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Abstract—Identification of a low-level point radiation
source amidst background radiation is achieved by a
network of radiation sensors using a two-step approach.
Based on measurements from three sensors, the geometric
difference triangulation method is used to estimate the
location and strength of the source. Then a sequential
probability ratio test based on current measurements and
estimated parameters is employed to finally decide: (1)
the presence of a source with the estimated parameters,
or (2) the absence of the source, or (3) the insuffi-
ciency of measurements to make a decision. This method
achieves specified levels of false alarm and missed detection
probabilities, while ensuring a close-to-minimal number
of measurements for reaching a decision. This method
minimizes the ghost-source problem of current estimation
methods, and achieves a lower false alarm rate compared
with current detection methods. This method is tested and
demonstrated using: (1) simulations, and (2) a test-bed that
utilizes the scaling properties of point radiation sources to
emulate high intensity ones that cannot be easily and safely
handled in laboratory experiments.

Index Terms—Point radiation source, detection and lo-
calization, sequential probability ratio test.

I. INTRODUCTION

There has been an increasing interest in the identifica-
tion of low-level radiation sources as a part of the defense
strategy against dirty bomb scenarios. The ability to
identify the signatures of such sources will enable their
detection before they are set off, in particular, while they
are being transported or stored. Or, in another scenario,
we will be able to detect radiation traces and estimate
their extent in seemingly conventional explosions, so that
first responders can be forewarned and suitably protected
against the low-level yet highly hazardous radiation.
Typically, in both of these scenarios, the radiation levels
may be low enough to appear as “normal” variations
of the background radiation. The detection problem
is particularly acute since the radiation measurements
follow the Poisson process, whose variance is of the
same order as the radiation level itself. While long-
term averages of measurements due to low-level sources
do result in elevated levels which eventually can be

detected, our focus is on identifying the sources quickly
to ensure fast response. In general, the area of detecting
various radiation sources using individual sensors has
been well established in terms of both detection devices
and detection methods [14], [18], most of which are
dedicated to single or co-located sensor systems. Recent
advances in sensor network technologies, however, have
opened up the potential for improved detection, as well
as the estimation of source parameters, by utilizing
measurements from multiple, geographically dispersed
sensors; see, for example, [7], [10], [15], [19], [22], [23]
for this line of work.

Compared with the identification of high intensity
radiation sources, the detection and localization of low-
level sources is difficult due to two major factors:

(A) Varied background radiation: The background
radiation depends on both local natural and man-
made sources and global sources such as cosmic
rays, and hence it may vary significantly from one
deployment region to another. If not carefully inter-
preted, such measurements lead to “ghost” sources
(false alarms) that may cause unnecessary panic.

(B) Probabilistic radiation measurements: The radia-
tion sources generate inherently probabilistic mea-
surements; typically, gamma radiation from point
sources follows the Poisson distribution [14], [16].

The combined effect of these two factors makes it hard to
derive a priori thresholds needed by traditional detection
methods. Furthermore, the estimation of source location
parameters cannot be directly solved by the triangulation
methods developed for deterministic measurements. On
the other hand, the estimation can be made more effec-
tive when a network of sensors is employed, provided
that a number of remaining estimation problems can
be solved. In this paper, we address Factor (A) above
by in-situ estimation of background radiation during
initial network deployment. We address Factor (B) above
using a combined geometric localization method and the
sequential probability ratio test (SPRT).
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Probability ratio tests are typically employed in the
detection problems to derive thresholds to achieve spec-
ified levels of false alarm rates and missed detection
rates, in both centralized [24] and distributed detection
systems [25]. Such an approach is described for the
detection of radiation sources using single sensors in [9],
[12], [18] (to name a few examples) and using copula
methods in sensor networks [23]. The estimation of the
location and strength of point radiation sources typically
requires at least three sensors and is solved using the
least square methods in [11], [10], [17]. Typically, the
parameter estimation methods implicitly assume that
the measurements are due to a real source and not
just the background, often by utilizing a preceding
detection step. For low-level sources, however, it is not
as easy to discriminate between source and background
measurements, and existing methods often return results
corresponding to “ghost” sources.

In this paper, we show that the detection and pa-
rameter estimation steps can reinforce each other, in
a two-step decision procedure for low-level radiation
sources. We present a method for the identification –
which subsumes the detection and parameter estima-
tion – of a point radiation source using a network
of three sensors that provide radiation counts. In the
first step, we utilize a geometric localization method to
estimate the location of a real or ghost source, from
which we also estimate the source strength. Then, using
the estimated source parameters, we utilize SPRT to
declare: (1) the presence of a source with the esti-
mated parameters, or (2) the absence of the source, or
(3) the insufficiency of the collected measurements to
make a decision. The localization method is derived by
adapting the recently developed geometric difference-
triangulation method [21] to our problem, which does
not have the numerical vulnerabilities of least squares or
linear methods. The source strength is estimated using
a linear combination of the estimates from individual
sensors. The detection test utilizes the estimated back-
ground radiation of the given deployment region and the
estimated source parameters, to formulate SPRT based
on the Poisson point source model. Ghost sources, if
estimated in the first step, will be rejected by the SPRT
within a specified false alarm rate, since they do not lead
to statistically consistent measurements. On the other
hand, the estimated parameters enable us to formulate a
more specific SPRT compared with detecting a general
increase in the radiation level, which in turn yields a de-
cision with the least expected number of measurements.
Our approach is in contrast to conventional approaches
in which detection precedes identification as in several
tracking applications [6], [5].

Evaluating identification methods for radiation sources

poses pragmatic challenges of experimentation, since it
is potentially hazardous and too expensive to deploy
and clean-up the effects of radiation sources of all but
minimal strengths. We exploit the simple product form of
the radiation model to develop a scaled-down workbench
that emulates higher-intensity sources and larger-scale
deployments. In particular, we map the workbench of a
few feet in dimension to emulate deployments of several
hundred meters, and demonstrate the effectiveness of our
method using real but safe low-level radiation sources.

The balance of the paper is organized as follows. In
Section II, we briefly review the related work on the
detection and estimation of radiation sources, with an
emphasis on sensor network solutions. We formulate the
identification problem in Section III. We describe our
solution to the source parameter estimation problem in
Section IV and the detection problem in Section V. We
combine the estimation and detection results to develop
our identification method in Section VI. We present our
simulation results in Sections IV and VI, and test-bed
and emulation results in Section VII.

II. RELATED WORK

The detection and estimation of radiation sources
of various kinds has been well studied, particularly
using single sensors [14], [4]. The detection of radiation
sources amidst background radiation has been studied
using SPRT for various scenarios such as long-term and
portal monitoring [8], [12], [18]. The existing work using
SPRT does not address the source localization problem.

The use of a network of sensors for detecting and
tracking radiation sources has been more recently pro-
posed. For the detection of radioactive sources, a linear
arrangement of detectors has been considered in [19],
[7], [15], and an analysis of sensor network solutions
has been carried out for a source moving in a linear
path [22]. The detection of a point radiation source using
a sensor network is addressed in [23], wherein sensor
measurements are combined using a copula function that
captures the sensor correlations.

Typically, a detection method is used to first assert the
presence of a radiation source, and then, measurements
from multiple sensors are used to estimate the parameters
of the source. The problem of localizing a point radiation
source has been addressed in [10], [17], [3]. Recursive
and moving horizon non-linear least square methods
have been proposed to track radioactive sources in [11].
Overall, the existing estimation methods assume that
the measurements correspond to a real source (i.e., the
source does exist), whereas the detection methods can
be made more effective when the source parameters are
accurately known. Our focus in this paper is to jointly
address the detection and estimation problems by closely
coupling the two decisions.
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III. PROBLEM FORMULATION

We consider the identification of a point radiation
source S of unknown strength Au expressed as Counts
Per Minute (CPM) 1, called the source rate, and lo-
cated at an unknown location (xu, yu). The source
gives rise to a radiation intensity of I(x, y) = Au/r2

at any point (x, y), where r = d((xu, yu), (x, y)) =√
(xu − x)2 + (yu − y)2. Let mi,1, mi,2, . . . , mi,ni be

a sequence of radiation counts, each measured per unit
time, at the sensor Mi at known location (xi, yi), for
i = 1, 2, 3. The radiation count due to the source
observed at Mi per unit time is a Poisson random
variable with parameter λ = I(xi, yi), not accounting
for the background radiation [14], [16].

Let B(x, y) denote the background radiation strength
at (x, y) expressed as CPM, called the background rate.
The radiation count measurement (due to the background
radiation) at a sensor i located at (xi, yi) is given by the
Poisson random variable with parameter B(xi, yi). The
assumption of Poisson distribution for the background
measurements may not always be accurate, since the
background radiation may be a complex combination of
various sources; we utilize this assumption in our main
derivation and later account for possible deviations. On
the other hand, measurements of I(xi, yi), being from
a single point source, are more accurately characterized
by the Poisson distribution. In either case, the measure-
ments are statistically independent across the temporal
dimension, and exhibit significant variations as shown in
Figure 1.

We consider a monitoring area contained within the
acute triangle formed by M1, M2, M3 (as shown in
Figure 2 for an example) to simplify the presentation
of the localization method; the triangle property is not
needed in practice, as the presented method can be
shown to work for general geometries [21], [27]. We
are given three sequences of measurements, from Mi

for i = 1, 2, 3, collected within the same time window.
The detection problem is concerned with inferring the
presence of a source, whereas the estimation problem
is concerned with estimating the location (i.e., the lo-
calization problem) and the strength of the source, if
present. The estimates of (xu, yu) and Au are denoted
by (x̂u, ŷu) and Âu, respectively.

We characterize the solution of the detection problem
by the false alarm probability P1,0, corresponding to
the probability of declaring the presence of a source
when none exists, and the missed detection probabil-
ity P0,1, corresponding to the probability of declaring
the presence of only the background radiation when a
source is present in the monitoring area. In addition, we

1Sensor measurements accumulated over different time windows are
typically “normalized” and expressed as CPM.

(a) Measurements from RFTrax radiation sensors.
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Fig. 1. Background radiation counts show high variance.

characterize the timeliness of the solution method by
the detection time which is the size of the time window
or the number of measurements needed to declare the
presence or absence of a radiation source.

IV. SOURCE PARAMETER ESTIMATION

In this section, we first present a method to estimate
(x̂u, ŷu) using an extension of the geometric triangula-
tion method in [21]. We then describe a linear fuser to
estimate the source strength Au.

A. Location Estimation

Let mi,1, mi,2, . . . , mi,ni denote a sequence of ni

measurements collected by the sensor Mi within a
given time window. Using the measurements, we
compute the mean of measurements at each sensor
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Fig. 2. Region monitored by three sensors forming an acute triangle.
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given by m̄i = 1
ni

∑ni

j=1 mi,j for i = 1, 2, 3. The
mean is an unbiased estimate of Au/r2

i for ri =√
(xu − xi)2 + (yu − yi)2. In terms of expectations, we

have 1
2 ln (E[m̄i]/E[m̄k]) = ln ri − ln rk , which is the

difference of distances to the sensors Mi and Mk from
the source in ln-space. Let δi,k = 1

2 ln (m̄i/m̄k), such
that δi,k = ln ri − ln rk is valid on the average. Let Li,k

denote the set of all points (xu, yu) on a plane such that
ln ri − ln rk = δi,k for sensors Mi and Mk with fixed
locations. Our localization method is based on binary
search on L1,2 which uses δ1,3 as an objective function
to locate a point (x̂u, ŷu), such that |xu − x̂u| ≤ ε and
|yu − ŷu| ≤ ε. The implementation details of the search
algorithm can be found in [?].
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Fig. 4. Percentage increase in radiation level over background level
due to sources with Au = 2× 105, 5× 105, 6× 105, 7× 105, 10×
105 CPM.

We now establish the correctness of the binary search
method by establishing that on L1,2 the function δ1,3

varies monotonically so that the binary search can be
supported2. We show the monotonicity in ln-space for
the scenario of Figure 2, and the general case can be
proved along the lines of [?]. Without loss of generality,
we assume following generic configuration:
(a) M1 = (0, 0), M2 = (x2, 0) and M3 = (x3, y3)

such that x2 > 0, x3 > 0 and y3 > 0. Also, x3 <
x2.

(b) The source S is located at (xu, yu) such that xu > 0
and yu > 0, and S is closer to M1 than to M2 and
M3; otherwise we can rotate the triangle and re-
label the sensors by their coordinates.

We have d(S, Mi) = ri =
√

(xu − xi)2 + (yu − yi)2,
and let ∆(Mi, Mj) = ln[d(S, Mi)] − ln[d(S, Mj)], for
i, j = 1, 2, 3. Then, we have

∂d(S, Mi)
∂xu

=
(xu − xi)
d(S, Mi)

and
∂d(S, Mi)

∂yu
=

(yu − yi)
d(S, Mi)

.

By Item (b) we have d(S, M1) < d(S, M2) and
d(S, M1) < d(S, M3).

The directional derivative of ∆(M1, M3) on the lo-
cus {(xu, yu)|∆(M1, M2) = δ12}, for any δ12, is given
by

∇∆(M1,M2)∆(M1, M3)

=

[
∂∆(M1,M2)

∂xu
∂∆(M1,M2)

∂yu

]T

◦ 1
K

[
∂∆(M1,M3)

∂xu
∂∆(M1,M3)

∂yu

]

=

[
xu

[d(S,M1)]2
− xu−x3

[d(S,M3)]2
yu

[d(S,M1)]2
− yu−y3

[d(S,M3)]2

]T

◦ 1
K

[
xu

[d(S,M1)]2
− xu−x2

[d(S,M2)]2
yu

[d(S,M1)]2
− yu

[d(S,M2)]2

]

=
(

xu

[d(S,M1)]2
− xu−x3

[d(S,M3)]2

)(
xu

[d(S,M1)]2
− xu−x2

[d(S,M2)]2

)
+

(
yu

[d(S,M1)]2
− yu

[d(S,M2)]2

)(
yu

[d(S,M1)]2
− yu−y3

[d(S,M3)]2

)

where K =
[(

∂∆(M1,M3)
∂xu

)2

+
(

∂∆(M1,M3)
∂yu

)2
]−1/2

.

Note that x2 > 0, x3 > 0 and y3 > 0. Also
d(S, M3) > d(S, M1) and d(S, M2) > d(S, M1). Then,
we conclude that ∇∆(M1,M2)∆(M1, M3) > 0, for all
xu > 0 and yu > 0.

We now present simulation results to illustrate the per-
formance of the above method. The simulation programs
are implemented in C using random number generators

2The monotonicity proof of [?] is valid for δi,k = ri − rk in the
distance space as opposed to the ln-space here.
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Fig. 5. Examples of actual source locations (red color filled circles)
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from Numerical Recipes [20] and executed on a Redhat
Linux workstation with a 2.8 GHz Intel processor. Using
1000 randomly generated source locations with strength3

Au = 106 CPM and B = 10 CPM, the errors in the lo-
cation estimation as a percentage of the distance between
the sensors are shown in Figure 3. The average error is
20.07% for 1000 randomly located sources but the errors
have a high variance due to the Poisson measurements;
the x-coordinate of the top sensor (M3) is randomly
chosen from [1, 1000]m while the y-coordinate is fixed
at 1000m. Some example source locations and their
estimators are shown in Figure 5, wherein a line segment
joins the actual location of the source (shown as red
color filled circles) with its estimator (shown as non-
filled circles).

We executed this location estimation algorithm when
there is no source (i.e., there are background measure-
ments only) with B = 10 and 100 CPM at the sensors.
As shown in Figure 6, the ghost sources have been
identified approximately near the centroid of the triangle
formed by the sensors when measurements are repeated.
In the next section, we outline a method that utilizes the
estimated source parameters in SPRT to rule out such
ghost sources at a specified rate.

B. Source Strength Estimation

Using the source location estimate (x̂u, ŷu), we have
three source strength estimates Au given by Âi = m̄ir̂

2
i ,

for i = 1, 2, 3, where r̂i =
√

(xi − x̂u)2 + (yi − ŷu)2.
We combine these three estimators using coefficients that
are inversely proportional to their variance estimates.
Since for the Poisson process, both the mean and vari-
ance are given by its parameter m̄i, more weight is given
to estimates with a lower variance. Thus, we have the

3The source strengths in the range [105, 106] CPM are still low-
level, despite their apparently large absolute magnitude, since they
generate only small increases (less than 20%) in the measurements
over a 1000m × 1000m monitoring area as shown in Figure 4, due
to the quadratic decay of the intensity with respect to distance.
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following fused source strength estimator

Âu =
3∑

i=1

âiÂi

where âi = 1/m̄iP3
k=1 1/m̄k

. The signal strength estimates

for 1000 simulated sources with Au = 5 × 105 CPM
and B = 10 CPM are shown in Figure 7, which show
significant variations. The average values of the fused
source term estimator for source strength in the range
[5 × 105, 106] CPM are shown in Figure 8.

V. SOURCE DETECTION

In this section, we describe an SPRT for detecting the
presence of a source of estimated rate Âu against the
estimated background rate of B̂i at sensor Mi.
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A. SPRT Test

Consider the measurements mi,1, mi,2, . . . , mi,ni col-
lected by sensor Mi within a given time window and
the estimate of background radiation B̂i at this sensor
location. By the definition of the Poisson process, we
have

P (mi,j) =
Cmi,j e−C

mi,j !

with parameter C. We utilize the estimate C = Âu/r̂2
i +

B̂i if the source is present; and C = B̂i if the source is
not present. Let HC , for C ∈ {Âu/r̂2

i + B̂i, B̂i}, denote
the hypothesis that the measurements correspond to the
intensity level C at the sensor Mi. Now consider the
likelihood function

l(mi,1, mi,2, . . . , mi,ni |HC) =
ni∏

j=1

Cmi,j e−C

mi,j !

wherein we utilize the statistical independence property
of the measurements. We now consider the following
SPRT based on sensor measurements at Mi.

LÂu/r̂2
i ,B̂i;ni

=
l(mi,1, mi,2, . . . , mi,ni |HÂu/r̂2

i +B̂i
)

l(mi,1, mi,2, . . . , mi,ni |HB̂i
)

Then, we utilize SPRT [13] as follows:

(i) If LÂu/r̂2
i ,B̂i;ni

<
P0,1

1−P1,0
, then declare the back-

ground, namely HB̂i
;

(ii) Else if LÂu/r̂2
i ,B̂i;ni

>
1−P0,1

P1,0
, then declare that

a source with intensity Âu is present at location
(x̂u, ŷu), namely HÂu/r̂2

i +B̂i
;

(iii) Otherwise, declare that the measurements are not
sufficient to make a decision and continue collect-
ing additional measurements.

The following are the important properties of the SPRT
[13]:

(a) The expected false alarm and miss detection rates
of SPRT are given by P1,0 and P0,1, respectively.

(b) Among all tests to decide between HÂu/r̂2
i +Bi

and
HB̂i

with the given P1,0 and P0,1, SPRT minimizes

E
[
ni|HB̂i

]
and E

[
ni|HÂu/r̂2

i +B̂i

]
(see Theorem

2.4, [26], for example).

This test can be compactly expressed as

P0,1

1 − P1,0
≤ LÂu/r̂2

i ,B̂i;ni
≤ 1 − P0,1

P1,0

which can also be expressed in terms of the mean of
measurements:

ln
h

P0,1
1−P1,0

i
+niÂu/r̂2

i

ln

»
Âu/r̂2

i
+B̂i

B̂i

– ≤
ni∑

j=1

mi,j ≤ ln
h 1−P0,1

P1,0

i
+niÂu/r̂2

i

ln

»
Âu/r̂2

i
+B̂i

B̂i

–

(1)
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Fig. 9. Number of samples for SPRT to make a conclusion at sensor
Mi for Au/r2

i = 1 CPM, Bi = 10 CPM,P0,1 = 0.01, P1,0 = 0.01.

Notice that the bounds on the measurement sum
n∑

j=1

mi,j

increase linearly with the number of measurements.
The above SPRT is derived under the assumption

that the measurements corresponding to both background
and source radiation satisfy the the Poisson distribution.
While point radiation sources follow such a distribution,
it may not be the case for background radiation of a
more complex nature, primarily because the background
radiation could be a combination of multiple sources.
In such a case, the false alarm rate of our SPRT
method can be different, and can be approximated by the
area under the background rate distribution PB(x) for

x ≤ ln 1−P0,1
P1,0

+ n
Âu/r̂2

i

ln((Âu/r̂2
i +B̂i)/B̂i) . This distribution

can be estimated by utilizing the empirical distribution
of the background radiation at the sensor location as
described in Section VIIC.

B. Sample Size Estimates

Dividing both sides of Equation (1) by ni yields

m̄i =

∑n
j=1 mi,j

ni
>

ln
(

1−P0,1
P1,0

)
+ ni · Âu/r̂2

i

ni ln Âu/r̂2
i +B̂i

B̂i

Solving the above equation for the critical value of ni

such that the above inequality holds, we have

ni =
ln

(
1−P0,1

P1,0

)
m̄i ln Âu/r̂2

i +B̂i

B̂i
− Âu/r̂2

i

(1)

The number of measurements required for SPRT to con-
clude HÂu/r̂2

i +B̂i
is given by Equation 1 if ni evaluates

to a positive value. A non-positive value of ni denotes
that SPRT will never conclude HÂu/r̂2

i +B̂i
. Similarly, the

number of measurements required for SPRT to conclude
HB̂i

is given by

ni =
ln

(
P0,1

1−P1,0

)
m̄i ln Âu/r̂2

i +B̂i

B̂i
− Âu/r̂2

i
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Because B̂i and Âu/r̂2
i are estimated, errors in the

estimation may cause an undesirably long detection time.
Furthermore, variance of m̄i is relatively large because
it is averaged over a small number of samples. We
quantify the number of measurements required in the
presence of non-perfect estimation and measurements.
Figure 9 shows the number of measurements required
for SPRT to conclude either HÂu/r̂2

i +B̂i
or HB̂i

for a
source measurement that is only 10% higher than the
background, and false alarm and miss detection rates
both equal to 1%. The figure shows that even with a
low dose radiation source, SPRT can make a conclusion
using 97 samples on average, in the worst case. This cor-
responds to 6 minutes of measurements using an RFTrax
radiation sensor with a 4 second sampling interval.

VI. IDENTIFICATION METHOD

We now combine the source parameter estimation and
SPRT methods in the previous sections to develop a
method for source identification. Initially, the system is
put into training mode where the background radiation
measurements are collected by each sensor and averaged
to estimate the local background radiation level B̂i.
Then, the network is put into monitoring mode, and
the identification of the source is achieved using the
following procedure:

(i) Using the readings from three sensors, we estimate
the source location (x̂u, ŷu) and compute the source
intensity estimate Âu.

(ii) We utilize SPRT LÂu/r̂2
i ,B̂i;ni

to conclude
HÂu/r̂2

i +B̂i
versus HB̂i

at sensor Mi. We declare
HÂu/r̂2

i +B̂i
or HB̂i

if and only if the respective
threshold conditions are satisfied at two or three
of the sensors Mi, i = 1, 2, 3. Otherwise, more
measurements will be collected.

Initially, the default hypothesis is HB̂i
, and the hypoth-

esis will be changed only if HÂu/r̂2
i +B̂i

is declared by
a majority of sensors.

The above procedure has the minimum false alarm
rate of the two or three sensors that declare HÂu/r̂2

i +B̂i

to assert the presence of a source. The method was tested
using 1000 randomly generated sources with Au =
105, 5×105, 6×105, 75, 10×105 CPM. The average in-
crease in the radiation level over the background at these
source strengths is below 10% for most of the cases, as
shown in Figure 4. However, over a short time period,
variations due to the background could reach 100%. The
detection rates for various source strengths are shown in
Figure 10(a) for P0,1 = P1,0 = 0.1, which is 100% for
Au = 106 CPM or higher. Note that the detection rate is
higher than 95% for Au = 4× 105 CPM or higher even
though the average increase in the radiation level at the
sensor locations is within the range of [5, 10] percent.
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Fig. 10. Performance of the proposed identification method.

The detection times are shown in Figure 10(b), which
show a decreasing trend with increasing Au. Such trend
is expected since it is easier in general to detect sources
of higher strengths. The average detection time is less
than 300 samples (or measurements) for Au = 4 × 105

CPM or higher, even though the average increase in
the radiation level at the sensor locations is within
[5, 10] percent. However, the actual detection times show
significant variations as shown in Figure 11(a), for the
case of Au = 106 CPM.

When no source is present, the ghost source will be
likely located at the centroid of the triangle formed by
the sensors. In this case, however, the corresponding
high threshold for HÂu/r̂2

i +Bi
in Step (ii) will not be

met and hence, the false alarm will be cleared. In our
simulations with 10000 measurements with B = 10, 100
CPM, the proposed method did not generate a single
false alarm. However, the average detection time is 1309
and 159 samples for B = 10 and B = 100 CPM,
respectively. Nonetheless, the actual detection times have
a high variation as shown in Figure 11(b).

It is instructive to compare our method with existing
approaches:

(a) Compared with the existing detection methods, our
method has a more focused goal of detecting the
point source rather than a general increase in mea-
surement numbers. The SPRT in Step (ii) guaran-
tees that it is uniformly the most powerful test at a
given false alarm rate, in terms of maximizing the
detection rate and minimizing the detection time.
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Fig. 12. Equipment setup in the radiation test-bed.
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(a) Radiation source with rate Au = 106 CPM and
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Fig. 11. Detection times for the source and background radiation.

(b) Compared with the existing estimation methods, the
ghost source phenomenon is strictly controlled by
the false alarm probability in our method. Further-
more, the in-situ estimation of background radiation
levels makes it sensitive to variations in the back-
ground radiation across the deployment area.

(c) Compared with existing methods that utilize a de-
tection method followed by estimation, the pro-
posed method achieves a lower false alarm rate
since the SPRT in Step (ii) does not have to
account for all the possible source levels, but just
the estimated one.

VII. EXPERIMENTAL TEST-BED RESULTS

A. Test-bed System Setup

We have set up three radiation detection test-beds at
(1) the SensorNet Laboratory at Oak Ridge National

Fig. 13. The SensorNet node hardware.

Laboratory (ORNL), (2) Purdue University, and (3)
University of Illinois at Urbana-Champaign. All three
testbeds have similar configurations. Figure 12 shows
the equipment layout of the test-bed for the experiments
and Figure 20 shows the test-bed setup at ORNL. The
test-bed at ORNL emulates the outdoor environment
of courtyard shown in Figure 21. The components of
the test-bed include a collection of Rad-CZT radiation
sensors (currently 3 sensors) from RFTrax Inc. [1], a
SensorNet node, and a wireless router.

For the experiments, the SensorNet node software
is configured to poll each sensor every 4 seconds and
store the sensor readings in a MySQL database. Due to
limited storage on the SensorNet node, the database is
configured to store only the 10,000 most recent samples
of data. In addition to storing the sensor readings, we
have augmented the SensorNet node software to send
the sensor data to a workstation in real time for on-line
analysis.

B. The SensorNet Node

The SensorNet node (see Figure 13) is a rugged
hardware platform developed at ORNL with the goal of
allowing a wide variety of sensors to be monitored and
managed over a nation-wide distributed network. The
wireless router allows the SensorNet nodes to communi-
cate with each other as well as with an Ethernet switch
connecting the sensors. The radiation sensors (RS485
devices) connect to the SensorNet node via iServer [2].
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Fig. 14. Background radiation distribution in ORNL SensorNet
Laboratory.

The iServer proxies the RS485/232 interface (for the
radiation sensors in this case) to an Ethernet interface,
thus providing access to the sensors via TCP/IP. In some
configurations, the SensorNet node may be furnished
with a broadband modem for connectivity over a cellular
network. This may serve as a backup link if the primary
connection over Ethernet/802.11 fails.

The Sensornet node runs the standard Linux operat-
ing system (Fedora Core) and a software package (the
node software) developed by ORNL. The node software
consists of a set of daemons that, under steady-state
conditions, will perform the following operations:

• Query the sensors connected to the SensorNet node
for data, and populate the MySQL database with
the data. In addition, the node software analyzes the
data to determine if an alert event should be issued.
It utilizes IEEE 1451 as a means to communicate
with a wide variety of sensors/actuators. IEEE 1451
wrappers are implemented for legacy devices that
do not support the standard. For modern sensors
that talk IEEE 1451, plug-and-play operation can
be supported.

• Listen to the control center for configuration
commands–for instance, setting the sensor polling
rate and alert rules.

• Update the current location information for mobile
SensorNet nodes and sensors.

• Archive the sensor data to a control center when
requested; e.g., for offline data analysis.

For communication with the control center, each
SensorNet node has multiple network connections. The
node software uses at least two independent means to
communicate with the control center, of which one is
assigned as the primary connection. If the primary con-
nection fails, the data are automatically rerouted through
the secondary connection. The connectivity management
module (CMM) monitors the health of all the network
links available. The CMM periodically checks the con-
nectivity to the control center, and reconfigures the
network interface if the control center is unreachable.

Day 1
Sensor Mean Stdev #Samples
RFTrax1 7.80 7.12 9900
RFTrax2 7.46 7.01 9900
RFTrax3 8.08 7.46 9900

Day 2
Sensor Mean Stdev #Samples
RFTrax1 7.62 7.13 9900
RFTrax2 7.54 7.07 9900
RFTrax3 8.00 7.30 9900

TABLE I
STATISTIC OF BACKGROUND RADIATION IN SENSORNET LAB.

C. Background Radiation Profile

The three radiation sensors at ORNL test-bed were
activated to collect radiation readings on two different
days. A total of 9,900 samples were collected at a rate
of one sample every 4 seconds, for about 11 hours.
Figure 14 reports the distribution of the background
radiation. The statistics of the data collected are reported
in Table I.

We performed the z-test for comparing the means of
two independent samples to compare the radiation counts
of the three sensors on the test-bed. The test results show
that the probability of two sensors producing the same
mean value is 0.63% at the maximum. In other words,
the mean values are different with a 99.37% level of
significance, even though the sensors are located within 2
feet of each other at the maximum. This experiment con-
cludes that each sensor requires a separate background
radiation profile.

D. Localization Method

A Cs-137 radiation source of strength 0.95 µ-Curies
was used on a table top with RFTrax RAD-CZT sensors
to collect measurements to estimate the locations of
the source using the difference triangulation method
described in Section IV-A. In each case, the number
of measurements were within the range of [140, 170]
samples. In Figure 15(a), we show example cases with
different source locations and their estimates, and in
Figure 15(b) we show repeated measurements with the
same source and sensor locations. The performance
of the localization method is summarized in Table II,
wherein the top six rows correspond to different sensor
and/or source locations and the other rows correspond to
repeated measurements for the same sensor and source
locations. The errors in the location estimates are plotted
in Figure 16 with an average error of 4.87 inches.
When no source is present, the localization method
returns ghost sources, as shown in the two examples in
Figure 17(a).
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TABLE II
EXPERIMENTS WITH REAL RADIATION SOURCE (0.95 µ CURIES)

Radiation Radiation Estimated Estimated
Sensor M1 Sensor M2 Sensor M3 Source Source Source Source Error

(inches) (inches) (inches) (X-Coord) (Y-Coord) (X-Coord) (Y-Coord) (inches)
(0.000, 0.000) (30.602, 0.000) (13.675, 19.949) 13.406 4.386 17.115 2.381 4.217
(0.000, 0.000) (30.602, 0.000) (13.594, 18.953) 13.406 4.386 15.136 1.739 3.163
(0.000, 0.000) (22.247, 3.171) (0.580, 24.782) 9.635 16.086 8.544 10.046 6.138
(0.000, 0.000) (21.417, 3.053) (-0.777, 24.123) 8.651 14.781 10.082 11.542 3.541
(0.000, 0.000) (20.600, 2.937) (-2.147, 23.407) 7.679 13.477 9.818 10.890 3.357
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 10.743 14.296 3.133
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 14.519 10.626 7.952
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 14.225 12.680 6.103
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 11.588 11.532 6.000
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 13.602 14.254 4.518
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 13.223 13.972 4.468
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 12.517 13.061 4.849
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 10.743 14.296 3.133
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 13.007 12.783 5.325
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 14.143 14.415 4.819
(0.000, 0.000) (30.833, 4.395) (-2.780, 26.101) 10.365 17.406 11.626 11.798 5.748
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Fig. 15. Localization results of a Cs-137 radiation source.
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Fig. 16. Plot of location estimation errors corresponding to Table II.
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Fig. 17. Ghost sources computed and rejected.
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source present varies at each sensor across the measurement sets.

E. Identification Method

The identification method rejected the ghost sources
computed based on the background readings shown in
Figure 17 in both cases, but the decision time is a
function of the false alarm rate P1,0. When P1,0 = 0.001,
the detection time was 339 samples but was reduced to
28 samples when the false alarm rate is increased from
2% to 40%, as shown in Figure 17(b).

The source detection rate varied based on τ , the
number of initial measurements used before the SPRT
was applied in the experiments. The radiation levels
averaged over 10 minute intervals varied across the
measurement sets both when a source is present and
absent as indicated in Figure 19. For the case in Table
II with P0,1 = 0.1, for τ ≤ 10, the empirical false alarm
rate was 0.3, and was improved to 0.1 when τ = 25, and
reached 0.0 when τ = 75. We next examine in detail
the configuration that missed the detection for τ = 25,
corresponding to Row 5 in Table II, by varying P0,1 in
four repeated sets of measurements. The detection times
are shown in Figure 18, which have lower values as
we increase P0,1 = 0.001, 0.01, 0.1, 0.2, 0.3. Among the
four sets of measurements, one set missed the detection
of the source for P1,0 = 0.1, 0.2, 0.3.

F. Emulation of Larger Deployments and Stronger
Sources

Our test-bed is implemented on a 100 × 100 square-
inch workbench shown in Figure 20 using a radiation

Fig. 20. Radiation detection workbench at ORNL.

point source of 0.95 µ-Curie. Larger monitoring areas
such as the courtyard at ORNL shown in Figure 21
and stronger sources can be emulated using the test-
bed as follows. Let remulated and rtestbed be the em-
ulated distance and actual distance on the emulated
monitoring area and workbench, respectively, such that
remulated = sf × rtestbed. Sensor measurements of a
radiation source of strength Atestbed/r2

testbed in the test-
bed correspond to the measurements of a source of
strength Aemulated = s2

fAtestbed in the emulated area.
For example, remulated is in meters for the courtyard
shown in Figure 21 and rtestbed is in inches for the
workbench. Then we have sf = 100 cm/2.54 inch =
39.37, and thus, we can emulate a source with rate
Aemulated = 1549.99 × Atestbed in the courtyard. The
emulated source can have a strength of 1472µ-Curies,
which is much higher than the safe level. Thus, much
stronger sources can be emulated, for the purpose of
sensor measurements, in our test-bed using only much
lower intensity sources, because the distances between
the source and a sensor are also scaled. Hence, we are
able to retain the complexity of the identification prob-
lem in the test-bed without using actual high intensity
sources in the experiments. In particular, this emulation
method can be used to map public open areas where
radiation sources cannot be easily deployed. However,
radiation sensors can be deployed in such areas to obtain
background radiation measurements, which can then be
used as measurements in the test-bed. This approach is
somewhat limited when the background measurements
are not the same in the emulated and workbench areas,
but it would be more accurate than a simulation-only
approach.

VIII. CONCLUSIONS

We have addressed the identification problem of a
low-level point radiation source amidst background radi-
ation. Our solution is achieved by a network of radiation
sensors working in a tightly coupled two-step proce-
dure. Based on measurements from the three sensors,
the geometric difference triangulation method is used
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Fig. 21. Emulated courtyard at ORNL.

to estimate the location and strength of the source.
Then, a sequential probability ratio test based on current
measurements and estimated parameters is employed to
finally decide: (1) the presence of a source with the
estimated parameters, or (2) the absence of the source,
or (3) the insufficiency of measurements to make a
decision. This method achieves the specified levels of
the false alarm and missed detection probabilities, while
ensuring a close-to-minimum number of measurements
for reaching a decision. The proposed method mitigates
the ghost-source problem of current estimation methods
within a specified false alarm rate. It also achieves a
lower false alarm rate compared with current detection
methods by utilizing the estimated source parameters.
We have tested and demonstrated our method using
a test-bed that utilizes the scaling properties of point
radiation sources to emulate high intensity sources that
cannot be easily handled in practice due to safety and
cost constraints.

There are several potential directions for future re-
search. First, the localization method can be extended
to 3D and to networks with more than three sensors
to achieve increased robustness against environment and
measurement uncertainties. Second, a more extensive
experimental validation would be useful by using sources
of multiple strengths. Third, the estimation of the source
strength can be improved by using a training step
wherein the fuser can be calibrated, for example, by
determining both an offset and scale factors of the linear
fuser.
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