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Abstract Key design characteristics (KDCs) are important

information related to the product and part designs, which

significantly influence on the product’s functions, perfor-

mances, and quality. Identifying KDCs for a complex product

will help designers to focus on key design parameters during

the design process and rapidly obtain design schemes based

on their close relationships to the product’s functions, perfor-

mances, and quality. Although there are some researches on

key characteristic (KC) identification, most of them are fo-

cused on key process characteristics (KPCs) and few on

KDCs. There also lacks a KDC identification framework to

support KDC identification with better completeness and di-

verse usages. Adaptive design is the most important pattern of

complex product design. Therefore, this paper presents a sys-

tematic method to identify KDCs for complex product adap-

tive design, in which KDCs can be determined by two related

phases. Firstly, a product design specification (PDS)-KDC

Candidates Network (PKCN) is constructed by using existing

product instance data, cluster analysis, KC flow-down, and

network analysis approaches. Then, the result from the first

phase is used as a basis to identify KDCs for adaptive design.

Three KDC identification techniques: similarity reasoning

technique, breadth-first search (BFS), and the gray relational

analysis approach are applied to find out KDCs from the

PKCN, which are the most sensitive to the variation of a

PDS. These identified KDCs can help designers to understand

the relationships between KDCs and PDS and rapidly develop

a design scheme. The effectiveness and the feasibility of the

proposed method are verified by a case study via the develop-

ment of an electric multiple unit (EMU)’s bogie.
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1 Introduction

The manufacturing mode has transferred from mass produc-

tion to mass customization under the global competition. Mass

customization aims to provide customer satisfaction with in-

creasing variety and customization without a corresponding

increase in cost and lead time [1]. For enterprises engaged in

complex engineering products, to achieve this goal, they need

to (1) capture and reuse best practices and (2) to create strong

links with the suppliers. However, complex products show

complexities in the customer demands, product structures, em-

bedded techniques, etc., which involve in various design char-

acteristics and complex relations among them. This leads to a

challenge that the enterprises cannot easily reuse the existing

design knowledge to generate a design scheme and effectively

communicate with suppliers to develop a supply plan.

Some enterprises and scholars used a method called key

characteristic (KC) control to alleviate the above problems,

such as using KCs to capture the most similar instances

[2–5], or using KCs as an efficient medium for communica-

tion with suppliers [6, 7]. However, at present, there is no

mutual definition for a KC. Thornton [8] referred to the pre-

vious definitions of KCs and defined KCs as the product,
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subassembly, part, and process features that significantly im-

pact the real cost [23, 24], performance, or safety of a product

when the KCs vary from nominal. According to the main

phases of product development, KCs can be divided into de-

sign KCs and process KCs [9]. This paper focuses on the

product design applications; thus hereafter, we use the key

design characteristics (KDCs) instead of the general term

KCs to describe the product and part design information that

significantly influence on product functions, performances,

and quality. KDCs can better support adaptive design that is

the most important pattern of complex product design, which

helps designers focus on a small set of critical design charac-

teristics to rapidly develop an adaptive design scheme by

reusing KDC-based design knowledge. Therefore, how to

identify KDCs becomes an important issue in the complex

product adaptive design.

At present, there are some researches on the application of

KCs [2–7, 10–15], but few on the systematic identification. In

addition, most of these studies focus on the KPCs, less on

KDCs. KPCs are identified by establishing and analyzing

the relations between process characteristics and cost/quality

[23, 24], which are not completely applicable to the identifi-

cation of KDCs, because the KDCs are not only related to the

quality and cost but also mainly related to the functions and

performances. From the perspective of research methods, re-

search on the identification of KCs has focused on either qual-

itative analysis for KC acquisition [18–20] or quantitative

analysis for KC priority [21–28]. However, both have some

defects (see details in next section).

Therefore, this paper presents a systematic method to iden-

tify KDCs for complex product adaptive design. Our contri-

butions have twofold. Firstly, in theory, we propose a frame-

work with two related phases to (1) construct product design

specification (PDS)-KDC Candidates Network (PKCN) and

(2) identify KDCs for application. Secondly, in application,

we develop a set of KDC identification techniques to support

developments at each phase. Techniques used in phase 1 in-

clude the use of cluster analysis, KC flow-down, and a net-

work analysis approach. In phase 2, similarity reasoning tech-

nique, breadth-first search (BFS), and a gray relational analy-

sis approach are used to identify KDCs that are the most sen-

sitive to the changes of PDS [29], which in turn help designers

to focus on these KDCs and rapidly develop a design scheme.

Thirdly, this research makes a complementary contribution to

key process characteristic (KPC) identification by adding

KDCs, toward a whole design and process KC identification

for future rapid product life cycle development.

The remaining sections of this paper are organized as fol-

lows. Section 2 gives a brief review of the related work.

Section 3 presents a systematic method to identify KDCs

and related implementation techniques. Section 4 shows an

example to illustrate the proposed method. In the final section,

the conclusions are drawn.

2 Related work

2.1 The definition of KC and KDC

As mentioned before, there is no mutual definition for KCs

presently. Some typical definitions are given as follows.

In Boeing’s advanced quality system standard D1-9000, it

defines a KC as a feature whose variation has the greatest

impact on the fit, performance, or service life of the finished

product from the perspective of the customer [10].

General Motors in its key characteristic designation system

defines a KPC as a special characteristic where the loss func-

tion shows that reasonably anticipated variation within speci-

fication could significantly affect customer satisfaction with a

product [11].

Besides the enterprises, some researchers who studied on

the KCs also gave their definitions [7, 8]. Although the KC

definitions may vary from corporations to researchers, the

KC’s methods have a common goal that is to identify a small

set of critical features for an organization to focus on during

design and manufacturing [21].

According to the main phases of product development,

KCs are classified as key design characteristic and key process

characteristics, as shown in Fig. 1. The KDCs can be further

divided into functional design characteristics and structural

design characteristics. The KPCs can be further divided into

manufacturing process characteristics and assembly process

characteristics.

This paper focuses on the problem areas of product design;

thus, we define KDCs as the product and part design informa-

tion that significantly influence on product function, perfor-

mance, and quality. In this paper, the identification of KDCs is

our main focus.

2.2 The application of KCs

The concept of KCs can be applied in product design and

manufacturing [6]. In the area of product design, KCs (or

KDCs) mainly have the following two functions: (1) using

KCs as an important enabler to select similar cases and (2)

using KCs as an efficient medium for coordination and com-

munication. Firstly, since KCs are key product features that

reflect typical properties of a product, they are usually utilized

to find the most useful cases to help solve a target problem by

calculating the similarity of KCs in available cases. Peng et al.

[2], Kocsis et al. [3], and Zhu et al. [4] used KCs as an enabler

to select a similar case during an engineering design phase.

While Romli et al. [5] found the optimal from all possible

solutions based on KCs to support sustainable product design.

Secondly, effective communication among collaborators in-

volved in product development is critical to the realization

of rapid product development. Yang et al. [6] used KCs as

an efficient medium for coordination among contractors,
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subcontractors, and partners, to set up a feasible and efficient

model to facilitate the quality assurance in the supply chain.

Dantan et al. [7] used product and process KCs as well as

products and manufacturing resources to establish an informa-

tion model for supporting complex product collaborative

design.

In the area of product manufacturing, KCs (or KPCs) are

mainly used for (1) process planning and (2) product quality

control. Firstly, process planning includes manufacturing pro-

cess and assembly process planning. For manufacturing pro-

cess planning, Chin et al. [12] proposed an approach that

combined QFDwith FMEA to determine a process alternative

with an adequate process capability based on KCs during a

rough-machining process planning. For assembly process

planning, Mathieu [13] proposed an approach to select an

optimal assembly sequence based on KCs and assembly-

oriented graphs. Zheng et al. [14] presented a novel algorithm

for best assembly posture fit based on KCs for large compo-

nent assembly to assure the assembly quality. Secondly, in the

area of product quality control, Boeing [10] and General

Motors [11] developed a control plan based on KPCs and used

statistical process controls (SPCs) to monitor the variation of

KPCs during the production process. Once the KPCs

exceeded the control range, SPC would find the sources of

variation and determine a solution to ensure the quality and

performance of a product. Recently, Dai et al. [15] established

a reliability model of manufacturing processes based on prod-

uct KCs, material KCs, operation KCs, and equipment KCs,

to reduce the risk of manufacturing process and improve prod-

uct quality by calculating the reliability requirements of KCs

with respect to different manufacturing process scenarios.

2.3 The KC identification techniques

At present, research on the identification of KCs has focused

on either qualitative analysis for KC acquisition or quantita-

tive analysis for KC priority.

2.3.1 Qualitative analysis for KC acquisition

Most KC identification methods are based on qualitative anal-

ysis for KC acquisition that uses the concept of a KC flow-

down [16, 17], such as in Boeing [10] and GMMotors [11]. A

KC flow-down is a hierarchical approach to tracing/

propagating a key characteristic for an assembly or product

down to key characteristics on its subassemblies, details, and

processes believed to affect the variation of the top-level key

requirement KCs [10]. The KC flow-down provides a system-

atic view of potential variation propagation of KCs and cap-

tures a design team’s collective knowledge about variation

and its contributors. Figure 2 shows an example of the KC

flow-down for a car door [8].

In Fig. 2, one key customer requirement is the quality per-

ception of the car door. Several product KCs of the car door

(e.g., the evenness of the seams, etc.) influence the customer’s

perception of quality. Each product KC is linked to several

contributing subsystem KCs (e.g., outer perimeter of the door,

etc.). These, in turn, flow down to the part KCs (e.g., the door

panel shape, etc.) and process KCs (e.g., the fixtures and

stamping processes, etc.).

A variety of tools have been used to capture a KC flow-

down, such as datum flow chain (DFC), assembly-oriented

graph (AOG), and cause and effect diagram (CEA). For in-

stance, Whitney [18] defined KCs as assembly-level dimen-

sions related to design intention, and the delivery of those KCs

was through a DFC. Mathieu et al. [19] adopted the AOG

methodology to formulate an assembly model. A propagation

chain that was an error accumulation route of the KCs was

developed through analysis of the AOG. Sivasakthive et al.

[20] used CEAmethodology to identify the components’KCs

related to the product performance.

However, KC flow-downmethod still has some defects: (1)

it is a qualitative method for KC acquisition and lacks ability

to prioritize the identified KCs, and (2) it lacks a detailed

instruction of the processes of KC acquisition in the present

study; as a result, it is not easy to implement and may lead to

the incompleteness of the identified results.

2.3.2 Quantitative analysis for KC priority

KC flow-down is a qualitative method to identify KCs, which

lacks the ability to prioritize the identified KCs. Therefore,

some researchers have studied quantitative analysis ap-

proaches to determine which KCs have the most influence

on the quality and cost of a product.

A variety of tools have been used for quantitative analysis

of KC priority, such as Taguchi loss function, variation model,

variation mode and effect analysis (VMEA), and variation risk

management (VRMM). For instance, Tang et al. [21] used the

Taguchi loss function to calculate the influence degree of the

variations of characteristic candidates (CCs) on the product

quality. The influence degree could determine the relative im-

portance of CCs, and in turn, the relative importance could

help identify new KCs. Lee and Thornton [22] proposed a

variation model to calculate the importance degree of a part

Key Characteristic

(KCs)

Key design characteristic

(KDCs)

Key process characteristic

(KPCs)

Functional

characteristic

Structural

characteristic

Manufacturing

characteristic

Assembly

characteristic

Fig. 1 KC classification
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KC, which was dependent on the sensitivity to the variation of

product quality. Recently, Estrada et al. [23] created a varia-

tionmodel to calculate the rework cost for KCs as a variable in

function of the expected amount of material to be removed.

This cost plus scrap cost was used to prioritize KCs running

with low capability. The identified critical KCs could help

engineers to develop solutions to eliminate what is causing

KCs running with low capability. Etienne et al. [24]

established a cost model for variation management to identify

key process characteristics, which could support tolerance de-

sign, computer-aided process planning (CAPP), and

computer-aided inspection planning (CAIP). As for VMEA,

Chakhunashvili et al. [25] and Johansson et al. [26] used

VMEA to analyze the sensitivity of product performance or

quality to the variation of KCs, and the relative importance

degree of KCs could be determined by the sensitivity degree.

Similar to the VMEA method, Ibrahim et al. [27, 28] recently

proposed a VRMMmethodology to prioritize KCs and quan-

tify their associated risk of variation.

The quantitative analysis of KCs can calculate the impor-

tance degrees of KCs, which helps designers to find which

KCs have the most influence on the quality and cost of a

product, and then focus on these KCs in the manufacturing

production to improve the quality of the product. However,

most of these methods are actually a process that uses a quan-

titative analysis tool to analyze and prioritize the potential

KCs and further finalize the real KCs, but it does not discuss

how to obtain the potential KCs (KC candidates) before eval-

uating them.

In addition, both the KC qualitative and quantitative anal-

ysis methods are mainly focused on the KPCs, but less on

KDCs. In view of the above problems, it is necessary to study

a systematic method to identify KDCs for complex product

development.

3 Proposed methodology

3.1 The framework for identifying KDCs

Figure 3 presents our framework for the identification of

KDCs for complex product designs. It includes two main

phases: (1) construction of PKCN and (2) identification of

KDCs for application.

In the first phase, previous design knowledge, case studies,

and data usages are main sources for the construction of

PKCN. The construction quality of PKCN not only depends

on the construction techniques but also on the reference data

quality. PKCN is a network structure, which includes PDS,

KDC candidates, and the relations between them. At the end

of phase 1, the PKCN is listed and distributed in a database,

which can be represented in Fig. 4 as the PDS attribute table

(a), KDC candidate attribute table (b), and characteristic (PDS

and KDC candidates) relations table (c).

The PKCN contains potential KDCs for a wide range of

application scenarios and forms the basis of the identification

of KDCs for a new product development. Therefore, in the

second phase of identification of KDCs for an application, the

PDS is used as a searching and retrieving item to find a small

set of KDCs from the PKCN for guiding a new product de-

sign. In Fig. 3, when a new project PDS is created, first check

whether the PDS item is a new one within a PDS attribute

table (a); if so, a new design pattern is required; if not, contin-

ue check whether its value is in the planned value range; if so,

Customer perception

of the door

Evenness of seam Steps between panels Door closing force

Outer perimeter

of door
Body Aperture

Alignment of door and

body
Door thickness Seal tightness

Door panel shape Hinge location

Body assembly

fixture
Door assembly

fixture

Customer

Requirement

Product-KCs

Subsystem-KCs

Part-KCs

Process-KCs

Fig. 2 KC flow down [8]
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an adaptive design pattern is required. Otherwise, an uncer-

tainty design pattern is required. The three design patterns will

identify the KDCs associated with PDS, and finally, a set of

KDCs will be obtained by getting union of the three identified

KDCs. The three design patterns are shown in Fig. 5, and their

characteristics are as follows.

(a) New design pattern

In this pattern, the new project PDS item (PDSnew) is a new

one that does not exist in the PDS attribute table. Some new

KDCs will be identified based on the theory of system design

[30], axiomatic design [31], and FBS [32], which usually pro-

duces a new conceptual scheme. This pattern is generally

accounted for 20% of the total design [33], which is a difficult

one because there is no similar instances that can be used for

reference. This paper will not discuss it in detail.

(b) Adaptive design pattern

In this pattern, the new project PDS item (PDScon) exists in

the PDS attribute table and its value is in the planned range,

which can be controlled. Some existing KDCs which are the

most sensitive to PDS changes need to be identified from the

PKCN, and the evolution rules of PDS to KDCs need to be

analyzed based on the existing instance data and expert

knowledge. Then, designers focus on these identified KDCs

Is it a new

PDS item?

Value range

matching

Is its value

in the rang?

(a) New

design pattern

(b) Adaptive

design pattern

Y

N

NY

KDC sets

(c) Uncertainty

design pattern

Data collection

Clustering analysis

Obtain the PKCN

and build a database

Phase 1.Construction of PKCN

Establish characteristics relations

Create KCs flowdown

Compute the importance degree of

characteristics

Phase 2.Identification of KDCs for application

Name matching

New project

PDS item

Identify KDCs Identify KDCs Identify KDCs

New PDS sets

(PDSnew)

Controllable PDS

sets (PDScon)

Noncontrollable

PDS sets (PDSncon)

Data support

New KDCs added to base

Legend

•

•

Fig. 3 The framework for the identification of KDCs
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Fig. 4 The PDS-KDC Candidates Network (PKCN)
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and determine their values to form a design scheme. This

pattern is generally accounted for 80% of the total design

[33], which is a common case. This paper will focus on this

pattern, and the details are shown in Sect. 3.3.

(c) Uncertainty design pattern

In this pattern, the new project PDS item (PDSncon) exists

in the PDS attribute table but its value is not in the planned

range, which cannot be controlled. The identified KDCs in

this pattern may be new KDCs (by a new design pattern), or

some may be existing KDCs (by an adaptive design pattern).

This pattern is a quite difficult one, and this paper will not

discuss it in detail.

3.2 Construction of PKCN

The PKCN is the basis for the identification of KDCs for

complex product development. It mainly includes the follow-

ing five steps:

& Step 1: data collection

Before collecting data, we need to determine what data

need to be collected. The product data is produced in the

product development process, as shown in the Fig. 6.

This paper focuses on the product design; thus, the follow-

ing data need to be collected in our research, as shown in

Table 1.

After determining what data need to be collected, it is nec-

essary to solve the problem of how to collect the data. A

standardized data collection form (DCF) is used to solve this

problem, as shown in Fig. 7. Based on DCF, the product and

part designers use the Excel tool to collect data in line with

their experience, knowledge, and existing instance data,

respectively.

In the DCF, the “item name” is determined by expe-

rienced product/part designers based on their actual

work experience; the “case value” and “unit” are deter-

mined by referring to the existing product family in-

stances; the “value range” is the planned product family

design scope by referring to the minimum and maxi-

mum values of product family instances; the “variabili-

ty” is determined after completion of step 2, which

shows whether the characteristic (PDS and DC) is

changeable or not within the planned value range. It

can help the designers to establish the characteristic re-

lations in step 3; the “importance” is determined after

completion of step 5, which shows the importance de-

gree of each characteristic in a characteristics network.

& Step 2: clustering analysis

Based on the collected DCF, using cluster analysis tool

to identify variant and invariant PDS and DCs (based on

how far between characteristics), helps designers to know

which characteristics change within the planned value

range. The clustering analysis method can refer to

[34–36]. In this step, a calculation program can be written

based on the cluster analysis method, which can automat-

ically calculate the distance between the characteristics

when importing the collected excel table, then, updating

Union

C1 C2 ... Cn

KDC candidates

PDSnew

Adaptive design pattern (b)

KEY KDCs (PDSnew)

KDCs (PDScon)

KDCs (PDSncon)

KEY

KEY

Identification

result for each PDS

New KDCs

PDScon

C1 C2 Cn
...

KEY

PDSncon KEY KEY

New design pattern (a)

Uncertainty design pattern (c)

New

project PDS KDC sets

Fig. 5 The new, adaptive, and uncertainty design patterns

Requirements

Definition
Conceptual

Design

Detailed

Design

Process

Design
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&repair
Production

&Testing

Requirements
Product-level PDS

Product-level DCs Part-level DCs

Process

characteristics

Part-level PDS
•

•

•

•

•

•

Fig. 6 Product data in the product development process
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the column (variability) of product/part DCF based on the

calculated results, respectively.

& Step 3: establishing characteristic relations

If only collecting PDS and DCs without analyzing and

establishing the relations between them, it will not be able to

find out which DCs are sensitive to PDS changes and have the

greatest influence on other DCs; as a result, it will be unable to

effectively support subsequent product design. Therefore,

based on the DCF, the product and part designers need to

establish the relations among PDS, the relations between

PDS and DCs, and the relations among DCs, respectively.

Characteristic relations matrix (CRM) is used to solve this

problem, as shown in Fig. 8.

The items under the term of PDS and DCs come from the

DCF. Experienced designers determine the relations by func-

tion equations, charts, and semantic descriptions. The follow-

ing three questions can be used to ask the designers when they

encounter the variant characteristics (PDS and DCs) that are

determined in step 2: (1) why these characteristics need

changes, (2) how to achieve the needed changes, and (3) what

will be affected by these changes. Answers to these questions

could help designers to establish the characteristic relations.

After establishing the characteristic relations, product and

part designers can transform the CRM into a characteristic

relations network (CRN), as shown in Fig. 9. The CRN can

visually show the characteristics and their relations on a graph,

which helps designers to more easily check the established

characteristic relations (in step 4). In this step, network analy-

sis tools (e.g., Pajek [37], etc.) can be used to establish a CRN.

& Step 4: creating KC flow-down

The product/part-level CRN in the above steps is constructed

by the designers with field expert knowledge. However, complex

products involve many disciplines and have a lot of interaction

between product and parts; whether the product/part-level CRN

is accurate and complete or not still needs to be further verified,

which requires KC flow-down, as shown in Fig. 10.

Firstly, a cross-functional team consisting of customers,

product designers, part designers, suppliers, and college

Table 1 The collected data in our

research Item Description Phase

Product-level

PDS

The design specification of a product

design, which entails design inputs,

design objectives, and design constraints.

Conceptual

design

Product-level

DCs

A set of product-level design

characteristics, which entail performance characteristics

(to highlight a product’s overall performance) and structural

characteristics (to highlight a product’s overall structure

and layout features).

Conceptual

design

Part-level

PDS

The design specification of a part design,

which comes from three aspects: product-level PDS,

product-level DCs, other part-level DCs.

Detailed

design

Part-level

DCs

A set of part-level design characteristics,

which entails performance characteristics

(to highlight a part’s performance) and structural

characteristics (to highlight a part’s geometry features).

Detailed

design

Design inputs

Design objectives

Design constraints

Type
Item

name
Type Unit

Value

range Case1 ... Case k

Performance

characteristics

Structural

characteristics

PDS 1

PDS 2

PDS 3

PDS 4

...

PDS n

DCs 1

DCs 2

DCs m

...

Data collection form (DCF)

Value
ImportanceVariability

Fig. 7 The data collection form (DCF)
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professors is established. Then based on product/part-level

CRN, we can use a team approach to create KC flow-down,

which in turn determines PDS, product-level KDC candidates,

and part-level KDC candidates. The determination of PDS can

be done by referring to all product-level PDS and some part-

level PDS; product-level KDC candidates can be determined

by referring to all product-level DCs and some part-level PDS,

and similarly, part-level KDC candidates can be found by

referring to all part-level DCs and some other part-level

PDS. It is essentially a process that product/part-level CRN

is analyzed and verified by the cross-functional team and fi-

nally forms a relatively complete and accurate PKCN of the

PDS1

PDS DCs

PDS2

PDS3

PDSi

...

P
D

S
1

P
D

S
2

P
D

S
3
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D
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Semantic descriptionR
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Fig. 8 The characteristic

relations matrix (CRM)
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entire product. In this process, the data check should be con-

sidered in the following two aspects:

4 Is the item name consistent?

Due to a complex product involving many disciplines, it

may lead to the heterogeneity of the name of items

(PDS and DCs); as a result, it will affect the communi-

cation of designers in various fields. Therefore, it is

necessary to eliminate the heterogeneity among the col-

lected data and form a consistent item name.

5 Is the item correct?

Because the collected data and established relations are

done independently by the designers without checking

with other designers, the constructed product/part-level

CRN may be incorrect, which reflects in the following

two aspects: (1) omission and (2) unnecessary. For the

former, for instance, a PDSi of a part-level CRN comes

from a DCsi of the product-level CRN, while the

product-level CRN does not have this DCsi; thus, the

product-level CRN needs to add this DCsi when the

cross-functional team confirms it. As for the unneces-

sary aspect, for instance, there is a PDSi in a product-

level CRN, while the product/part-level design does not

need this PDSi; thus, the product-level CRN could re-

move this PDSi when the cross-functional team con-

firms it.

Through the data check by the cross-functional team, the

designers modify incorrect information and finally form a rel-

atively complete and accurate PKCN of the entire product that

includes three layers: PDS, product-level KDC candidates,

and part-level KDC candidates. Then, the product and part

designers update the DCF, CRM, and CRN based on the

checked results, respectively, and then obtain the product-

level PKCN and part-level PKCN. The product-level PKCN

is a database to support product-level design, which includes

two layers: product-level PDS and product-level KDC candi-

dates.While the part-level PKCN is a database to support part-

...

Establish a cross-functional team

Create KCs flowdown

Obtain PKCN of the entire product

The product-level CRN

...

Obtain product-level and part-level PKCN

Part 1 Part n

Product-level PDS Product-level DCs

Part-level 1 PDS Part-level 1 DCs

Part-level n DCs

New added PDS New added DCs

Characteristics relations

Data support

Legend
Nodes Relations

PDS

Product-level

KDC candidates

Part-level

KDC candidates
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DCs
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DCs
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Fig. 10 KC flow-down approach
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level design, which includes two layers: part-level PDS and

part-level KDC candidates.

& Step 5: computing the importance degree of characteristics

PKCN is a network structure, in which each characteristic

(a PDS or KDC candidate) is inter-related in a net and shows

the network properties, such as small world [38] and scale free

[39]. However, not all characteristics are equally important,

and some may have strong connections to other characteris-

tics, while others may have weak connections. In order to

allow designers to focus on a small set of critical design char-

acteristics in the product development, it needs to analyze the

importance degree of characteristics.

Through literature study, network analysis approach is

suitable for solving the calculation of importance degree

of characteristics. It not only can calculate the importance

degree of each characteristic but also can handle a large

number of data, which is convenient for computerization.

In literature, the network analysis approach has emerged

as a key method for analyzing a wide variety of complex

systems such as social science [40], information engineer-

ing [41], and biological science [42]. Recently, re-

searchers have applied the network theory into the devel-

opment of mechanical products. For instance, Sosa et al.

[43] and Fan et al. [44] built a component network and

used it to guide the module division through calculating

the degree of modularity of components. Batallas et al.

[45], Braha et al. [46], and Dan et al. [47, 48] constructed

a product development network to identify a “core team”

by analyzing the information flow of design team and

then to assign the core team to carry out the work for

improving the efficiency of multi-disciplinary design.

From the network theory, we know that the network

analysis is a quantitative analysis approach based on

statistical theory, and the importance degree of nodes

in the PKCN of an entire product can be calculated to

provide an objective reference to designers in the sub-

sequent KDC identification process. The formulas are

known as centrality measures and described in the

Table 2 [45].

In this step, the importance degree of characteristics

(PDS and KDC candidates) of PKCN of the entire prod-

uct can be calculated automatically by using the tools

from Pajek [37]. Then, the product and part designers

need to update the column (Importance) of product/part

DCF based on the calculated results, respectively.

Finally, the product/part-level PKCNs need to be rep-

resented in a database, which includes a PDS attribute

table, a KDC candidate attribute table, and a characteristic

relations table. The establishment of PDS and KDC can-

didates’ attribute table can refer to the DCF, and the char-

acteristic relations table can refer to the CRM.

5.1 Identification of KDCs for adaptive design

Adaptive design pattern is a common one in the product de-

velopment. Its core is to identify these KDCs that are sensitive

to PDS changes and then focus on them to rapidly develop an

adaptive scheme. Figure 11 shows the identification process

of KDCs for product level (the process for part level is simi-

lar), including the following three steps.

& Step 1: determine which PDS need to be analyzed

Firstly, obtain a set of controllable PDS that have no new

PDS item, and their item values are in the planned value

ranges by name and value range matching. Then, designers

determine which controllable PDS needs to be analyzed, by

considering the following two aspects:

6 Is it similar to existing PDS?

A new project PDS (controllable PDS) is first used as a

searching item to match PDS attribute table and calculate the

similarity between the controllable PDS and existing PDS

instances using similarity reasoning technique [49]. Then de-

termine whether there is a case that its similarity exceeds the

given threshold (e.g., 0.8) in the database; if so, it can be

chosen as an initial design scheme; if not, a case with the

highest similarity should be chosen. These controllable PDS

not similar to existing ones should be further analyzed. Then,

these KDCs which are sensitive to the variation of the chosen

PDS need to be identified, and designers focus on them to

develop an adaptive design scheme.

7 Is it important?

Not all PDSs are equally important, and some may have

strong connections to KDC candidates, while others may have

weak connections. Therefore, we can give priorities to these

PDS with higher importance degree for further analysis.

& Step 2: determine which KDC candidates need to be

analyzed

Input controllable PDS sets use product/part PKCN as da-

tabase and then apply the BFS to identify KDC candidates

associated with PDS. The BFS technology can refer to [50].

In general, a PDS will affect a number of KDC candidates,

if each KDC candidate needs to be analyzed in detail, which

will be time-consuming and laborious. Therefore, we can

choose these KDC candidates with higher importance degree

for further analysis, because these KDC candidates have

strong connections to PDS and other KDC candidates.

1224 Int J Adv Manuf Technol (2018) 95:1215–1231



& Step 3: identify the most sensitive KDC candidates to PDS

changes as final KDCs

A selected KDC candidate based on the importance

degree is an “important node” (with higher degree in

closeness and betweenness) in the PKCN, but whether it

is sensitive to PDS changes needs further analysis and

evaluation, because there are some KDC candidates which

are closely linked with PDS and other KDC candidates,

but they are not sensitive to PDS changes. Thus, we need

Table 2 The calculation formulas of importance degree

Indexes Description Formula

Degree

centrality

Degree centrality can be measured as the number of outlinks

connecting a node to its neighbors or as the number of inlinks

that a certain node is receiving from adjacent nodes. D nið Þ ¼

∑
∀ j≠i

xij

n−1
D

0

nið Þ ¼ D nið Þ

1
n
∑
n

i¼1

D nið Þ

xij ¼
1; if i is indicent to j:

0; if i is not indicent to j:

�

D′(ni) is standardized degree centrality of node i. n is the number of

nodes.

Closeness

centrality

Closeness centrality reflects how close an actor is to other actors in

a network, which can be measured as a function of geodesic

distance that is a shortest path between two nodes.

C nið Þ ¼ n−1

∑
n

j¼1;i≠ j

d ni;n j1ð Þ

� �C
0

nið Þ ¼ C nið Þ

1
n
∑
n

i¼1

C nið Þ

C′(ni) is standardized closeness centrality of node i. d(ni,nj) is

geodesic between i and j.

Betweenness

centrality

Betweenness centrality focuses on these nodes that lie in the path

between other nodes, which have control over knowledge flow

since information must travel through them.
B nið Þ ¼

∑
j< k;i≠ j;i≠k

gjk nið Þ

gjk
n−2ð Þ n−1ð Þ

2

B
0

nið Þ ¼ B nið Þ

1
n
∑
n

i¼1

B nið Þ

B′(ni) is standardized betweenness centrality of node i. gjk(ni) is the

number of geodesics linking j and k that contains i in between.

Gjk is the total number of geodesics linking j and k.

Important

degree

The important degree of nodes is the weighted sum of the degree

centrality, closeness centrality, and betweenness centrality. I nið Þ ¼ w1D
0

nið Þ þ w2C
0

nið Þ þ w3B
0

nið Þ
w1 þ w2 þ w3 ¼ 1

w1 is weight of degree centrality. w2 is weight of closeness

centrality. w3 is weight of betweenness centrality.

Determine which product-level KDC

candidates need to be analyzed

Identify which product-level KDCs are most

sensitive to product-level PDS changes

Output: Product-level KDC sets

Product-level
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Breadth-first search

(BFS)
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Tools

Input: Controllable product-level

PDS sets

Determine which product-level PDS need to

be analyzed
Similarity reasoning

Product-level design

Product-level design scheme

Part-level design

...

Part1 Part2 Part3 Partn

Fig. 11 The identification

process of KDCs for adaptive

design pattern
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to pay more attention to these KDCs which not only have

a higher importance degree but also are sensitive to PDS

changes.

Complex products involve multi-disciplines; thus, their

design is usually difficult to establish sensitivity analysis

model. Through literature study, the gray relational anal-

ysis model, a kind of order relation model, can describe

the strength of relations between factors by the gray rela-

tional degree [51, 52]. It can be used to deal with engi-

neering problems such as factor analysis and is suitable

for dealing with poor, incomplete, and uncertain informa-

tion systems [53–55]. Therefore, based on the selected

KDC candidates, this research uses the gray relational

analysis approach to further identify these KDCs that are

sensitive to PDS changes. The steps are as follows.

Firstly, use the selected PDS in step 1 as the target se-

quence, that is, X(i) = {X1, X2,..., Xn}, n is the number of the

PDS items, and use the selected KDC candidates in step 2 as

the comparable sequence, that is, Y(j) = {Y1, Y2,..., Ym}, m is

the number of the KDC candidates.

Secondly, calculate the gray relational degree of each KDC

candidate (Yj) to the ith PDS (Xi), that is, γ(Xi,Yj), and the

calculation formulas of gray relational degree can refer to

[51, 52].

Thirdly, calculate the weighted sum of the gray relational

degree of the each KDC candidate (Yj) to the all PDS, that is,

ζ(X,Yj) which can be calculated by Eq. (1).

ξ X ; Y j

� �

¼ ∑
n

i¼1

wiγ X i; Y j

� �

ð1Þ

In Eq. (1), wi is the weight of the ith PDS which is deter-

mined by experienced experts by reference to the importance

degree of PDS, ∑
m

i¼1

wi ¼ 1.

The gray relational degree of a KDC candidate re-

flects the influence degree of the variation of PDS on

it. If a KDC candidate has a relatively high gray rela-

tional degree, it shows that it is sensitive to the varia-

tion of PDS. Therefore, in this way, we can identify

both sensitive and insensitive KDC candidates based

on the gray relational degree.

Finally, take these sensitive KDC candidates as the final

KDCs which their gray relational degree is larger than a

threshold δ. δ is a threshold determined by the expert’s expe-

rience. In this paper, δ is 0.7.

Based on the KDC identification results, we can make a

corresponding design: (1) For the sensitive KDCs, the evolu-

tion rules of PDS to KDCs need to be analyzed based on the

existing instances and expert knowledge, and then, designers

focus on these KDCs to determine their values. (2) For the

insensitive KDCs, because they are stable enough, we can

temporarily reuse the value of existing similar instances.

8 Case study

A bogie is a running unit of electric multiple unit (EMU) of a

train; it is equivalent to car’s chassis and wheels and has the

functions of guide, bearing, vibration, traction, and braking.

The bogie is composed of a frame, wheel sets, spring suspen-

sion device, drive transmission device, and basic brake device,

as shown in Fig. 12. The rationality of the design of EMU’s

bogie determines the performance and quality of the whole

vehicle, and thus, it is a key component in the development of

EMU. The development of a new bogie is always started from

the existing ones and makes an adaptive design. However,

when a new project PDS is put forward, such as maximum

speed is decreased from 250 to 220 km/h, deceleration emer-

gency braking (EB) is increased from 0.9 to 0.95 m/s2, inex-

perience designers often do not know which parts should be

changed, and cannot predict what the changes will affect.

Besides, when focusing on a product/part, they do not know

what key characteristic should be used as key design vari-

ables. They can effectively lead to an adaptive design or rap-

idly develop a technical document (including the key require-

ments of performance, structure, interface, etc.) for suppliers;

thus, it is difficult for enterprises to control the delivery lead

time and further the entire R&D cycle of a bogie.

In view of this, it needs to construct a KDC-based design

knowledge base to guide the development of bogie, so that

when a PDS has changed, the designers will be able to quickly

find the bogie’s KDCs, which will be affected by the PDS

changes and focus on designing them. We conducted a case

study within a bogie department of OEMs of EMU in China,

by building a KDC-based design knowledge base to support

the rapid development of a bogie. Here, we only discuss the

KDC identification of a bogie.

8.1 Construction of PKCN

Firstly, based on the planned product family of EMU, we

collected the existing six product instances that located in

the target segment. Then, we worked with the bogie

product-level designers and part-level designers (e.g., frame,

wheel sets, brake, etc.) for 2 weeks, guided them to collect

PDS and DCs, and then completed the DCF based on the

existing six instances, respectively. Subsequently, we clus-

tered the collected PDS and DCs into variant or invariant ones

by using cluster analysis tool and then updated the DCF of

product and its parts based on the calculated results, respec-

tively. After that, based on the DCF, the product-level and

part-level designers established the characteristic relations

and completed the CRM and CRN for 2 weeks. Upon that,

we spent 2 weeks to create KC flow-down, which in turn

determined PDS and product-level and part-level KDC candi-

dates. In this process, first, the product-level and part-level

CRNs were analyzed and verified by the cross-functional
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team via brainstorming. Second, designers modified incorrect

data and finally formed a relatively complete and accurate

PKCN of the entire bogie. The partial results are shown in

Fig. 13. The importance degree of the nodes (PDS and KDC

candidates) of PKCN was calculated by using the method of

Sect. 3.2. The partial results of the calculation are shown in

Table 3; the third column is the degree centrality of each node;

the fourth column is the betweenness centrality of each node;

the fifth column is the closeness centrality of each node, and

the sixth column is the importance degree of each node.

Fig. 13 The partial PKCN of the bogie

Fig. 12 The units of bogie
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8.2 Identification of KDCs for adaptive design

Use the new project PDS to match the constructed

PKCN, and identify its design patterns among new de-

sign, adaptive design, and uncertainty design. It is with

adaptive design, and therefore, the identification of

product-level KDCs starts (part-level KDCs are identi-

fied similarly, which is not discussed in this case study).

9 Determine which PDS needs to be analyzed

In the development of a new project, the new project

PDS (controllable PDS) including items “maximum

speed = 220 km/h” and “deceleration EB = 0.95 m/s2”

was not similar to existing PDS instances, but the two

items were in the planned value range (maximum speed

160–350 km/h and deceleration EB 0.85–1.0 m/s2). In

addition, the two PDS items had a higher importance

degree; thus, they were chosen for further analysis.

10 Determine which KDC candidates

need to be analyzed

With PDS (maximum speed and deceleration EB) as

input and product-level PKCN as database, use BFS to

identify KDC candidates associated with PDS, which

are shown in Table 4.

In order to help product designers to focus on a small

set of KDC candidates to save their time and energy, these

KDC candidates with higher importance degree were cho-

sen for further analysis. Based on the experience of prod-

uct designers, this case study selected five product-level

KDC candidates associated with maximum speed and de-

celeration EB to analyze. The five product-level KDC

candidates are disc braking force, brake cylinder pressure,

Table 3 The importance degree

of the partial bogie’s KDC

candidates

Types Node name Degree Betweenness Closeness Importance

sum

PDS Maximum speed 20.92 0 1.48 8.81

Axle load 20.00 0 1.61 8.48

Deceleration EB 2.15 19.41 1.31 7.08

Starting acceleration 1.23 8.71 1.03 3.41

Track gauge 1.23 0 0.58 0.67

Product-level KDC

candidates

Disc braking force 3.39 23.38 1.10 8.70

Tractive force 2.46 18.60 1.07 6.66

Brake pad clamping

force

1.85 4.04 0.87 2.21

Part-level KDC

candidates

Brake cylinder effective

area

1.23 0.85 0.87 1.01

Magnifying power 0.92 1.06 0.87 0.95

Traction motor power 1.85 2.17 1.38 1.81

Traction motor torque 1.54 1.00 1.37 1.33

Wheel seat diameter 1.23 0.06 1.16 0.86

Table 4 The product-level KDC

candidates associated with PDS Types Node name Importance sum

PDS Maximum speed 8.81

Deceleration EB 7.08

Product-level KDC candidates Disc braking force 8.70

Brake pad clamping force 2.21

Brake cylinder pressure 0.87

Brake cylinder thrust 0.59

Clamp return spring force 0.63

Train pipe air pressure 0.46
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brake pad clamping force, brake cylinder thrust, and clamp

return spring force. Most of them are performance-related de-

sign parameters.

11 Identify themost sensitive KDC candidates to PDS

changes as final KDCs

The selected five KDC candidates based on the importance

degree were important node, but whether they were sensitive

to PDS change was further analyzed and evaluated by using

the gray relational analysis approach.

The data for gray relational analysis are shown in Table 5.

Two PDS items are maximum speed and deceleration EB.

Five product-level KDC candidates are disc braking force,

brake cylinder pressure, brake pad clamping force, brake cyl-

inder thrust, and clamp return spring force.

The gray relational degrees of the five product-level KDC

candidates were calculated by using the method given in Sect.

3.3. The calculation results are shown in Table 6; the second

column is the gray relational degree of the five product-level

KDC candidates for the maximum speed; the third column is

the results for deceleration EB, and the fourth column is the

sum of the gray relational degree of each product-level KDC

candidates.

From Table 6, according to the gray relational de-

grees of product-level KDC candidates, we ranked them

in the following order: brake cylinder thrust > disc

braking force > brake pad clamping force > brake cyl-

inder pressure > clamp return spring force.

The gray relational degrees indicated the sensitivity of

KDC candidates to the PDS changes. From them, we identi-

fied these sensitive KDC candidates (sum > 0.7 the threshold)

as the final KDCs based on the gray relational degrees, which

are brake cylinder thrust, disc braking force, brake pad

clamping force, and brake cylinder pressure. The identifica-

tion results were agreed by the experienced engineers.

After identifying the KDCs, designers made an adaptive

design based on the results: (1) For the sensitive KDCs (e.g.,

brake cylinder thrust, disc braking force, brake pad clamping

force, and brake cylinder pressure), the evolution rules of PDS

to KDCs were analyzed resulting in some functions and em-

pirical formulas, and then, designers focused on these KDCs

to determine their values based on the evolution rules. (2) For

the insensitive KDCs (e.g., clamp return spring force), be-

cause it is stable enough, designers temporarily reused the

value (630 kN) of existing instances.

12 Conclusions

This paper presents a systematic identification framework to

support KDC identifications with better completeness and di-

verse usages. Firstly, a PKCN is established by using the

existing product instance data, a cluster analysis tool, KC

flow-down, and a network analysis approach, which will be

used as a basis for identifying KDCs for application. Then, the

KDC identification for adaptive design pattern is developed in

detail. Similarity reasoning technique, BFS, and gray relation-

al analysis approach are used to identify which KDCs are most

Table 5 The data for gray

relational analysis Types Node name Case

1

Case

2

Case

3

Case

4

Case

5

Case

6

PDS Maximum speed (km/h) 140 160 200 250 300 350

Deceleration EB (m/s2) 1.2 1.12 1.0 0.9 0.8 0.75

Product-level KDC

candidates

Disc braking force (kN) 85.68 80.6 77.2 72.59 68.4 60.63

Brake pad clamping force

(kN)

46.06 44.2 41.1 38.5 36.1 34.4

Brake cylinder pressure

(kPa)

456.6 438.2 418.5 386.9 355.3 330.5

Brake cylinder thrust (kN) 5.38 5.02 4.68 4.33 4.04 3.72

Clamp return spring force

(kN)

630 630 630 630 630 630

Table 6 The results of gray

relational analysis of product-

level KDC candidates

Node name Maximum speed Deceleration EB Sum Result

Brake cylinder thrust (kN) 0.750 0.825 0.780 Sensitive KDCs

Disc braking force (kN) 0.710 0.755 0.728

Brake pad clamping force (kN) 0.708 0.734 0.718

Brake cylinder pressure (kPa) 0.707 0.731 0.717

Clamp return spring force (kN) 0.579 0.543 0.565 Insensitive KDCs

Int J Adv Manuf Technol (2018) 95:1215–1231 1229



sensitive to PDS changes, which helps designers to focus on

these KDCs and rapidly develop a design scheme.

The case study of the KDC identification for an EMU’s

bogie shows that the proposed method is feasible and effec-

tive. This research mainly focuses on the identification of

KDCs in the design phase, which makes a complementary

contribution to the identification of KPCs in the manufactur-

ing and maintenance phases. In future research, we will study

a systematic method of identification of KDCs and KPCs to

support product life cycle development. The latest studies on

identification of KPCs published by Estrada et al. [23] and

Etienne et al. [24] can be used for reference.

So far, we have only studied the identification method of

KDCs; the development of a computer-aided design tool for

KDC identification is needed; therefore, as one of our future

works, we will develop a KDC-based computer-aided design

tool to better support the complex product adaptive design.

Specifically, the tool will include a data management module

for administrators and an adaptive design module for de-

signers. In the module of data management, the JDBC pro-

gramming technology will be used with an Oracle database to

sort and manage the constructed product/part-level PKCN.

Besides, cluster analysis and network analysis tools will be

integrated into this module, which can realize the function of

data clustering and data importance calculation. In the module

of adaptive design, the Java programming technology is

planned to be used to develop an operation interface to support

multi-disciplinary coordination design. Similarity reasoning,

BFS, and gray relational analysis tools will be integrated into

this module, which can realize the demand-oriented complex

product adaptive design.
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