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Identification of influential 
spreaders in complex networks 
using HybridRank algorithm
Sara Ahajjam & Hassan Badir

Identifying the influential spreaders in complex networks is crucial to understand who is responsible for 
the spreading processes and the influence maximization through networks. Targeting these influential 
spreaders is significant for designing strategies for accelerating the propagation of information that is 
useful for various applications, such as viral marketing applications or blocking the diffusion of annoying 
information (spreading of viruses, rumors, online negative behaviors, and cyberbullying). Existing 
methods such as local centrality measures like degree centrality are less effective, and global measures 
like closeness and betweenness centrality could better identify influential spreaders but they have some 
limitations. In this paper, we propose the HybridRank algorithm using a new hybrid centrality measure 
for detecting a set of influential spreaders using the topological features of the network. We use the SIR 
spreading model for simulating the spreading processes in networks to evaluate the performance of our 
algorithm. Empirical experiments are conducted on real and artificial networks, and the results show 
that the spreaders identified by our approach are more influential than several benchmarks.

Spreading processes are ubiquitous in di�erent complex systems. It occurs in a plethora of applications and 
domains, ranging from the spread of news and ideas to the di�usion of in�uence and social movements and 
from the outbreak of a disease to the promotion of commercial products. �e interactions among the di�erent 
entities of the network are responsible for the formation of the pathways, and for the de�nition of the topological 
properties of the entities; that widely a�ect the spreading phenomena in the networks. Understanding and con-
trolling the spreading processes in complex networks has paid a great attention in the last decades: For example, 
promoting a new idea or new product in a network in order to be adopted by a large fraction of individuals. �e 
word of mouth e�ect is the key behind the viral marketing, i.e. that individuals that have already adopted the idea 
will recommend it to their friends and so on. �e problem of choosing key nodes as source spreaders to achieve 
the maximum scale of spreading is de�ned as in�uence maximization problem1. �e basic question to control the 
spreading process and maximize the in�uence is identifying the set of in�uential spreaders leading to a successful 
promotion campaign.

Up to now, many centrality measures were proposed for ranking nodes and identifying their spreading 
ability in complex networks. �ere are three types of well-known metrics: local metrics, global metrics, and 
random-walk metrics. Local metrics like degree centrality are simple but are less e�ective because they neglect 
the global structure of the network2,3. Global metrics as betweenness centrality and closeness centrality are well 
performing in the identi�cation of the key nodes, but they are of high computational complexity2,3. �ey are 
o�en considered prohibitive for large-scale networks and it’s hard to get the complete network structure for the 
large-scale networks. �e random walk metrics like PageRank4 and LeaderRank5 show signi�cant performance 
in directed and undirected networks. �e paper of Lü et al.6 reviewed the state of the art of di�erent proposed 
methods and approaches dealing with detection of vital nodes in complex networks. Di�erent methods were 
compared based on the nature of the network (directed, weighted, bipartite, etc…). Each reviewed method 
(LocalRank, LeaderRank, ClusterRank, PageRank, degree centrality…..) performances depend on the objective 
functions under consideration. �e betweenness centrality performs well in hindering epidemic spreading while 
in the SIR process, the degree centrality can better identify in�uential spreaders when the spreading rate is very 
small and the eigenvector centrality performs better when the spreading rate is close to the epidemic threshold. 
Kitsak et al.7 put forward a fast node ranking method called k-shell decomposition for large-scale networks. �ey 
argued that the node in�uence should be determined by the location of the node in the network. �e nodes in the 
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core of the network identi�ed by the largest k-shell value are more in�uential than those in the periphery of the 
network. In the paper of Liu et al. named ranking the spreading in�uence in complex networks, a new method 
is proposed for measuring the spreading in�uence of nodes of the same k-core value. �e spreading in�uence 
is measured by computing the shortest path from the target node to the network core8. Liu et al. provide a new 
method for improving the k-shell centrality by removing the redundant links that leads to densely connect the 
core nodes but they have a low di�usion importance. �e redundant links are identi�ed by measuring the dif-
fusion importance for each edge based on the number of out-leaving links of its both ends9. Wang et al. present 
a new method for evaluating the in�uence capability of nodes using k-shell iteration factor, it uses the itera-
tion information of k-shell decomposition to distinguish the in�uence capability of nodes with the same k-shell 
value10. Al-garadi et al. propose a new improvement of k-core centrality based on interactions between users for 
online social networks. �e link-weighting method suggests that the interactions between users are a signi�cant 
factor in quantifying the spreading capability of users11. Chen et al. provide an e�ective and e�cient ranking 
method called ClusterRank and show that the spreading process initiated from the highly clustered nodes would 
be more likely to con�ne in a local region12. Chen et al. propose a new centrality measure named local centrality 
less time consuming compared to others centralities. �e proposed centrality considers the nearest and the next 
nearest neighbors. For each node, the local centrality is the sum of the number of the nearest and the next nearest 
neighbors of each of its adjacent neighbors13. Qian and Jun propose the hybrid degree centrality, that combine 
Modi�ed Local Centrality (MLC) which measure node’s distal in�uence and degree centrality and considers the 
di�erent ratios between the importance of near-source in�uence (DC) and distal in�uence (MLC) under di�er-
ent spreading probabilities, while the spreading probability a�ect the result of those centralities14. Liu et al. deal 
with a new centrality named neighbor distance centrality (nbd) based on degree centrality and considers that the 
importance of the node depends not only on their direct neighbors but also on its neighbors of order 2 and 315. 
�e authors in16 provide a novel method to identify multiple spreaders from communities in a balanced way using 
the Red-black tree. �e network is �rst divided into a great many super nodes using the blondel method and then 
k spreaders are selected from these super nodes. It takes a non-visited super node with maximal size from the 
red-black tree. �en, the most in�uential node is selected from the super node as a spreader according to a degree 
centrality index. A new family of H-indices for measuring the node importance is proposed in17. �e H-indices 
are degree, H-index and coreness centrality that will be related in this work where degree, H-index (de�ned to 
be the maximum value h such that there exists at least h neighbors of degree no less than h.) and coreness are the 
initial, intermediate and steady states of the sequences, respectively. Zhang et al. propose VoteRank algorithm 
that measures for each node its ability of voting, the node getting most votes from its neighbors is selected as 
in�uential and it doesn’t participate in subsequent voting and the voting ability of its neighbors will decrease18. 
Wang et al. provide a new extension of the DegreeDiscount method named GeneralizedDegreeDiscount. In the 
proposed method, the status of a node is de�ned as its probability of not being in�uenced by any of its neighbors, 
and the index generalized discounted degree of one node is measured by the expected number of nodes that 
could in�uence19. �e authors of20 provide a new method for in�uence maximization using optimal percolation 
in complex networks. In the beginning, all the nodes of the network are considered. �en, the node with the 
highest Collective In�uence is removed from the network and the degree of their neighbors is decreased by 1. 
�is process is repeated until the giant component of the network is zero. Wang et al. propose a new centrality 
namely e�ciency centrality for the identi�cation of in�uential nodes in networks based on network e�ciency. In 
this method, the e�ciency centrality of nodes is computed by analyzing the e�ciency of the network before and 
a�er removing the node from the network21. Liu et al. propose the dynamic-sensitive centrality for locating in�u-
ential nodes in networks by integrating topological features and dynamical properties. �e spreading in�uence 
of a node at t is de�ned by the sum of infected probabilities when i is initially infected. �e result of this method 
depends on the infection rate to be selected22.

Even if designing an e�ective method to evaluate the node spreading ability and detecting the in�uential 
spreaders in the networks has been addressed in several researches, however, it is still a large challenge up to now. 
In this paper, we propose a new method named HybridRank to detect the in�uential spreaders in the network 
using the topological features of the network. Our method can be split into two sections. First, we provide a new 
hybrid centrality for identifying the in�uential nodes of the network, and secondly we select a set of the in�uential 
spreaders, by interacting all together we maximize the spreading of in�uence. Our method is tested on four real 
networks, and the e�ciency of our method is assessed using the SIR (Susceptible, Infected, Recovered).

�e paper is organized as follows. Section 2 begins with a brief overview and de�nition of previous centrality 
measures. In section 3, we propose the HybridRank algorithm. In section 4, numerical examples in four real net-
works are illustrated to show the e�ectiveness and the performance of the proposed algorithm. Finally, conclusion 
and perspectives are presented in section 5.

Centrality Measures
�e centrality measures aims for identifying the “most important” nodes in a social network. �ey are used for 
understanding the power and the social in�uence in a network. �e importance of node depends on diverse 
parameters such the direction in the graph, the connectivity and the nature of measurement of the entire network 
where the variety of the proposed measures23–25. Linton Freeman proposes the most important contributions for 
the analysis of social networks.

Degree Centrality. It is de�ned as the number of links incident upon a vertex which means the number of 
edges a vertex has. For a graph G: = (V, E) with n vertices, the degree centrality Cd(i, g) for vertex is:
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Betweenness Centrality. Vertices have higher betweenness if they occur on many shortest paths between 
other vertices. For a graph G: = (V, E) with n vertices, the betweenness Cb(i, g) for vertex is computed as follows:

For each pair of vertices (v, w):

 1. Compute all shortest paths between those vertices.
 2. De�ne the fraction of shortest paths passing through the studied vertex i.e. vertex v.
 3. Sum this fraction over all pairs of vertices (s, t).

�e betweenness centrality is:
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i is the probability that i falls on a randomly selected geodesic connecting k and j.

Closeness Centrality. A vertex has higher closeness centrality if it is shallow to other vertices of the network, 
i.e. if it has short geodesic distances to other vertices. Closeness centrality is usually positively associated with 
other measures such as degree because it gives higher values to more central vertices, i.e. those with shortest-path 
length26.

�e closeness centrality is:
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where: d(i, j; g) is the geodesic distance between i and j.

Methods and Materials
Proposed Algorithm. Locating in�uential nodes in networks is a challenging task of huge importance 
because of its applications in complicated networks, marketing and advertisement, ranking web pages and scien-
tists publications etc. Several methods are elaborated for the detection of these in�uential spreaders in networks. 
In a complex network, when a spreading origins from a single node, the �nal a�ected population depends much 
on the importance of the spreading origin. In this paper, the HybridRank algorithm will be presented to deal with 
the problem of in�uence maximization. In HybridRank algorithm, the main idea is to de�ne a set of in�uential 
spreaders based on hybrid centrality; by interacting all together we maximize the spread of in�uence. �us, our 
approach can be split to two points: (1) the identi�cation of in�uential spreaders using hybrid centrality, and (2) 
the identi�cation of a set of spreaders nodes that are susceptible to maximize the dissemination of in�uence by 
acting all together. �e details of our algorithm are described as follows.

Step 1: Detection of in�uential nodes using hybrid centrality. Assume a social network that is modeled as a graph 
G = (V, E), with V being the vertex set. Each vertex in G represents an element in the dataset. |V| represents the 
number of vertices in G (or elements in the dataset). E is the edge set. Each edge represents a relationship between 
a pair of elements. n = |V| represents the number of network nodes and m = |E|, the number of edges. �e net-
work structure is represented as an adjacency matrix A = {aij} and aij ∈ R, where aij = 1, if a link exists between 
nodes i and j, otherwise aij = 0.

�e proposed hybrid centrality takes advantage from the global topology of a general network with no speci�c 
structure. As claimed by Kitsak et al.7, the location of a node determines its in�uence capability. �erefore, the 
nodes located in the core of network tend to be highly important than those in the periphery. Hence, the k-shell 
decomposition centrality method that decomposes the network into hierarchically structured shells from the core 
to the periphery. �e k-shell decomposition method starts by removing all nodes with degree k = 1 and their links 
from the network. A�er removing all nodes with k = 1, there may appear some nodes with only one link le�. We 
also remove these nodes until there is no node with one link le� in the network. �e removed nodes are assigned 
with an index ks = 1. Next, nodes with degree k ≤ 2 are removed in a similar way and assigned an index ks = 2. �is 
pruning process continues removing higher shells until all nodes are removed. As a result, each node is assigned 
a ks index, which is considered as the coreness of the node.

In this paper, a new improvement of the coreness of node is presented. �e improved coreness of a node is 
equals to the coreness of its neighbors (Eq. 4). �us, each node’s coreness depends of the k index of its adjacent 
nodes, i.e. the node is highly located (central) if their immediate neighbors are highly located (central).

∑=
∈Γ

ICC(v) C(u)
(4)u (v)

With (v) is the neighborhood of the node v.
Another centrality measures that is increasingly popular is the eigenvector centrality. It is a positive multiple 

of the sum of adjacent centralities27, and is based on the philosophy that a node is more central if its neighbors are 
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also highly central. Because eigenvector centrality is proportional to an individual’s neighbors’ centralities28–30, 
more in�uential individuals will be more connected with other in�uential individuals.

λ=Ax x (5)

With: A is the adjacency matrix of the network and λ is the eigenvalue.
In this paper, we present a new measure of centrality named hybrid centrality. �e hybrid centrality is based 

on the previous cited centralities, i.e. the improved coreness centrality (ICC) and the eigenvector centrality (EC). 
Our proposed method is used to analyze the global features of nodes, and results are used to compute their global 
diversity. �e hybrid centrality of a node v is de�ned as follows:

= ∗HC v ICC v EC v( ) ( ) ( ) (6)

With ICC(v) is the Improved Coreness Centrality of node v, and EC(v) is the eigenvector Centrality of node v.
�e nodes are ranked based on their hybrid centrality (Eq. 6). �e �rst in�uential spreader is the node with 

the highest hybrid centrality.

Step 2: Identi�cation of a set of spreaders nodes. As pointed out by Kitsak et al.7, the propagation range would 
be improved greatly if any two selected spreaders are disconnected comparing with simply selecting nodes with 
maximum degree or k-shell value one by one. �e previous step combines the improved version of k-core central-
ity and the eigenvector centrality. �e idea behind combining those two centralities is that both of them consider 
a node as central if it is connected to other central nodes; i.e. the selected spreaders will infect their neighbors that 
are also powerful and in�uential; and in their turns; they will infect their neighborhood. In order to maximize the 
spread of in�uence, we avoid the selection of the adjacent neighbors when selecting the set of source spreaders 
from the ranked list. Based on those assumptions, the separation of spreaders nodes could accelerate the infor-
mation dissemination and the selection of remote nodes can a�ect as many nodes as possible. For that, we will 
neglect the adjacent neighbors when selecting the set of source spreaders from the ranked list to maximize the 
spread of in�uence. So, a�er a node is elected as in�uential spreader, the selection probability of its neighbors will 
decrease. For that purpose, a�er the �rst spreader is selected, their adjacent neighbors will be eliminated from the 
ranked list. And the second spreader will be the node with the highest hybrid centrality in the remained ranked 
list.

HybridRank algorithm can be used to choose top-k in�uential spreaders in both undirected and directed net-
works. In directed network, if there is a link from node u to node v, u is the in-neighbor of v, and correspondingly, 
v is the out-neighbor of u. In this paper, a link from node u to v indicates that v receives information from u. In 
HybridRank version for directed networks, the identi�cation of a set of source spreaders is based on in/out neigh-
bors. Only the adjacent neighbors that receive in�uence from the spreaders will be deleted from the ranked list.

SIR model. In this paper, we use the SIR epidemic model with limited contact to evaluate our method. In SIR 
model, each node of the network is in one of the three states: Susceptible (S) represents the individuals susceptible 
to be infected but not yet infected; Infected (I) denotes individuals that have been infected and are able to pass the 
disease to their susceptible neighbors with probability β; and Recovered (R) depicts individuals who are infected 
but have recovered with probability γ, and those nodes will never be infected again. �e process terminates if 
there isn’t any infected node in network. In this paper, we set γ = 1 for generality. �e real spreading ability initi-
ated from node i is denoted as σ(i) by counting the number of recovered nodes over 100 simulations. We set the 
value of infection probability β to be slightly larger than the epidemic threshold β ≈ < >

< >th k

k
2

of the network, where 
<k> and <k2> represent the average degree and the second order average degree, respectively31.

Performance metrics. Kendall tau. Kendall tau coe�cient32,33 is used to rank the real spreading ability of 
nodes referring to its spreading in�uence. It measures the correlation between the ranking method list and the 
one generated by the SIR model. �e Kendall’s tau coe�cient considers a set of joint observations from two ran-
dom variables X and Y. Any pair of observation (xi, yi) and (xj, yj) are said to be concordant if the ranks for both 
elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and yi < yj. �ey are said to be discordant if xi > xj 
and yi < yj or if xi < xj and yi > yj. It is de�ned as follows:

τ =
−

−
(L , L )

n n

n (n 1) (7)
1 2

c d
1

2

where L1 and L2 are two di�erent ranking with n elements, nc and nd represent the number of concordant and 
discordant pairs, respectively.

Infected scale. In order to compare the spread using di�erent methods, we use the infected scale at time t which 
is introduced as follows:

=
+

F t
n n

n
( )

(8)
I t R t( ) ( )

where n is the number of nodes of network, n and nI t R t( ) ( ) are the number of infected and recovered nodes at time 
t respectively.

Final Infected scale. F t( )c  is used to investigate the �nal scale of a�ected nodes.
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where nR t( )c
is the number of recovered nodes when spread process achieving steady state.

Shortest path length. �e average shortest path length Ls is used between each pair of source spreaders S to eval-
uate the structural properties among the selected spreaders.

∑=
− ∈

≠

L
S S

l
1

( 1)
(10)

s
u v S
u v

u v
,

,

where lu v,  is the length of the shortest path from node u to v.

Data description. To ensure the e�ciency and the performance of our proposed method, we assessed our 
method using both real networks and arti�cial networks. �e arti�cial networks include networks generated by 
the Watts-Strogatz small-world network model (ws)34 of 1000 nodes and 5000 edges and the Barabàsi-Albert 
network model (BA)35 formed by 1000 nodes and 2994 edges. �ese networks are undirected and unweighted. As 
shown in Table 1, the four real networks include:

•	 Cond-mat is an undirected network of 23133 nodes and 93497 edges. It represents Arxiv COND-MAT (Con-
dense Matter Physics) collaboration network is from the e-print arXiv and covers scienti�c collaborations 
between authors papers submitted to Condense Matter category. If an author i co-authored a paper with 
author j, the graph contains an undirected edge from i to j. If the paper is co-authored by k authors this gen-
erates a completely connected subgraph on k nodes36.

•	 Dblp network provides a comprehensive list of research papers in computer science of the DBLP bibliography. 
A co-authorship network is constructed based on the papers that gather authors. Two authors are connected if 
they publish at least one paper together. �is network contains 317080 nodes and 1 million edges37.

•	 �e Epinions directed network depicts who-trust-whom in the online social network of a general consumer 
review site Epinions.com. It is formed of 75879 nodes and 508837 edges38.

•	 Wiki-vote is also a directed network of 7115 nodes and 103689 edges that contains all the Wikipedia voting 
data from the inception of Wikipedia till January 2008. Nodes in the network represent Wikipedia users and 
a directed edge from node i to node j represent that user i voted on user j39.

Results and Discussion
�e performance of HybridRank algorithm compared to other methods is evaluated using di�erent metrics men-
tioned before on both arti�cial and real networks. In each implementation, a fraction of the nodes is selected as 
source spreaders, and the information spreads according to the SIR process described above. For each method, 
the SIR process is repeated many times to ensure the stability of the results. Figure 1 shows the infected scale F(t) 
on four real networks (directed and undirected) where =p

n

10  is the ratio of the number of source spreaders and 
n is the number of the nodes in the network. �e results shown in (Fig. 1) are obtained using di�erent range of 
infected rate β = 0.06 and β = 0.1 and γ = 1 for di�erent methods. Besides the real networks, we also compare the 
result of our algorithm using arti�cial networks. Figure 2 represents the a�ected scale F(t) using di�erent methods 
for the barabàsi-albert network and the watts-strogatz network where β = 0.09 and β = 0.1 successively and γ = 1. 
In the case of undirected networks, the result of our method HybridRank is compared to Eigenvector, K-shell 
decomposition and degree methods. For the directed methods, our algorithm HybridRank is compared to 
PageRank, OutDegree and ClusterRank12 algorithms. In our case, we set the t = 30 for further investigation, 
because the spreading in the early stages is more important. Using the source spreaders obtained by the 
HybridRank algorithm, it can be observed from (Figs 1 and 2) that source spreaders provided using HybridRank 
algorithm can a�ect larger scale compared to other methods even if the spread is smaller in primary steps. It is 
due to the set of selected source spreaders. �e selected set of spreaders of Degree method have more connections; 
which explains the increase of the infected scale F(t) in primary steps and its decrease by the end. While in the 
HybridRank algorithm, the set of selected spreaders is not based only in the highest hybrid centrality, but also in 

Datasets n M kmax <k> <k2> <cc> βth

Cond-Mat 23133 93497 281 8.083431 178.6619 0.6334 0.045

Dblp 317080 1049866 343 6.62089 144.0063 0.6324 0.045

Epinions 75879 508837 1801 6.7059 721.8229 0.1378 0.009

Wiki-vote 7115 103689 893 14.5733 1999.905 0.1409 0.007

Table 1. Topological features of the four real networks. n and m are the total number of nodes and edges, 
respectively. <k> is the average degree for undirected networks or the average out-degree for directed 
networks. kmax is the maximum degree for undirected networks or the maximum out-degree for directed 
networks. <cc> is the average clustering coe�cient and βth is the epidemic threshold, de�ned as βth ≈< >

< >

k

k
2

.
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the connections between spreaders, i.e. the selected spreaders shouldn’t get directed links even if the hybrid cen-
trality of the chosen spreader decreases.

We have measured the spread of in�uence without neglecting the neighborhood using one selected spreader. 
Figure 3 shows the a�ected rate of nodes in range of t [0, 30] using one single node as source spreader for the four 
datasets. As shown in the �gure, the HybridRank algorithm provides a high number of infected nodes compared 
to others methods. While, for the Wiki network, the HybridRank algorithm and OutDegree method provide the 
same result, because both methods select the same node as single spreader, i.e. the node with the high centrality 
in the ranked list.

Table 2 shows the �nal a�ected scale F(tc) of top-10 source spreaders with β is the infection rate, de�ned as 
β =

< >k

1  for undirected networks and β =
< >k

1
out

 for directed networks, and the recovery rate γ = 0.8. It’s obvious 
that HybridRank can achieve wider �nal a�ected scale F(tc) than other methods under same number of source 
spreaders. �e �nal a�ected scale F(tc) is not only determined by the in�uence of source spreaders, but also by 
their location. For this reason, hybrid centrality can dig out single in�uential spreader e�ectively, but perform 
poorly on selecting set of source spreaders by only choosing those with the highest hybrid centrality. To overcome 
this limitation, as it was cited in our method description, our HybridRank algorithm chooses the group of source 

Figure 1. �e a�ected scale F(t) for the four networks under di�erent scale of infected rate β for di�erent 
methods. In (a) β = 0.06 and in (b) β = 0.1 and γ = 1.
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Figure 2. �e a�ected scale F(t) for arti�cial networks with the infected rate β ≈< >
< >

k

k
2

 and γ = 1 for di�erent 
methods.

Figure 3. �e a�ected scale F(t) for the four networks under di�erent scale of infected rate β using one selected 
source spreader. In (a) β = 0.06 and in (b) β = 0.1 and γ = 1.
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spreaders such as two chosen spreaders are not directly linked. Once the �rst spreader with highest Hybrid 
Centrality is selected, their neighbor will be not selected and eliminated from the list of ranked nodes.

To ensure that the selected source in�uential spreaders obtained using HybridRank algorithm are more scat-
tered than other methods, the average shortest path length Ls of HybridRank and other algorithms are compared. 
Figure 4 shows the average of shortest path length Ls of source spreaders selected by di�erent methods under 

Figure 4. �e average shortest path length Ls under di�erent scale of source spreaders for di�erent benchmark 
methods.

Datasets Algorithms
Final a�ected 
rate

Time 
steps N m β P

Cond-Mat

HybridRank 0.2743008 36.4

23133 93497 0.124 0.0004
K-shell Rank 0.2691739 37

EigenvectorRank 0.263096 36.6

DegreeRank 0.2679635 32.4

Dblp

HybridRank 0.2679961 42.6

317080 1049866 0.151 0.00003
K-shell Rank 0.2679305 46.2

EigenvectorRank 0.2673779 44

DegreeRank 0.2665107 39.8

Epinions

HybridRank 0.1812517 29.8

75879 508837 0.149 0.0001
ClusterRank 0.178529 33.8

PageRank 0.1789006 37.2

OutDegreeRank 0.1787477 33

Wiki-vote

HybridRank 0.1602811 39.8

7115 103689 0.068 0.0015
ClusterRank 0.122052 26.4

PageRank 0.1519325 31.6

OutDegreeRank 0.1496275 28.4

BA

HybridRank 0.3822 18.4

1000 2994 0.167 0.01
K-shell Rank 0.348 16.2

EigenvectorRank 0.3208 19

DegreeRank 0.3222 17.8

WS

HybridRank 0.0938 16.8

1000 5000 0.1 0.01
K-shell Rank 0.0218 8

EigenvectorRank 0.0354 9.8

DegreeRank 0.0484 11.2

Table 2. �e �nal scale of a�ected nodes F(tc) for the four real networks in di�erent algorithms averaging over 
100 simulations. n and m are the total number of nodes and edges, respectively. p is the ratio of the number of 
source spreaders and β is the infection rate, de�ned as β =

< >k

1  and γ = 0.8 is the recovery rate.
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di�erent scale of source spreaders = ( )p , , , ,
n n n n n

5 10 15 20 30 . As demonstrated in Fig. 4, the selected in�uential 
spreaders obtained using HybridRank algorithm have larger Ls than those obtained by other methods for both 
real and arti�cial networks.

For the Cond-mat, Dblp, Wiki-Vote and Epinions networks, the Kendall’s tau correlation values for di�erent 
methods are shown in Table 3. �e real spreading ability of nodes is measured using the SIR model with βth ≈ < >

< >

k

k2
 

is the epidemic threshold and the recovery rate γ = 1 averaging over 100 simulations. For the undirected net-
works, the ranked list (σ) of top-10 of network nodes obtained using the SIR process is compared with the 
HybridRank, eigenvector, degree and k-shell decomposition ranked lists. While for the directed networks, the 
ranked list σ is compared to our HybridRank, ClusterRank, PageRank and Outdegree ranked lists. �e indices of 
correlation in directed networks obtained using the HybridRank algorithm are higher than others methods. 
While in Cond-mat network, the indice of HybridRank is smaller than degreeRank and k-shell due to the degree 
of nodes and the two ranked lists obtained using degree and k-shell centralities are specially based on degree, 
therefore their spreading ability is higher; i.e. both degree centrality and real spreading ability lists are ranking 
their nodes based on their degree. In fact, in the real spreading ability list, a node could infect a higher number of 
nodes if it is highly connected i.e. the ranking is determined by the degree, the same as the degree centrality. 
�erefore, the correlation between the real spreading ability list and the degree centrality list is higher in the undi-
rected networks because both methods ranked the nodes based on degree.

Computational efficiency. �e HybridRank algorithm has two steps: the hybrid centrality calculation and 
the identi�cation of a set of in�uential spreaders in the networks. �e hybrid centrality is composed from the 
eigenvector centrality of complexity O(|V| + |E|) with |V| is the number of vertices and |E| is the number of 
edges, and the complexity of the improved coreness centrality (ICC) of O(|E|). �e complexity of the second 
step is depends on the complexity of the neighborhood function. While the complexity of the neighborhood 
of graph nodes is O(|V|*d*o) with d is the average degree of the network and o is the order of neighborhood. If 
we want to select m in�uential spreaders, the algorithm should be run for m rounds. �erefore, the complexity 
is O(m*<k>*o) where <k> is the average node of nodes of the network and o is 1 because we are looking for 
neighbors of order 1. �us, the complexity is O(m* <k>). �en, the total complexity of the HybridRank algo-
rithm is: O(|V| + |E| + m <k>). In many networks, the average degree <k> is less than the number of nodes 
<k> ≪ |V|. �us, the �nal complexity is O(|V| + |E|).

Conclusion
In this paper, we propose a novel HybridRank algorithm to select k influential source spreaders based on 
our proposed hybrid centrality. In our method, the set of in�uential spreaders is not chosen only based on 
the hybrid centrality, but the set of selected source spreaders should not be adjacent to maximize the spread. 
The performance of our method is evaluated in four real networks (directed and undirected) under the 
Susceptible-Infected-Recovered (SIR). Results show that our proposed algorithm outperforms several bench-
mark methods using di�erent metrics. As further work, the HybridRank algorithm will be used for community 
detection algorithm based on leaders/in�uentials nodes. �e leaders/in�uential nodes will be the identi�ers of 
the communities, and we will assign for each leader/in�uential node their similar nodes to form the communities.
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