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Background: With the advent of large-scale molecular profiling, an increasing number

of oncogenic drivers contributing to precise medicine and reshaping classification

of lung adenocarcinoma (LUAD) have been identified. However, only a minority of

patients archived improved outcome under current standard therapies because of the

dynamic mutational spectrum, which required expanding susceptible gene libraries.

Accumulating evidence has witnessed that understanding gene regulatory networks as

well as their changing processes was helpful in identifying core genes which acted as

master regulators during carcinogenesis. The present study aimed at identifying key

genes with differential correlations between normal and tumor status.

Methods: Weighted gene co-expression network analysis (WGCNA) was employed to

build a gene interaction network using the expression profile of LUAD from The Cancer

Genome Atlas (TCGA). R package DiffCorr was implemented for the identification

of differential correlations between tumor and adjacent normal tissues. STRING and

Cytoscape were used for the construction and visualization of biological networks.

Results: A total of 176 modules were detected in the network, among which yellow

and medium orchid modules showed the most significant associations with LUAD.

Then genes in these two modules were further chosen to evaluate their differential

correlations. Finally, dozens of novel genes with opposite correlations including

ATP13A4-AS1, HIGD1B, DAP3, and ISG20L2 were identified. Further biological and

survival analyses highlighted their potential values in the diagnosis and treatment of
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LUAD. Moreover, real-time qPCR confirmed the expression patterns of ATP13A4-AS1,

HIGD1B, DAP3, and ISG20L2 in LUAD tissues and cell lines.

Conclusion: Our study provided new insights into the gene regulatory mechanisms

during transition from normal to tumor, pioneering a network-based algorithm in the

application of tumor etiology.

Keywords: WGCNA, differential correlation, switching mechanism, gene regulation, lung adenocarcinoma

INTRODUCTION

Lung cancer has been one of the most leading causes responsible
for cancer mortality globally for several decades (Halliday et al.,
2019). According to the Surveillance, Epidemiology, and End
Results (SEER) Program, 228,820 new cases and 135,720 deaths
of lung and bronchus cancer patients have been estimated in the
United States in 2020 (Siegel et al., 2020). In China, estimated
new cases and deaths from lung cancer were 730,000 and
610,000 in 2015, respectively, accounting for over 30% of the
world’s total (Chen et al., 2016). Based on histological subtypes,
approximately 85% are of non-small cell lung cancer (NSCLC),
of which lung adenocarcinoma (LUAD) is the most prevalent and
attributed tomore than 50% of all lung cancer cases (Oberndorfer
and Mullauer, 2018). Despite that conventional therapies
including surgery, radiotherapy, chemotherapy, immunotherapy,
and targeted drugs have been applied to LUAD treatment, the
5-year survival rate for patients remains less than 15%, mainly
due to lack of early detection and intervention (Herbst et al.,
2018). In addition to environmental exposures and tobacco
smoking, genetic susceptibility has been recognized as the most
important risk factor associated with LUAD. Recently, a new
conception called “oncogene addiction” referring to dependence
of cancer cells on the activation of specific oncogenes has
attracted increasing attention and underlined the significance
of oncogenic drivers in LUAD (Calvayrac et al., 2017). At
present, patients with LUAD harboring gene aberrations in EGFR
(Thomas et al., 2019), KRAS (Kim et al., 2019), ALK (Shaw et al.,
2019), BRAF (Dankner et al., 2018), HER2 (Mazieres et al., 2013),
and MET (Drilon et al., 2017) benefit the most from targeted
therapies, and those genes have been considered as oncogenic
drivers in the field of thoracic oncology. However, on account of
the dynamic mutational spectrum comprised of a vast number
of hidden drivers, only a minority of patients archived improved
outcome under current standard therapies (Oberndorfer and
Mullauer, 2018). Thus, it is imperative to identify new risk genes
for elucidating lung carcinogenetic mechanisms in order to guide
researchers to develop new therapeutic strategies and physicians
to tailor the treatment options.

Exponential advances in the high-throughput sequencing
technologies and informatics have generated large-scale omics
data which promotes a paradigm shift in the study of
biomedical sciences and is available for deciphering molecular
characteristics of oncogenesis that could be translated into
clinical practice (Manzoni et al., 2018; Cheng, 2020). Among
them, transcriptome data is quite informative because of the
discovery of the significantly altered abundance of cellular

components or pathways between disease and healthy tissues
or two disease states (Kwon et al., 2019). In recent years,
comparative analysis of transcriptome data has helped to discover
prognostic markers and signatures by looking for differentially
expressed genes in a variety of cancer types (Jiang et al., 2015;
Zhang et al., 2020). However, a fact that could not be ignored
is that most of the biological activities require an orchestrated
action of multiple genes, whose dysregulation could lead to the
occurrence of cancer. Therefore, gene correlation approaches
have been intensively used for transcriptional profiling, providing
preliminary steps toward genetic interaction networks and
offering clues about the function of unknown genes.

Complementary to gene correlation analysis, changes in
correlation patterns under different conditions, referred to
as “differential correlations,” are also attractive as for the
reconstruction of genome architecture and identification of
regulators or marker genes (Ideker and Krogan, 2012; Li
et al., 2015). For example, one transcription factor defined
as a master gene regulates a number of downstream targets.
Also, these targets express in an ordered module where the
regulatory mechanism is functional. However, in disease tissues
where the regulatory mechanism is malfunctional, the gene
expression module may be disordered or random. In this case,
correlation changes can be detected by differential correlations
rather than differential expression analysis. Recently, such
alterations in network structures and variance in gene expression
levels have been observed in cellular differentiation and cancer
cell formation (Bockmayr et al., 2013; Ando et al., 2015),
contributing to understanding the expression patterns between
two states. However, differential correlations in LUAD are poorly
determined, so it is imperative to unravel network dynamics
that can be used to identify new candidate genes. Hitherto, an
increasing number of systematic approaches have been developed
for identifying such changes in network structures (Ideker and
Krogan, 2012; Yu et al., 2015). Application of these methods to
LUAD and adjacent normal tissues may reveal variance in gene
expression levels during carcinogenesis.

Weighted gene co-expression network analysis (WGCNA) is
a systematic method widely utilized in oncology research that
aims at finding co-expressed genes through calculating gene
connectivity (Chang et al., 2013; Yang et al., 2018). The soft
thresholding of the Pearson correlation matrix is integrated
into analysis for determining the connection strengths within
gene pairs (Zhang and Horvath, 2005; Ghazalpour et al., 2006).
Based on Fisher’s z-test, R package DiffCorr is a useful tool
in identifying differential correlations between disease states
and providing a list of differentially correlated gene pairs
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(Fukushima, 2013). In this study, we developed an in silico
framework to identify key genes with differential correlations
(Figure 1). First, we employed WGCNA to build a gene
interaction network using the expression profile of LUAD from
The Cancer Genome Atlas (TCGA). A total of 176 modules
were detected in the network, among which yellow and medium
orchid modules showed the most significant associations with
LUAD. Then, we calculated differential correlations of genes
in these two modules and identified significant differences
between tumor and adjacent normal tissues using DiffCorr.
Finally, dozens of new genes including ATP13A4-AS1, HIGD1B,
DAP3, and ISG20L2, were identified and their expression
patterns were confirmed by real-time qPCR. Further biological
and survival analysis yielded their valuable effects on the
progression of LUAD.

MATERIALS AND METHODS

LUAD RNA-Sequencing Datasets
The RNA-sequencing data of LUAD was downloaded from the
TCGA database1, including 468 tumor samples and 58 normal
samples. As previously described, the gene expression levels
were quantified as FPKM (fragments per kilobase per million
mapped reads) using TopHat and HTSeq-count (Kim et al., 2013;
Anders et al., 2015). The TCGA sample information was listed
in Supplementary Table 1. Within the 468 tumor samples, 3
samples did not have stage information, 165 samples were in
stage I, 247 samples were in stage II, 39 samples were in stage
III, and 14 samples were in stage IV. The sample distribution
also stressed the importance of identification of new genes for
early diagnosis.

Co-expression Network Analysis
Hub gene screening and co-expression of gene pair detection
were performed by an R package WGCNA, which was designed
for analyzing a weighted correlation network (Langfelder and
Horvath, 2008). The premise of the network construction was
that elements in the gene co-expression matrix were the weighted
values of the correlation coefficient between gene pairs. The
selection criterion of the weight was to make the connections
among genes conform to the scale-free network distribution;
that is, for the number of connections i, the probability p(i)
was inverse to in. Practically, a weighted coefficient was selected
to approximate the scale-free topology, which needs to satisfy
the following condition: the log of the number of connected
nodes log(i) was negatively correlated with the log of occurrence
probability of nodes log(p(i)) (the correlation coefficient should
be at least 0.8). At the same time, the average connection degree of
genes in different modules should be quite high. Associated genes
were clustered based on dissimilarity of the unsigned topological
overlap matrix (TOM). Finally, network modules and the genes
within them were identified.

1https://portal.gdc.cancer.gov/

Functional Enrichment Analysis of
Module Genes
R package clusterProfiler was used to perform functional
enrichment analysis on clustered genes in yellow and medium
orchid modules. A hypergeometric distribution test was applied
to detect enrichment terms, and P values were adjusted by
false discovery rate (FDR) method with a cutoff FDR < 0.05
(Yu et al., 2012).

Differential Correlation Analysis
R package DiffCorr was implemented for the identification
and visualization of differential correlations in biological
networks, and details were described in Fukushima (2013).
Briefly, the DiffCorr package mainly contained three functions.
First is calculation of differential correlations. The correlation
coefficients for each of the two conditions (herein referred to
tumor and normal), rA and rB, were transformed into ZA and
ZB, respectively, based on Fisher’s transformation: Z =

1
2 log

1+r
1−r .

Differences between the two correlations could be tested using

the equation Z =
ZA−ZB

√

1
nA−3+

1
nB−3

, where nA and nB represent

the sample size for each biomolecule pair in each condition.
Then, the local false discovery rate (lfdr) derived from the fdrtool
package was used for controlling true estimates and identifying
significant differential correlations. Second is identifying eigen-
molecules. Eigen-molecules or “eigengenes” in the network were
calculated based on the first principal component of a data
matrix of a module which was extracted from a hierarchical
cluster analysis. In addition to pair-wise differential correlations
between molecules, differential correlations between modules
were tested by using these eigen-molecule modules. Third is
scaling and clustering. Different pretreatment methods with
downstream correlation analyses were integrated, including auto-
scaling, range scaling, Pareto scaling, vast scaling, level scaling,
and power transformation.

Visualization and Functional Analysis
Construction and analysis of networks were carried
out using STRING (11.0)2 (Szklarczyk et al., 2019).
Visualization of networks was realized using Cytoscape (3.6.0)
(Doncheva et al., 2019).

The Survival Analysis of Key Genes With
Differential Correlations
There were 468 LUAD patients with survival information. We
performed survival analysis using the Cox proportional hazard
regression model on these samples (Andersen and Gill, 1982).
Each gene expression level was divided into two groups and
repeated for 90 times based on the cutoff value from 5 to 95%
of its expression level. A repeated log-rank test based on each
cutoff value was processed, and a cutoff value with the lowest
P-value was selected for subsequent univariate survival analysis.
The Kaplan–Meier plot was used to describe the survival curves
of these two groups of patients. The significance of the survival

2https://string-db.org/
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FIGURE 1 | The workflow of this study. First, the gene expression matrix of LUAD patients was obtained. Second, the WGCNA network was constructed and genes

were clustered into modules. Third, differential correlations between genes were calculated and significant differences between tumor and adjacent normal tissues

were identified using DiffCorr. Finally, functional analysis of key genes with differential correlations.

difference between these two patient groups was evaluated by the
log-rank test P value. If the P value was less than 0.05, its survival
was considered as significantly different. The R package survival
was used to perform the survival analysis.

Cell Lines and Cell Culture
The LUAD cell lines (A549, SPCA1, PC9, H1299, and H1975)
and the normal human bronchial epithelial cell line 16HBE
were from the Cell Bank of Type Culture Collection of the
Chinese Academy of Sciences, Shanghai Institute of Cell Biology
(Shanghai, China). A549, H1975, and H1299 cells were grown
in RPMI-1640 (Thermo, United States) containing 10% FBS,
and 16HBE, SPCA1, and PC9 cells were grown in a DMEM
medium (Thermo, United States) containing 10% fetal bovine
serum (FBS). In addition, all cell media were supplemented with
penicillin (100 U/mL) and streptomycin (100 U/mL) at 37◦C in a
5% CO2 incubator.

LUAD Patients and Tissue Specimens
A total of 15 pairs of LUAD tumor and corresponding
adjacent normal tissues were collected from the Third Affiliated
Hospital of Soochow University between October 2019 and June
2020. Samples were snap-frozen and stored at −80◦C until
use in real-time qPCR (RT-qPCR) experiments. In addition,
we conducted immunohistochemical staining of formalin-fixed
paraffin-embedded LUAD patients and normal control samples.
The Research Ethics Committee of the Third Affiliated Hospital
of Soochow University approved this study, which was consistent
with the Declaration of Helsinki. All patients provided written
informed consent.

RNA Isolation, cDNA Synthesis, and
RT-qPCR
We isolated total RNA with TRIzol reagent (Thermo,
United States). First-strand cDNA was synthesized from
1 µg total RNA using a ReverTra Ace qPCR RT Kit (Toyobo,
Osaka, Japan). The Fast SYBR Green Master Mix was used for
RT-qPCR (Applied Biosystems Inc., CA, United States). The
cycling conditions were 30 s of polymerase activation at 95◦C
followed by 40 cycles at 95◦C for 5 s and 60◦C for 30 s. GAPDH
was used as an internal loading control. The relative level was
calculated by the relative quantification 2-11CT method. All
primer sequences were listed in Supplementary Table 2.

Statistical Analysis
Student’s t-test was applied to identify genes differentially
expressed between normal and tumor samples. P values were
adjusted by the Benjamini–Hochberg method (Hochberg and
Benjamini, 1990). Differentially expressed genes were defined
as adjusted P value < 0.05. Fisher’s z-test was employed to
evaluate differential correlations of gene pairs between normal
and tumor samples. Moreover, lfdr < 0.05 was defined as
significant differential correlations.

RESULTS

Construction of the Co-expression
Network
The weighted gene co-expression network was constructed from
58,387 coding and noncoding RNAs through the WGCNA
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FIGURE 2 | The relationship between soft threshold (power) and network properties. Left panel: The relationship between soft-threshold (power) and scale-free

topology. Right panel: The relationship between soft threshold (power) and mean connectivity. When the soft threshold (power) was six, the scale-free topology (R2)

was 0.91 and mean connectivity became stable. Therefore, we set the soft threshold (power) to be six.

approach. Here, the soft-thresholding power was set to be six
to satisfy the scale-free topology of the network (Figure 2),
in which R2 was used to check how well the network fit the
scale freeness. When the soft-thresholding power was set to be
six, the R2 was 0.91. Furthermore, we detected 176 modules
in this network, whose relationship was shown in a cluster
dendrogram (Figure 3A). The number of members in different
modules varied widely. The members of each module were
listed in Supplementary Table 3. Besides the gray module which
comprised many unclassified members, the turquoise module
contained a maximum of 4,594 genes, while a minimum of 30
genes were included in the dark sea green module.

Each module represented a group of genes with similar
expression profiles across samples. Next, we quantified module-
trait associations (Supplementary Figure 1), among which
the yellow and medium orchid modules showed the most
significant associations with LUAD. The corresponding
correlation coefficients of yellow and medium orchid modules
were 0.83 (P = 410−133) and −0.58 (P = 510−49), respectively.
Clearly, Gene Significance (GS) and Module Membership (MM)
analysis illustrated that genes highly significantly associated
with LUAD were also the most important elements of modules
associated with LUAD (Supplementary Figure 2). We also
performed Gene Ontology (GO) enrichment analysis of these
two modules. As presented in Figure 3B, genes in the yellow
module were significantly enriched in the negative regulation of
growth and vasculogenesis, while genes in the medium orchid
module were enriched in the cellular metabolic process (geranyl
diphosphate metabolic process, geranyl diphosphate biosynthetic
process, farnesyl diphosphate biosynthetic process, and farnesyl

diphosphate metabolic process) with an adjusted P value smaller
than 0.05, conferring the importance of these biological functions
on LUAD development.

Identification of Differential Correlations
The genes in the yellow and medium orchid modules were
further chosen to evaluate their differential correlations. Using
R package DiffCorr, these genes were grouped based on their
expression patterns in each subtype (normal or tumor) using the
cluster.molecule function.We used the one-correlation coefficient
as a distance measure (the cutoff of the coefficient was 0.6)
according to the cutree function. The get.eigen.molecule and
get.eigen.molecule.graph functions were used for visualization
of the module network (Figure 4). The comp.2.cc.fdr function
provided the resulting pair-wise differential correlations in the
yellow (Supplementary Table 4) and medium orchid modules
(Supplementary Table 5).

The DiffCorr package also detected oppositely correlated pairs
where, for example, two genes exhibited a positive correlation in
normal samples and a negative correlation in tumor samples, or
vice versa, a condition referred to as a “switching mechanism”
(Kayano et al., 2011). These switched gene pairs, which especially
show a differential expression at the same time, were worth
noticing for their critical roles in understanding cellular functions
in the development of LUAD. In total, we obtained 42
oppositely correlated gene pairs with a differential expression
simultaneously from the yellow module and 62 from the medium
orchid module (Supplementary Table 6). Their interaction
networks are shown in Figure 5. The top 10 significant switching
mechanisms of gene expression between normal and tumor
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FIGURE 3 | The cluster dendrogram of the WGCNA co-expression network and functional enrichment of module genes. (A) Total genes were clustered in 176

modules. Each module was marked with one color. Except for the gray module, which included many unclassified members, the turquoise module contained a

maximum of 4,594 members, while a minimum of 30 members were included in the dark sea green module. (B) GO analysis showed the top 10 enriched biological

processes in the yellow (left panel) and medium orchid (right panel) modules.

samples from the yellow and medium orchid modules are shown
in Table 1.

Functional Analysis of Key Genes With
Differential Correlations
Next, we focused on several key genes that acted as master
regulators for their occupying most connections with other
genes. In the yellow module, DUOX1, DUOXA1, HIGD1B, and
ATP13A4-AS1 stood out in the network (Figure 5A). ATP13A4
antisense RNA 1 (ATP13A4-AS1) is an antisense long noncoding
RNA (lncRNA) derived from ATP13A4 with an unknown
function in cancer. Here, we can infer the roles of ATP13A4-AS1
from its interacted genes advanced glycosylation end-product

specific receptor (AGER) and angiopoietin-like 7 (ANGPTL7)
(Figure 5A). As a member of the immunoglobulin superfamily,
cell surface receptor AGER is involved in multiple inflammatory
responses whose abnormal expression has been reported to
be closely associated with carcinogenesis (Bongarzone et al.,
2017). Accumulating evidence has shown the downregulation
of AGER in lung cancer, leading to enhanced proliferation,
invasion and migration abilities, and decreased apoptosis of cells
(Zhang et al., 2018; Wang et al., 2020). In addition, genetic
polymorphisms of AGER have been reported to increase risks of
lung cancer and breast cancer (Yin et al., 2015; Liu et al., 2019).
Angiopoietin-like 7 (ANGPTL7) belongs to a family of secreted
angiopoietin-like proteins and plays vital roles in the modulation
of hematopoietic stem cell maintenance, angiogenesis, and lipid
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FIGURE 4 | Representation of the module networks. Images of yellow (A) and medium orchid (B) module networks from the TCGA dataset were shown. Each node

represented one module, and each edge represented the module correlation.

metabolism (Zhang et al., 2006; Hato et al., 2008). Prior studies
have revealed striking ANGPTL7 underexpression in various
cancers such as colorectal cancer and breast cancer. Besides,
upregulation of ANGPTL7 has been found in cancer cells
after myeloid cell depletion, which affected liver metastasis by
diminishing cell growth and vascular density, implying that
ANGPTL7 could act as a mediator of metastatic progression
and as a promising intervention target (Lim et al., 2015). As
AGER and ANGPTL7 both show strong links to cancer, it is
plausible that their interacted gene ATP13A4-AS1 also engages
in the progression of lung cancer by exerting similar impacts on
cellular activities. Furthermore, the Kaplan–Meier plot exhibited
that lower levels of ATP13A4-AS1 correlated with poor patient
outcome (Figure 6A), corresponding to its lower expression
in LUAD than normal samples confirmed by our RT-qPCR
(Figure 7A). Hence, our study revealed, for the first time, the roles
of ATP13A4-AS1 in carcinogenesis, providing experimental clues
for further investigations.

Dual oxidase 1 (DUOX1), an oxidant-generating enzyme
within the airway epithelium, has been previously reported to
take part in innate airway host defense and epithelial homeostasis,
the activation of which stimulated cell migration dependent
on Src family tyrosine kinases and epidermal growth factor
receptor (EGFR) signaling pathways (Yoo et al., 2012; Gorissen
et al., 2013; Sham et al., 2013; Hristova et al., 2016). DUOXA1,
as a maturation factor of DUOX1, is transcriptionally and
functionally linked to DUOX1 (Grasberger and Refetoff, 2006).
Recent evidence has indicated that DUOX1 and DUOXA1 were
frequently silenced due to promoter hypermethylation in various
epithelial cancers including lung cancer (Luxen et al., 2008;

Ling et al., 2014; Little et al., 2016). Consistent with pan-cancer
analysis, DUOX1 and DUOXA1 were also downregulated in
LUAD from our TCGA dataset, proving their potential tumor
suppression roles.

HIG1 domain family member 1B (HIGD1B) is localized to
the cell membrane whose expression is induced by hypoxia
and glucose deprivation (Denko et al., 2000). Moreover, an
increased expression of HIGD1B has been observed in cervical
cancer and plurihormonal pituitary adenomas (Denko et al.,
2000; Jiang et al., 2012). In contrast with previous research,
HIGD1B showed lower expression levels in LUAD compared
with normal samples in TCGA datasets, which was also
observed in our LUAD patients and cell lines (Figure 7B),
probably due to different cancer characteristics, implying its
dual function in carcinogenesis. Moreover, its interaction with
DUOX1 and DUOXA1 emphasized similar contributions to
inhibit the malignant progress of cancer. The survival analysis
also demonstrated that the low expression was associated with
high risk (Figure 6B). Thus, our study expanded the roles of
HIGD1B in cancer biology which need further validations.

In the medium orchid module, PIP5K1A, CRTC2, DAP3,
and ISG20L2 deserved much attention for their central positions
in the network (Figure 5B). As a lipid kinase, the basic
function of PIP5K1A is to phosphorylate PI4P to synthesize
important signaling phospholipid PI(4,5)P2, which serves as the
substrate for phosphoinositide 3-kinase (PI3K) for conversion
into PI(3,4,5)P3 to promote cell proliferation and survival
(Adhikari and Counter, 2018). Intriguingly, PIP5K1A has been
recently shown to interact directly with mutant KRAS and
TP53, which were the most prevalent drivers in lung cancer,
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FIGURE 5 | Differentially co-expressed gene networks in the yellow (A) and medium orchid (B) modules from the TCGA dataset. Each node represented a gene,

with lavender-filled color denoting downregulation and orange-filled color upregulation. The larger size of node represented smaller adjusted P-value. The edge

represented connection between two genes. The green edge represented negative correlation and red positive correlation. The thicker part of the edge represented

a stronger correlation coefficient.

and facilitated downstream oncogenic signaling (Adhikari and
Counter, 2018; Choi et al., 2019).

CRTC2, belonging to the CREB-regulated transcription
coactivator (CRTC) family, can bind the leucine zipper DNA-
binding region of CREB which results in the enhancement of
CREB transcriptional activity (Koo et al., 2005; Dentin et al.,
2008). Recent studies have identified novel mutations and a high
expression of CRTC2 in non-small cell lung cancer patients,
leading to reinforced migration and invasion abilities of cancer
cells (Shi et al., 2018; Rodón et al., 2019). Current evidence has
pointed out oncogenic roles of CRTC2 in lung cancer, consistent
with its elevated expression levels in our study.

As a molecule involved in controlling apoptosis and anoikis,
death-associated protein 3 (DAP3) has been highly implicated
in the context of carcinogenesis. However, controversy exists
with regard to its roles in human cancer (Wazir et al., 2015).
Increased expression levels of DAP3 have been observed in
invasive glioblastoma as well as glioma cells with induced
migratory phenotype (Mariani et al., 2001), while an inverse
association between DAP3 expression and clinical outcome
has been found in breast cancer, corresponding to the pro-
apoptotic function of DAP3 (Wazir et al., 2012). A recent study
has identified differentially expressed DAP3 for classification

between LUAD and normal samples (Hsu et al., 2015), indicating
its crucial roles in carcinogenesis. Consistently, our Kaplan–
Meier analysis showed better survival in the low transcription
group approaching significance (Figure 6C), supporting tumor
promotion influences of DAP3 on LUAD. At the same time,
our experiments also witnessed the upregulation of DAP3 in
LUAD patients and cell lines (Figure 7C). Therefore, our study
illustrated that, for the first time, DAP3 occupied the core
position in the regulatory network of LUAD, explaining its
mechanism of action to some extent.

Interferon-stimulated 20-kDa exonuclease-like 2 (ISG20L2)
is a novel vertebrate nucleolar exoribonuclease and involved in
ribosome biogenesis (Couté et al., 2008; Simabuco et al., 2012).
As one of target genes regulated by miR-139-3p, ISG20L2 has
recently been related to hepatocellular carcinoma prognosis (Zhu
et al., 2019), consistent with an immunogenomic landscape study
which adds the roles of ISG20L2 in reflecting levels of infiltration
in diverse immune cells (Xiao et al., 2021). Additionally, high
expression of ISG20L2 has been found in several cancers and
affected cancer occurrence in a variety of aspects (Xu et al.,
2020; Xiao et al., 2021). Nevertheless, there is scant literature
with regard to its role in LUAD. Here, we proposed for the
first time the roles of ISG20L2 in promoting carcinogenesis and
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FIGURE 6 | The Kaplan–Meier plot of ATP13A4-AS1, HIGD1B, DAP3, and ISG20L2. The low expressions of ATP13A4-AS1 (A) and HIGD1B (B) were associated

with high risk. The high expressions of DAP3 (C) and ISG20L2 (D) were associated with high risk.

FIGURE 7 | The expression levels of ATP13A4-AS1 (A), HIGD1B (B), DAP3 (C), and ISG20L2 (D) in LUAD tissues and cell lines detected by RT-qPCR. Human

bronchial epithelial cell line: 16BE. LUAD cell lines: A549, SPCA1, PC9, H1299, and H1975. Data were means ± SEM. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.

Experiments were repeated three times.

identified its interacted genes in the regulatory network which
contributed to understanding further functional mechanisms.
Accordingly, survival time was significantly higher in patients
with low ISG20L2 expression, compared with the high ISG20L2
expression group (Figure 6D). Meanwhile, remarkable elevated
levels of ISG20L2 were also verified by RT-qPCR in LUAD
patients and cell lines (Figure 7D).

DISCUSSION

Although multiple studies have continuously explored gene
interaction networks which were constructed from a series of
correlated gene pairs, little is known about the differential
correlations between normal and tumor status which contributed
to elucidating deep mechanisms of gene regulation and
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TABLE 1 | Top 10 correlated gene pairs changed to the opposite direction from the yellow and medium orchid modules between normal and LUAD samples.

Molecule X Molecule Y r1 (normal) r2 (tumor) lfdra (difference) Module color

HIGD1B DUOX1 −0.58 0.53 0 Yellow

FAM162B DUOX1 −0.56 0.51 0 Yellow

EPCAM CAV1 0.65 −0.40 0 Yellow

FAM162B DUOXA1 −0.59 0.46 4.67E-12 Yellow

PHACTR1 HIGD1B −0.58 0.45 1.47E-11 Yellow

DUOX1 COX4I2 −0.55 0.47 3.16E-11 Yellow

IL33 DUOX1 −0.53 0.48 8.28E-11 Yellow

FXYD1 ATP13A4-AS1 −0.58 0.41 1.29E-10 Yellow

MMP19 CASS4 −0.43 0.55 2.30E-10 Yellow

ATP13A4-AS1 AGER −0.40 0.58 2.51E-10 Yellow

VPS72 PIP5K1A −0.47 0.73 0 Mediumorchid

VPS45 PIP5K1A −0.41 0.69 0 Mediumorchid

UBE2Q1 ILF2 −0.60 0.58 0 Mediumorchid

TARS2 PIP5K1A −0.54 0.66 0 Mediumorchid

TARS2 ENSA −0.46 0.62 0 Mediumorchid

PYGO2 PIP5K1A −0.59 0.62 0 Mediumorchid

PSMD4 PIP5K1A −0.55 0.60 0 Mediumorchid

PRUNE PIP5K1A −0.58 0.70 0 Mediumorchid

PRUNE CDC42SE1 −0.55 0.59 0 Mediumorchid

PIP5K1A LYSMD1 −0.74 0.71 0 Mediumorchid

aLocal FDR.

identifying master genes. Benefiting from the availability of high-
throughput data and different kinds of algorithms, detecting
correlation changes became feasible. In this study, we developed
an in silico framework to identify key genes with differential
correlations in LUAD. Both candidate genes and their targets
from gene regulatory networks could be further used for
experimental investigations of biological functions in order to
guide the diagnosis and treatment of patients. As transcriptomic
data only represents a single layer of genome and is not sufficient
to depict the whole-cell atlas, multidimensional molecular
data including proteomic and metabolomic data as well as
genome-wide association studies are required to be integrated
for elaborating transition mechanisms from normal to tumor.
Meanwhile, a statistical evaluation should be more strongly
emphasized in future studies of differential correlations.
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