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Abstract
In this paper, we describe a machine learning approach for sequence-based prediction of protein-
protein interaction sites. A support vector machine (SVM) classifier was trained to predict whether
or not a surface residue is an interface residue (i.e., is located in the protein-protein interaction
surface), based on the identity of the target residue and its ten sequence neighbors. Separate classifiers
were trained on proteins from two categories of complexes, antibody-antigen and protease-inhibitor.
The effectiveness of each classifier was evaluated using leave-one-out (jack-knife) cross-validation.
Interface and non-interface residues were classified with relatively high sensitivity (82.3% and
78.5%) and specificity (81.0% and 77.6%) for proteins in the antigen-antibody and protease-inhibitor
complexes, respectively. The correlation between predicted and actual labels was 0.430 and 0.462,
indicating that the method performs substantially better than chance (zero correlation). Combined
with recently developed methods for identification of surface residues from sequence information,
this offers a promising approach to predict residues involved in protein-protein interactions from
sequence information alone.

1 Introduction
Identification of protein-protein interaction sites and detection of specific amino acid residues
that contribute to the specificity and strength of protein interactions is an important problem
with applications ranging from rational drug design to analysis of metabolic and signal
transduction networks. Because the number of experimentally determined structures of protein-
protein complexes is small, computational methods for identifying amino acids that participate
in protein-protein interactions are becoming increasingly important (reviewed in [26,28]). This
paper addresses the following question: given the fact that a protein interacts with another
protein, can we predict which amino acids are located in the interaction site?
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Many investigators have analyzed the characteristics of protein-protein interaction sites to gain
insight into the molecular determinants of protein recognition, and to identify characteristics
predictive of protein-protein interfaces [4,11,18,22]. In these studies, different aspects of
interaction sites such as hydrophobicity, residue propensities, size, shape, solvent accessibility,
and residue pairing preferences, have been examined. Although each of these parameters
provides some information indicative of protein interaction sites, none of them perfectly
differentiates the interface from the rest of the protein surface.

Based on different characteristics of known protein-protein interaction sites, several methods
have been proposed for predicting interface residues using a combination of protein sequence
and structural information. For example, based on their observation that proline residues occur
frequently near interfaces, Kini and Evans [17] predicted potential protein-protein interaction
sites by detecting the presence of “proline brackets.” Using this strategy, they identified the
interaction sites between fibrinogen and 9E9, a monoclonal antibody which inhibits fibrin
polymerization. Building on their systematic patch analysis of interaction sites, Jones and
Thornton [14,15] successfully predicted interfaces in a set of 59 structures using a scoring
function based on six parameters: solvation potential, residues interface propensity,
hydrophobicity, planarity, protrusion, and accessible surface area. Gallet et al. [9] identified
interacting residues using an analysis of sequence hydrophobicity based on a method
previously developed by Eisenberg et al. [6] for detecting membrane and surface segments of
proteins. Lu et al. [18] have developed statistical potentials for interfaces and used them in a
structure-based multimeric threading algorithm to assign quaternary structures and predict
protein interaction partners for proteins in the yeast genome.

Several groups have used neural networks to predict protein-protein interaction sites. Zhou and
Shan [32] and Fariselli et al. [7] have independently used neural network algorithms to predict
whether or not a residue is located in an interaction site using the spatial neighbors of the target
residues as input, and achieved accuracy of 70% and 73%, respectively. Ofran and Rost [23]
have successfully predicted protein-protein interaction sites using a neural network method
based on their observations that the majority of protein-protein interaction residues are
clustered on a sequence and that the protein-protein interfaces differ from the rest of the protein
surface in residue composition.

We have recently reported that a support vector machine (SVM) classifier can predict whether
a surface residue is located in the interaction site using the sequence neighbors of the target
residue [31]. Interface residues were predicted with specificity of 71%, sensitivity of 67%, and
correlation coefficient of 0.29 on a set of 115 proteins belonging to six different categories of
complexes: antibody-antigen; protease-inhibitor; enzyme complexes; large protease
complexes; G-proteins, cell cycle, signal transduction; and miscellaneous [31]. The results
presented in this paper show that the SVM classifiers perform even better when trained and
tested on proteins belonging to each category separately, suggesting that the design of
specialized classifiers for each major class of known protein-protein complexes will
significantly improve sequence-based prediction of protein-protein interaction sites.

2 Methods
2.1 Protein complexes, proteins, and amino acid residues

In our previous study [31], we extracted individual proteins from a set of 70 protein-protein
complexes used in the study of Chakrabarti and Janin [4]. After the removal of redundant
proteins and proteins with fewer than ten residues, we obtained a data set of 115 proteins
belonging to six different categories of complexes. The six categories and the number of
proteins in each category are: antibody-antigen (31), protease-inhibitor (19), enzyme
complexes (14), large protease complexes (8), G-proteins, cell cycle, signal transduction (22),
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and miscellaneous (21). In the study described here, we focused on the proteins from two
categories: 19 proteins from protease-inhibitor complexes and 31 proteins from antibody-
antigen complexes (the protein list is available at
http://www.public.iastate.edu/~chhyan/isda2003/sup.htm). The surface areas of residues in
contact with solvent molecules (ASA) were computed for each residue in the unbound molecule
and in the complex using the DSSP program [16]. The relative ASA of a residue is its ASA
divided by its nominal maximum area, as defined by Rost and Sander [25]. A residue is defined
to be a surface residue (a residue on a protein surface) if its relative ASA is at least 25% of its
nominal maximum area (the overall surface area of the residue that can be contacted by
solvent). A surface residue is defined to be an interface residue if its calculated ASA in the
complex is less than that in the monomer by at least 1Å2 [13]. Using this method, we obtained
360 interface residues and 832 non-interface residues from the 19 proteins from the protease-
inhibitor complexes and 830 interface residues and 3370 non-interface residues from the 31
proteins from the antibody-antigen complexes.

2.2 Support vector machine algorithm
Our study used the SVM in the Weka package from the University of Waikato, New Zealand
(http://www.cs.waikato.ac.nz/~ml/weka/) [30]. The package implements John C. Platt’s [24]
sequential minimal optimization (SMO) algorithm for training a support vector classifier using
scaled polynomial kernels. The SVM learning algorithm [29] finds a linear boundary, i.e., a
hyperplane in a high-dimensional Euclidean space, that separates the training data so that
patterns of class 1 fall on one side of the hyperplane and patterns of class −1 fall on the other
side of the hyperplane. If the patterns are not separable in the original n-dimensional pattern
space, a suitable non-linear kernel function is used to implicitly map the patterns in the n-
dimensional input space into a higher (finite or even infinite) dimensional feature space in
which the patterns become separable. SVM selects the hyperplane that maximizes the margin
of separation between the two classes from among all separating hyperplanes. The maximum
margin separating hyperplane is fully specified by a weighted combination of the training
patterns in the feature space and a bias (threshold term). Suppose the training set consists of a
sequence of examples:

where each Xi = [xi1; xi2; …; xin] is a training sample, and yi ∈{−1; 1} its known classification.
The classifier constructed by the SVM learning algorithm is of the form:

where Φ (X) is the image of an n-dimensional pattern vector X in a high-dimensional feature
space induced by the chosen kernel function; 〈AB〉 denotes the dot product between two vectors
A and B; X = [x1; x2; …; xn] is a pattern to be classified; each Xi is a training sample; yi ∈{−1;
1} the corresponding class label; αi the corresponding weight determined by the SVM learning
algorithm; and b the threshold or bias term (also determined by the SVM learning algorithm).
Note that sign(Z)=1 if Z ≤ 0 and sign(Z)=−1 if Z<0.

In this study, the SVM was trained to predict whether or not a surface residue is in the interaction
site. It is fed with a window of 11 contiguous residues, corresponding to the target residue and
five neighboring residues on each side. Following the approach used in a previous study by
Fariselli et al. [7], each amino acid in the 11-residue window is represented using 20 values
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obtained from the HSSP profile (http://www.cmbi.kun.nl/gv/hssp) of the sequence. The HSSP
profile is based on a multiple alignment of the sequence and its potential structural homologs
[5]. Thus, in our experiments, each target residue is associated with a 220-element vector. The
learning algorithm generates a classifier which takes, as input, a 220-element vector that
encodes a target residue to be classified, and outputs a class label.

2.3 Evaluation measures for assessing the performance of classifiers
Measures including correlation coefficient, accuracy, sensitivity (recall), specificity
(precision), and false alarm rate, as discussed by Baldi et al. [1], are investigated to evaluate
the performance of the classifier. Let TP denote the number of true positives-residues predicted
to be interface residues that actually are interface residues; TN the number of true negatives-
residues predicted not to be interface residues that are, in fact, not interface residues; FP the
number of false positives-residues predicted to be interface residues that are not, in fact,
interface residues; FN the number of false negatives-residues predicted not to be interface
residues that actually are interface residues. Let N=TP+TN+FP+FN. Sensitivity (recall),
specificity (precision), and false alarm rate were defined for the positive (+) class as well as
the negative (−) class:

Overall sensitivity, specificity, false alarm rate, and correlation coefficient are calculated as
follows:

The sensitivity for a class is the probability of correctly predicting an example of that class.
The specificity for a class is the probability that a positive prediction for the class is correct.
The false positive rate for a class is the probability that an example which does not belong to
the class is classified as belonging to the class. The accuracy is the overall probability that the
prediction is correct. The correlation coefficient is a measure of how predictions correlate with
actual data, ranging from −1 to 1; when predictions match actual data perfectly, the correlation
coefficient is 1; when predictions are totally opposite with actual data, the correlation
coefficient is −1. Random predictions yield a correlation coefficient of 0. We chose not to
emphasize the traditional measure of prediction accuracy because it is not a useful measure
for evaluating the effectiveness of a classifier when the distribution of samples over different
classes is unbalanced [1]. For instance, in the antibody-antigen category, there are 830 interface
residues and 3370 non-interface residues in total, a predictor that always predicts a residue to
be a non-interaction residue will have an accuracy of 0.80 (80%). However, such a predictor
is useless for correct identification of interface residues.
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3 Results
3.1 Classification of surface residues into interface and non-interface residues

Leave-one-out cross-validation (jack-knife) was used to evaluate the performance of the SVM
classifier in each category of proteins separately. For the antibody-antigen category, 31 such
jack-knife experiments were performed. In each experiment, an SVM classifier was trained
using a training set consisting of interface residues and non-interface residues from 30 of the
31 proteins. The resulting classifier was used to classify the surface residues from the remaining
protein into interface residues (i.e., the amino acids located in the interaction surface) and non-
interface residues (i.e., residues not in the interaction surface). Similarly, 19 jack-knife
experiments were performed for the protease-inhibitor category. The results reported in Table
1 represent the averages for the experiments on the antibody-antigen and protease-inhibitor
categories. Detailed results for individual proteins are available at
http://www.public.iastate.edu/~chhyan/isda2003/sup.htm.

For proteins from the antibody-antigen complexes, the SVM achieved a relatively high
sensitivity (82.3%) and specificity (81.0%), with a correlation coefficient of 0.430 between the
predicted and actual class labels, indicating that the method performs substantially better than
random guessing (which would correspond to a correlation coefficient equal to zero). For
proteins from the protease-inhibitor complexes, the SVM classifiers performed with a
sensitivity of 78.5% and specificity of 77.6%, and with a correlation coefficient of 0.462. For
comparison, Table 1 also summarizes results obtained in our previous study using an SVM
classifier trained and tested on a combined set of 115 proteins from six categories [31]. Note
that the correlation coefficients obtained in the current study for antibody-antigen complexes
(0.430) and protease-inhibitor complexes (0.462), are significantly higher than those obtained
for a single classifier trained using a combined data set of all six types of protein-protein
complexes (0.290).

3.2 Recognition of interaction sites
We also investigated the performance of the SVM classifier in terms of overall recognition of
interaction sites. This was done by examining the distribution of sensitivity+ (the sensitivity
for positive class, i.e., interface residues class). The sensitivity+ value corresponds to the
percentage of interface residues that are correctly identified by the classifier.

Figure 1a shows the distribution of sensitivity+ values for the 31 experiments in the antibody-
antigen category. In 54.8% (17 of 31) of the proteins, the classifier recognized the interaction
surface by identifying at least half of the interface residues, and, in 87.1% (27 of 31) of the
proteins, at least 20% of the interface residues were correctly identified. Figure 1b shows the
distribution of sensitivity+ values for the 19 experiments in the protease-inhibitor category. In
63.2% (12 of 19) of the proteins, the classifier recognized the interaction surface by identifying
at least half of the interface residues, and, in 84.2% (16 of 19) of the proteins, at least 20% of
the interface residues were correctly identified. Distributions of other performance measures
for the experiments are available in supplementary materials
(http://www.public.iastate.edu/~chhyan/isda2003/sup.htm).

3.3 Evaluation of the predictions in the context of 3D structures
To further evaluate the performance of the SVM classifier, we examined predictions in the
context of the 3D structures of heterocomplexes. In the antigen-antibody category, in the “best”
example (correlation coefficient 0.87, sensitivity+ 96%), 22 out of 23 interface residues were
correctly identified as such (i.e., there was only one false negative) and five non-interface
residues were incorrectly classified as belonging to the interface (false positives).
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Figure 2a illustrates results obtained for another example in the antigen-antibody complex
category, murine Fab N10 bound to Staphylococcal nuclease (SNase) [3]. Note that the
predicted interface residues are shown only for Fab N10, and not for its interaction partner
(wireframe) to avoid confusion in the figure. The Fab N10 “target” protein shown in this
example ranked ninth out of 31 proteins in the antibody-antigen category in terms of prediction
performance, based on its correlation coefficient. True positive predictions are shown in gray.
The classifier correctly identified 20 interface residues in Fab N10 (sensitivity+ 83.3%), and
failed to detect four of them (false negatives, white). Note that several residues that were
incorrectly predicted to be interface residues (false positives, black) are located in close
proximity to the interaction site. In this example, the SVM classifier correctly identified
interface residues from all six complementarity determining regions (CDRs) known to be
involved in epitope recognition [3].

Figure 2b, c illustrates results obtained for two proteins from the protease-inhibitor complex
category, the “best” example (correlation coefficient 0.83) and “fourth best” (correlation
coefficient 0.70). In the best example (Fig. 2b), the target protein is a serine protease, bovine
α-chymotrypsin (1acb E), in complex with the leech protease-inhibitor eglin c (1acb I; [8]).
Only one interface residue in chymotrypsin was not identified as such (Gly59, white) and only
one false positive residue (Leu 123, black) is not located near the actual interface. Figure 2c
shows results obtained for the fourth ranked target protein in this category, porcine pancreatic
elastase (1fle E) in complex with the inhibitor elafin (1fle I; [27]). In elastase, seven interface
residues were not identified (false negatives, white), but there were four false positives (black).

4 Discussion
Protein-protein interactions play a central role in protein function. Hence, sequence-based
computational approaches for the identification of protein-protein interaction sites,
identification of specific residues likely to participate in protein-protein interfaces, and, more
generally, the discovery of sequence correlations of specificity and affinity of protein-protein
interactions have major implications in a wide range of applications, including drug design,
and analysis and engineering of metabolic and signal transduction pathways. The results
reported here demonstrate that an SVM classifier can reliably predict interface residues and
recognize protein-protein interaction surfaces in proteins of antibody-antigen and protease-
inhibitor complexes. In this study, interface and non-interface residues were identified with
relatively high sensitivity (82.3% and 78.5%) and specificity (81.0% and 77.6%). With this
level of success, predictions generated using this approach should be valuable for guiding
experimental investigations into the roles of specific residues of a protein in its interaction with
other proteins. Detailed examination of the predicted interface residues in the context of the
known 3D structures of the complexes suggests that the degree of success in predicting interface
residues achieved in this study is due to the ability of the SVM classifier to “capture” important
sequence features in the vicinity of the interface.

Our previous work [31] used a similar approach to predict interaction site residues in 115
proteins belonging to six categories (antibody-antigen; protease-inhibitor; enzyme complexes;
large protease complexes; G-proteins, cell cycle, signal transduction; and miscellaneous). In
each jack-knife experiment, the classifier was trained using examples from 114 proteins and
tested on the remaining protein. The resulting classifier performed with a specificity of 71%,
sensitivity of 67%, and with a correlation coefficient of 0.29. In contrast, the results reported
in this paper were obtained using separate classifiers for the antibody-antigen category and the
protease-inhibitor category. The correlation between the actual and predicted labeling of
residues as interface vs. non-interface residues in this case, 0.430 and 0.462, respectively, is
substantially better than the correlation of 0.29 obtained using a single classifier trained on the
combined data set from all six categories of protein-protein complexes. This indicates that there
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may be significant differences in sequence correlates of protein-protein interfaces among
proteins that participate in different broad categories of protein-protein interfaces. In this
context, systematic computational exploration of such sequence features, combined with
directed experimentation with specific proteins, would be of interest.

Because interaction sites consist of clusters of residues on the protein surface, some false
positives (black residues) in our experiments can be eliminated from consideration if the
structure of target protein is known. For example, in Fig. 2b, Leu 123 is predicted to be an
interface residue. From the structure of the target protein, we can see that Leu 123 is isolated
from the other predicted interface residues. Thus, it is highly unlikely that Leu 123 participates
in the interface; Leu 123 can be removed from the set of predicted interface residues. Similarly,
two false positives in Fig. 2c can be removed. Therefore, the performance of the SVM classifier
can be further improved if the structure of a target protein (but not the complex) is available.
(If the structure of the complex is available, then there is no need to predict interface residues
as they can be determined by analysis of the structure of the complex).

Recently, Zhou et al. [32] and Fariselli et al. [7] used neural-network-based approaches to
predict interaction sites with accuracies of 70% and 73%, respectively. Ofran and Rost [23]
also used a neural network algorithm to predict interaction sites with a precision of 70% and
sensitivity of 20%. It would be particularly interesting to directly compare the results obtained
in our study and theirs. Unfortunately, such a direct comparison is not possible due to
differences in the choice of data sets and methods for accessing performance.

A notable difference between our study and the others is that the only structural information
we used is knowledge of the set of surface residues of the target proteins. Knowledge of surface
topology and the geometric neighbors of residues used in the other studies were not used in
our study. Several authors have reported success in predicting surface residues from the amino
acid sequence [2,10,12,19,20,21]. This raises the possibility of first predicting surface residues
based on sequence information, and then using the predicted surface residue information to
predict the interaction sites using an SVM classifier. The classifier resulting from this combined
procedure would be able to predict interaction sites using amino acid sequence information
alone. We are also exploring the use of phylogenetic information for this purpose. Other work
in progress is aimed at the design and implementation of a server for the identification of
protein-protein interaction sites and interface residues from sequence information. The server
will provide classifiers that are based on all protein-protein complexes available in the most
current release of the PDB.
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Fig. 1.
a, b Interaction site recognition: distribution of sensitivity+ (sensitivity for predicting interface
residues) values. The bars on the graphs illustrate the fraction of the experiments (vertical
axis) that fall into the performance categories named below the horizontal axis. a The
distribution of sensitivity+ values for 31 experiments in the antibody-antigen category. b The
distribution of sensitivity+ values for 19 experiments in the protease-inhibitor category
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Fig. 2.
a–c Interaction site recognition: visualization of 3D structures of representative
heterocomplexes. The target protein in each complex is shown in strands, with residues of
interest shown in space fill and color-coded as follows: gray, true positives (interface residues
identified as such by the classifier); white, false negatives (interface residues missed by the
classifier); black, false positives (residues incorrectly classified as interface). The interaction
partner is shown in gray wireframe. a FabN10 in the 1nsn complex. b α-chymotrypsin in the
1acb complex. c Elastase in the 1fle complex. Structure diagrams were generated using RasMol
(http://www.openrasmol.org/)
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Table 1

Performance of the SVM classifier

Antibody-antigen complexesa Protease-inhibitor complexesa Six categories of complexesb

Correlation coefficient 0.430 0.462 0.290

Sensitivity 82.3% 78.5% 66.9%

Specificity 81.0% 77.6% 70.8%

False alarm rate 41.0% 35.7% 35.9%

a
The SVM classifiers were trained and evaluated separately on proteins from the antibody-antigen complexes and protease-inhibitors complexes

b
The performance of the SVM trained and tested on a combined set of 115 proteins from six different categories [31]
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