The classification is performed by Support Vec-
tor Machines (SVM) that have been trained with the features of
the single notes. The features used for classification were the time
series of the partial tones, the time series of the MFCCs (Mel Fre-
quency Cepstral Coefficients), and the “nontonal” contributions to
the spectrum. The influences of these features on the classifica-
tion success are reported. With this system, 80% of the sounds
recorded with three different guitars were classified correctly. A
supplementary classification experiment was carried out with hu-
man listeners resulting in a rate of 65% of correct classifications.

1. INTRODUCTION

This paper is part of a research program to determine an acoustic
fingerprint of an instrument, i.e., a data set that reflects the relevant
acoustic parameters making up the “personality” of the instrument.
Such an acoustic fingerprint can be utilized for the verification of a
physical model, the quality of a synthesizer, or the quality of a real
guitar, where the acoustic fingerprint of the generated sound will
be compared to the acoustic fingerprint of an reference instrument.
The initial question was, whether one single tone already reveals
the specific acoustic character of the instrument.

A machine learning system is developed that is able to dis-
tinguish between different classical guitars by features extracted
from single notes played on these guitars. The main problem in
developing such a learning system is, that the player is able to vary
the character of the sounds drastically by using different plucking
techniques, by varying the location where the string is plucked or
by varying the angle between the line of motion of the finger and
the string [1]. A proper set of acoustical features has to be deter-
mined to identify an individual instrument independent of pluck-
ing techniques. Support Vector Machines are taken as machine
learning system, and the role of different feature sets on the classi-
fication accuracy is investigated.

It will be shown, that this system is able to identify an instru-
ment by one single tone. Obviously this tone bears enough infor-
mation about the individual instrument to permit the identification.

In the remainder of this section, an overview over related work
is given. The second section presents our experimental setup, the
third section gives a very short introduction to the application of
Support Vector Machines to multi-class identification problems.
The results of our measurements are presented in the fourth sec-
tion. Conclusions and acknowledgements complete the paper.

∗ Present e-mail address: kerstin.dosenbach@rsmg.de

1.1. Related Work

Classical guitar sounds have been investigated in the past with sev-
eral methods. There are attempts to develop physical models of
the guitar in order to assist the luthier in improving the design of
the guitars. [2], [3], or to predict the acoustic properties of novel
materials [4]. Another strong motivation for research is the de-
velopment of realistic synthesizers for classical guitar sounds [5],
[6]. A third motivation is the search for effective data compression
algorithms without destroying the quality of the sound [5].

The selection of features for classical instrument recognition
is described in many papers. Common to all of these works is the
focus on identifying the type of an instrument (e.g. is it a trom-
bone?) or the instrument family (e.g. is it a brass instrument?).
This kind of classification is applied in automatic music transcrip-
tion systems.

Steelant et al. [7] investigate percussive sounds, i.e. sounds
produced by the instruments of a drum set. Features were Zero
Crossing Rate, Crest Factor, Temporal Centroid, several central
momenta of the spectrum. These features are well suited for per-
cussive sounds, but not for tonal sounds.

Marques and Moreno [8] compare Support Vector Machines
with Gaussian Mixture Models for the identification of instruments
like bagpipes, clarinet, flute, harpsichord, organ, piano, trombone,
and violin. They study various feature sets (LPC, Cepstral Coeffi-
cients, MFCCs) to identify the instruments and report that SVMs
with an MFCC feature set provide the best classification results.

Deng et al. [9] study the influence of feature selection for the
classification of 20 instrument types. Nineteen different features
are investigated. Again MFCCs are reported to be the most rele-
vant ones.

An interesting approach to distinguish guitar sounds from pi-
ano sounds is described by Fragoulis et al. [10]. The authors
describe a method to distinguish these sounds by their nontonal
spectrum. The nontonal spectrum is the remainder of a FFT spec-
trum after removing the peaks of the partial tones of the sound. It
is dependent of the material and geometry of the instrument, but
largely independent of the particular tone played.

2. EXPERIMENTAL SETUP

2.1. Recording

To achieve a database of classical guitar sounds, we proceeded
as follows: A collection of guitar notes was recorded by 5 play-
ers playing 3 guitars of the luthiers Dieter Hense (guitar A), Paco
Santiago Marin (guitar B), and Michael Wichmann (guitar C). On
each guitar, single notes were played on the 1st, 6th and 10th fret
of each string. Each note was played with three different musical
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timbres: “warm”, “sonorous”, and “sharp”, and was repeated sev-
eral times. The strings not being played were carefully damped,
and there was no vibrato applied to the tone.

The sound samples were recorded in an anechoic chamber
with a condenser microphone AKG C3000 B. The microphone
was located 30 cm above the soundboard of the guitar, 10 cm
below the bridge. To compensate for near-field-effects, the mi-
crophone’s built-in 20dB/decade low-pass filter with a cutoff fre-
quency of 500 Hz was activated. The microphone signals were
digitized with a MOTU 828mkII audio interface with 24 bit reso-
lution and 44100 Hz sampling rate.

Sound files were produced from the recording sessions, each
file containing one single tone. The sound files have a fixed length
of 2 seconds. The starting point of the sounds is 0.1 seconds before
the maximum amplitude of the sound is reached. The maximum
amplitude of each sound file has been normalized to -3 dB, and the
information of the original amplitude was stored together with the
sound data. The complete sound database is publicly available 1.
Two subsets of the database were taken for training and for testing
the SVMs.

A supplementary experiment was carried out to compare the
results of the automatic classifications with the human classifica-
tion capabilities. An audio CD was prepared with three sets of four
tones. Each set consisted of one unlabeled tone followed by three
tones labelled with the guitar names. The CD was given to 12 test
listeners, mostly amateur musicians, who should assign the proper
guitar name to the unlabelled tone. They were allowed to repeat
the sounds as often as they liked.

2.2. Feature Extraction

All data evaluation algorithms are implemented in Octave / MAT-
LAB

First of all the fundamental frequency f0 is calculated by cep-
strum analysis and introduced to the feature vector. The intro-
duction of the fundamental frequency turned out to be necessary,
because the sound quality of any guitar is dependent of f0 (i.e. the
pitch of the tone), and none of the other feature values contains
explicit pitch information.

The nontonal amplitude spectrum is calculated using a MAT-
LAB implementation of the algorithm given by Fragoulis et al. [10].
The data of the first 15 peaks (frequency and amplitude) of these
spectra are entered to the feature vector. Figure 1 shows a semilog-
arithmic plot of the normal and the nontonal spectrum of a guitar
sound, indicating the nontonal peaks.

The time series of the first 16 partial tone amplitudes are cal-
culated with a window size of 2048 samples, corresponding to a
frame rate of approx. 20 Hz, and entered to the feature vector.

Finally, the time series of the first 10 MFCCs of the sound
are calculated with a MATLAB algorithm published in [11] with
a frame rate of 25 Hz, resulting in 50 frames for each sound file.
Figure 2 shows some time series of the first four MFCC values.
From this figure can be seen, that the similarity in MFCC data for
two tones played with the same musical timbre is much greater
than the similarity of two tones played on the same guitar. This
is true for all features, and illustrates the difficulties in properly
classifying the sounds.

To estimate the influence of the various features, several fea-
ture subsets are used for training and testing the SVMs.

1http://guitarsounds.cpt.haw-hamburg.de

Figure 1: Normal and nontonal amplitude spectrum

Figure 2: MFCC data. Top: Guitar A, sonorous. Middle: Gui-
tar B, sonorous. Bottom: Guitar A, sharp
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3. APPLICATION OF SUPPORT VECTOR MACHINES
TO MULTI-CLASS IDENTIFICATION

SVMs are machine learning systems for classification. Each data
set is represented by a (usually very high-dimensional) feature vec-
tor. In the training of a SVM an optimal hyperplane for the sep-
aration of the training data is calculated. The optimal hyperplane
is the one with the broadest margin, i.e. the largest distance to
the feature vectors. A detailed description is given in the book of
Schölkopf and Smola [12].

For our investigations the SVMlight implementation by Joachims
[13] is used. This implementation is available as platform-independent
source code. SVMlight is fast and provides detailed debugging out-
put, useful for fine-tuning the learning process.

Support Vector Machines can only separate two classes. For
multi-class identification problems there are two approaches. The
first approach is one-vs-all-classification: For each class Ci a SVM
Mi will be trained, that separates the feature vectors of Ci from
the feature vectors of all of the other classes. The other approach is
a one-vs-one-classification where for each pair of classes (Ci, Cj)
a SVMMij is trained that distinguishes between the feature vec-
tors of Ci and Cj . A Directed Acyclic Graph (DAG) [14] must be
constructed to schedule the necessary comparisons for the classifi-
cation of an unknown feature vector. This procedure is illustrated
in figure 3.

GuitarA
Guitar B
Guitar C

A vs B

A vs C B vs C

Guitar A Guitar C Guitar B

not B not A

not C not A not B not C

Figure 3: DAG for multi-class identification

In the training phase, the computational cost for the one-vs-
all-classification is lower than for the one-vs-one-classification. In
the first case, N SVMs will have to be trained for N classes, in the
second case, N(N − 1)/2 SVMs will have to be trained for each
pair of classes. But one-vs-all-classification has the drawback, that
the hypersurface dividing the two classes in feature space in most
cases will not be a hyperplane, requiring the use of modified SVMs
(so-called non-linear kernel SVMs). This will increase the com-
puting cost and complicate the configuration of the learning sys-
tem. For this reason a one-vs-one-classification was used for our
experiments.

For the classification of an unknown sample the computational
costs are nearly equal: N tests for one-vs-all-classification, N − 1
tests for one-vs-one-classification in conjunction with a DAG (see
fig. 3)

4. MEASUREMENTS AND RESULTS

Several feature sets were tested for their influence on the classifi-
cation performance.

For a detailed view of the classifications, here are the confu-
sion matrices for the several feature sets. The row labels indicate

the correct guitar, column labels indicate the classification output.
Example: the number 34 in row 1, column 2 of the following table
means that 34 sound samples of guitar A were erroneously classi-
fied as guitar B.

The last confusion matrix shows the result of the human lis-
teners classification experiment.

Abbreviations: PA: Partial tone amplitudes of the first 15 par-
tial tones @ 20 Hz, NT: 15 Nontonal peaks, MFCC: first 10 MFCCs
@ 25 Hz

Set 1: f0, PA, 641 Features, Performance = 48.1%
Guitar A Guitar B Guitar C

Guitar A 187 34 103
Guitar B 127 73 124
Guitar C 92 24 208
For Guitars A and C the majority of classifications is
correct, but Guitar B is not properly classified.

Set 2: f0, NT, 31 Features, Performance = 32.4%
Guitar A Guitar B Guitar C

Guitar A 213 4 89
Guitar B 243 2 79
Guitar C 242 0 82
The nontonal peak classificator tends to classify every-
thing as guitar A.

Set 3: f0, MFCC, 501 Features,
Performance = 75.3%

Guitar A Guitar B Guitar C
Guitar A 223 55 46
Guitar B 52 229 43
Guitar C 28 16 280
The MFCC classificator is the single-feature classificator
with the highest rate of correct classifications.

Set 4: f0, NT, PA, 671 Features,
Performance = 57.3%

Guitar A Guitar B Guitar C
Guitar A 173 83 68
Guitar B 105 150 69
Guitar C 49 41 234
Compared to set 1, the identification of guitar B has im-
proved.

Set 5: f0, MFCC, PA, 1141 Features,
Performance = 81.6%

Guitar A Guitar B Guitar C
Guitar A 241 43 40
Guitar B 32 265 27
Guitar C 17 20 287
This is the classificator with the best overall perfor-
mance.

Set 6: f0, MFCC, NT, 531 Features,
Performance = 77.6%

Guitar A Guitar B Guitar C
Guitar A 238 50 36
Guitar B 46 235 43
Guitar C 24 19 281
The NT features slightly improve the performance of the
MFCCs, especially for distinguishing guitar A from gui-
tar B.
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Set 7: f0, MFCC, PA, NT, 1171 Features,
Performance = 80.6%

Guitar A Guitar B Guitar C
Guitar A 248 38 38
Guitar B 38 257 29
Guitar C 21 25 278
Even though the number of features is higher as in set 5,
the overall performance is slightly less.

Human Listeners, Performance = 65%
Guitar A Guitar B Guitar C

Guitar A 4 6 2
Guitar B 2 10 0
Guitar C 1 1 10
Human listeners tend to mistake guitar A for guitar B.

An analysis of the misclassified samples showed no correla-
tion between player, string, fret, or timbre and the misclassification
rate.

As already mentioned, the classification is based on one single
note, without knowledge of timbre, string or fret position. In a
realistic setup the classification will be based on several notes on
different strings and with different timbres.

With a single-tone misclassification probability p1 of 0.2 (from
sets 5 or 7), a classification based on three tones with a 2-out-of-3
selection would lead to a misclassification probability p3 of

p3 = (1− p1)
3 + 3 · p1(1− p1)

2 = 0.10 (1)

thus the classification performance based on three tones will
be 90%!

5. CONCLUSIONS

It is possible to distinguish individual classical guitars by single
sound samples. The identification can be accomplished by Sup-
port Vector Machines executing a 1-vs-1-classification using fea-
ture vectors with time-spectral properties of guitar sounds.

For an identification based on single notes a classification per-
formance of better than 80% is obtained, far outperforming the
results of human classification (65%).

A next task will be the extension of the database to more gui-
tars. It will have to be investigated whether reliable SVMs can
be created based on the recordings of fewer guitarists, possibly
only one. Also the robustness of the classification against different
recording setups will have to be tested, because it is highly desir-
able to record the unknown sounds in a normal living room or a
workshop.

After this, the system is ready to be tested in a luthier’s work-
shop. The instrument under construction will be classified using
a SVM which was trained with the data of a reference instrument.
The luthier will successively modify his instrument until it will be
classified as the reference instrument.
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