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Abstract

Identification of low order equivalent system dynamic models from flight test data was

studied. Inputs were pilot control deflections, and outputs were aircraft responses, so the models

characterized the total aircraft response including bare airframe and flight control system.

Theoretical investigations were conducted and related to results found in the literature. Low

order equivalent system modeling techniques using output error and equation error parameter

estimation in the frequency domain were developed and validated on simulation data. It was

found that some common difficulties encountered in identifying closed loop low order equivalent

system models from flight test data could be overcome using the developed techniques.

Implications for data requirements and experiment design were discussed. The developed

methods were demonstrated using realistic simulation cases, then applied to closed loop flight

test data from the NASA F-18 High Alpha Research Vehicle.
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body axis vertical acceleration, g

mean aerodynamic chord, ft
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parameter covariance matrix

expected value

equation error, or base of natural logarithm

flying qualities

gravitational acceleration = 32.174 ft/sec 2

High Alpha Research Vehicle

imaginary number =
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gain for short period q'/qe transfer function

aerodynamic lift force, lbf

aerodynamic roll, pitch, and yaw moments, ft-lbf

Low Order Equivalent System

number of discrete frequencies

number of elements in parameter vector 0

number of data points in the time domain
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power spectral density
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equation error covariance matrix

output error covariance matrix
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I. Introduction

Many aircraft employ automatic flight control systems that include significant dynamics

attributable to the control law implementation, artificial feel systems, sensors, filters, and

actuators. The complexity of these control systems results from the desire for improved

performance and control over expanded flight envelopes, and from the ability to implement

lengthy calculations onboard the airplane in real time with small and fast flight control

computers.

Current flying qualities criteria and military specifications are based primarily on data from

unaugmented aircraft with classical dynamic responses. For linearized longitudinal dynamics,

the classical dynamic response is comprised of two damped oscillatory modes called the phugoid

(long period) mode and the short period mode. To apply the large body of information acquired

for unangmented airplanes to airplanes whose dynamics are no longer classical because of

additional dynamics from the control system, the concept of a _Low Order _Equivalent _System

(LOES) model was introduced 1 3. The LOES model has the same form as the model for an open

loop unangmented airplane with classical dynamic modes, except the inputs are pilot controls

with equivalent time delays, instead of control surface deflections. The equivalent time delay

was introduced to account for time delay resulting from the digital control system

implementation (e.g., sampling delay), and the phase lag at high frequency from control system

dynamics and various nonlinearities, such as control surface rate limiting.

The LOES model characterizes the linearized dynamic closed loop response of the airframe

and control system as it appears to the pilot. If the closed loop response of an augmented

airplane to pilot inputs can be accurately characterized using a LOES model, then specifications

for classical unangmented aircraft parameters found in the current Military Specification for

Flying Qualities of Piloted Airplanes 1 (hereafter called the Mil-Spec) can be applied directly to

the estimated parameters from a LOES model. The Mil-Spec quantifies the relationship between

parameter values in a low order dynamic model and pilot opinion as measured by flying qualities

levels 1, which are based on pilot Cooper-Harper ratings 4.

Many flight test research programs 5 14 have demonstrated that the LOES concept can be

used to correlate pilot flying qualities levels with augmented aircraft dynamic response that is in



realityhigh orderandnonlinear. LOESmodelsof theaircraftdynamicresponsearefit overthe

frequencybandcorrespondingto typical pilot inputs,0.1- 10rad/sec.Parametersfrom LOES

modelscanthenbeusedwith flying qualitiesspecificationsfor classicallow ordermodel

parametersin theMil-Specto quantify andanalyzeflying qualities. TheMil-Specalso

documentsthestrongeffectof timedelayonCooper-Harperratingsandincludesspecifications

relatingflying qualitieslevelsandtimedelay. Time delayis animportantparameter,andis

estimatedaspartof theclosedloopLOESmodel.

LOESmodelsidentifiedfrom flight testdataarealsousefulfor validatinglinearcontrollaw

designs,sincetheLOESmodelrepresentstheachievedlinearizedclosedloopdynamicsof the

aircraft. LOESmodelscanalsobeusedfor rudimentarysimulationin the limited flight envelope

wherethemodel is valid.

Thiswork focusedon identifying accuratelow orderequivalentsystemmodelsfor the

closedloop dynamicsof augmentedaircraft,basedonmeasuredflight testdata. Themethods

canbeappliedto identify LOESmodelsusingdatafrom typicalflying qualitiesevaluation

maneuverssuchastrackingor landingtasks,anddonot requirespecificsystemidentification

maneuverslike frequencysweeps.A quantitativemodelof theclosedloopaircraftresponsecan

beidentifiedusingdatafrom the samemaneuverthepilot usedto ratetheflying qualities. Such

informationisusefulfor flying qualitiesresearchandaircraftdevelopment.Thetechniques

describedin this workaddresspracticalLOESmodelingproblemssuchasidentifiability of

modelparameters,limited data,frequencyresolution,andvariablemodelfidelity requirements

overthepilot inputfrequencyrange.

Thenext sectionincludestheoryandrelatedinvestigations.Next, simulationexamples

wereusedto demonstrateproposedapproachesfor accurateLOESmodelingfrom measured

data. Finally, themodelingtechniqueswereappliedto datafrom flight testmaneuversof the

NASA F-18High Alpha Research Vehicle (HARV).
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II. Theory

MODEL FORMS

The model structure for LOES modeling is fixed a priori to correspond to classical linear

aircraft dynamic response with an input time delay. For the short period longitudinal dynamic

mode, the closed loop pitch rate response to longitudinal stick deflection is modeled in transfer

function form as I

-- = (1)

The equivalent input time delay re is included to account for additional phase lag from high

order control system dynamics, nonlinearities, and sampling delay. The current Mil-Spec 1

correlates pilot opinion (via flying qualities levels) with ranges of values for all model

parameters in Eq. (1) except K b . If a LOES model can be identified that approximates the

closed-loop dynamic response over the bandwidth of the pilot, then the resulting estimated

parameters can be used in conjunction with the Mil-Spec to quantify flying qualities.

The problem addressed in this work is accurate estimation of the model parameters in

Eq. (1) using measured input-output flight test data. The idea is to match the measured outputs

or output time derivatives with the corresponding quantities from the model by adjusting the

model parameters to minimize a measure of fit error, usually the sum of the squared deviations

between model quantity and measured quantity. Several methods exist for estimating model

parameters based on measured data, both in the time domain 15,16 and the frequency domain 17 19.

One problem with the model parameterization in Eq. (1) is that the role of the gain

(q'/_e with s =0) is not isolated to a single parameter, since the gain is Ko/O)2pT02. Movement

of KO, COs]) ,or To2 can account for changes in the gain when a parameter estimation algorithm

adjusts the free parameters to match measured data. In such cases, the parameters are said to be

3



correlated.Parameters To2 and COsp have other roles as well. Parameter To2 is the negative

inverse of the numerator root, and COsp is the natural frequency for the denominator quadratic

factor. These roles only become apparent at frequencies near or above 1/T02 or COs]). If most of

the measured data resides at low frequencies relative to 1/T02 and COsp, the parameters

K b , COsp, and To2 will be highly correlated, and the estimates of these parameters will be

indeterminate. The parameter estimation algorithm, given only low frequency data, cannot

determine which parameter to move to account for the gain, since movement of K b , COsp,or To2

could be used to achieve a given gain.

Some improvement in the parameter correlation situation can be achieved by

re-parameterizing the model in Eq. (1) as

"_ (blS +bo) e -rs
-- = (2)

or

(blS +bo) e -rs
-- = (3)

The gain involves fewer parameters in Eqs. (2) and (3), which mitigates parameter correlations at

low frequency. The relationship among the parameters in Eqs (1)-(3) can be determined by

straightforward comparison. For example, the parameters in Eqs. (1) and (2) are related by:

b 1 = K 0 bo = Ko/Z02

2
al = 2(spCOsp ao = COsp

"12"_ "12"e

(4)
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or

K O = b I TO2 = b 1/bO

(sp = a1/(2_o) O)sp =_o

(5)

Other model parameterizations are possible, such as

q_____: (blS +bo) e -rs
(6)

and

K (T°2s+l) e-rS
-- = (7)

Tie ( s 2 2(sp )
/Tf-+--x+l )\ (Osp (Osp

The LOES model can also be formulated as a state space model. Using the short period

approximation from classical airplane dynamics 2°, with the understanding that the stability and

control derivatives include the effects of bare airframe plus control system, the LOES model can

be written in state space form:

: +
-M_ 1 Cl M_ Mq L Mrb

(8)

Assuming Lq = 0 for low angles of attack, and assuming Lrb = 0, which is typical,

][][ ][:][ ]0 & -L a 1 0

= + r/_(t- _) (9)
- M b_ 1 Cl M a M q M rb

5



Since b_ = -La o_+ q, the M_ effects can be subsumed into Ma and Mq,

[q]: L][q]+ (10)

Applying the Laplace transform with zero initial conditions,

(11)

or

(12)

Solving for the _/_e and _/_e transfer functions,

Mr b e -st
._----=

rl_ s2+(L_-Mq)s-(MqL_+M_)
(13)

= Mrl _ (s + La) e -st

s2+(L_-Mq)s-(MqL_+M_)
(14)

Comparing Eqs. (14) and (2),

b I = Mrb

a I = La - Mq

(15)

6



or

Mr/e = b 1

_ bo- alb 1

M q bl

La =bo/b 1 _=_

mo_-
bo _bo -a 1b1.] -

ao

bl bl )

(16)

Each of the _'/_ model forms contains five unknown parameters, but the identifiability of

the model parameters will be different, as will be discussed further below.

Any of the q/_e models given above could also be expressed in the time domain. For

example, the time domain version of Eq. (2) is

_]( t ) + al gl( t ) + aoq( t ) = bl T]e( t - 12) + bo T]e( t - I2) (17)

Estimating the equivalent time delay parameter z'in the time domain is problematic because

flight test data is collected at regular sampling intervals At, so interpolation of the measured

input data is required to implement a value of z"which is not equal to an integer number of

sampling intervals. If values of z"are restricted to integer multiples of At, resolution of the z"

estimate is coarse and convergence problems can occur. These problems can be avoided by

analyzing the data in the frequency domain.

In the frequency domain, the time delay parameter is a continuous parameter like all the

others. Data analysis in the frequency domain requires Fourier transformation of the measured

data. The transformation can be carried out with high accuracy by applying straightforward

corrections to the discrete Fourier transform 21. With corrections, the accuracy of the conversion

from the time domain to the frequency domain is on the order of the computing machine

precision. The Fourier transform technique in Ref. [21] can use arbitrary and selectable

frequency range and resolution, independent of the time length of the data record. The transform

can therefore be limited to specific frequency bands, such as the frequency range of pilot inputs

or a frequency band around the expected crossover frequency. This brings about a natural

filtering of wide band noise from the data via the Fourier transformation alone, because of the

7



limited frequency band used for the transformation. At the same time, the number of data points

in the frequency domain can be kept small, which improves computational speed and efficiency

in the modeling process. With selectable frequency range and resolution, very fine data features

in the frequency domain can be included in the data analysis.

LOES models for closed loop lateral/directional dynamics can be formulated similarly,

although the order of these models is different in some cases. Most of this report will deal with

identifying the LOES model for closed loop short period longitudinal dynamics.

Lateral/directional LOES modeling is demonstrated in one of the flight test data examples.

PARAMETER ESTIMATION METHODS

The standard procedure for identifying LOES models from measured flight test data is to

use spectral estimates to identify a non-parametric frequency response in the form of a Bode plot,

followed by a least squares fit of a parametric model like Eq. (1) to the Bode plot data 19,22,23.

There are some problems with this approach, including the need to calculate accurate spectral

estimates from the data, the consequent requirement for long test times or repeated maneuvers,

problems associated with computing ratios of spectral estimates for generating the Bode plot, and

data windowing issues 19,22,23.

Output Error in the Frequency Domain

An alternate approach is to use the LOES model of Eq. (2) in either an output error or an

equation error formulation in the frequency domain, which avoids spectral estimation altogether.

Substituting s = jo) in Eq. (2) to go from the Laplace transform to the Fourier transform,

"_ = ( bl j (° -t- bo ) _]e e- J a)r

+ +ao)
(18)

For output error, the parameters are adjusted so that the sum of squared output errors over

the m frequencies used in the Fourier transformation,



JOE = -_ i_1!= - q i = != "Vi 2= ,_t._
(19)

is minimized. The quantity _i is computed from Eq. (18) using estimated parameter values

^ ^

bl, bo, ell, Cto, and _', along with measured _e i . This is a nonlinear estimation problem because

the equivalent time delay parameter appears in the exponent of e -jarc , and because model

parameters a 1 and a o appear in the denominator of the expression for _'. The output error

parameter estimation problem can be solved using a nonlinear estimation routine like the simplex

method, modified Newton-Raphson, or Levenberg-Marquardt 24.

For modified Newton-Raphson, steps toward the solution are given by

Ok+l= Ok +aO (20)

where k denotes the current step, 0 is the vector of model parameter estimates, and

i-l eA0= (21)

The quantities 3"_i/3 0 and "vi are computed based on Ok . The estimated parameter covariance

matrix is

<a)-_{(a-o)(a-o)_) m N ]" _ -1

L U =1 \ / \ /JJ

(22)

where 0 -2 is estimated by

9



Y/'/

_1.2 ] E "Vi 2 2- - JoE (23)

m- np i=1 m - np

and np is the number of model parameters.

For multiple outputs, the cost consists of a normalized sum of the individual output errors in

the frequency domain. If the measured output vector in the frequency domain at the ith

frequency is denoted by z'i and the corresponding model output vector in the frequency domain

is Yi, then the output error cost function is

_ ff/ ]_ ff/

(24)

where Svv is a weighting matrix estimated by

Svv =--i _ Vi V_

m i=1

(25)

For modified Newton-Raphson, steps toward the solution are given by

bk+l = bk + zXb (26)

where k denotes the current step and

[ }AO = Re S_ Re S_ vi (27)

10



Theestimatedparametercovariancematrix is

= Re

z

(28)

Equation Error in the Frequency Domain

For the equation error formulation, Eq. (2) with s = jo) is written as

-0)23 +a 1 jo)_" +a o _ = bl jgoYlee-JO)r +b ° -rlee-J_or (29)

or

-0)23 = b 1 jgOTI_ e - j°)r + boYl_e- J_°r - a 1 j(o_ - a o (30)

Parameters are adjusted so that the sum of squared equation errors over the m frequencies

used in the Fourier transformation,

JEE =2!= (O)2"qEi--O)2qi) =2i=1 =2!= _. 2
(31)

is minimized. The quantity o)]qi is computed from Eq. (30) using estimated parameter values

^ ^

b1 , bo , _t1, _to , and _', as well as measured values for q'i and _i " Eq. (31) shows that the

cost function includes frequency weighting on the differences (_'Ei -qi). It isequation error

possible to reformulate the equation error problem or re-parameterize the model so that the

frequency weighting is milder or non-existent. For example, Eq. (30) could be divided through

by jo) or -o) 2 , for non-zero (o. If the model form of Eq. (3) is used in the equation error

11



formulation,thefrequencyweightingdisappears.All of theseapproacheswereinvestigated

usingsimulationdata. It wasfoundthattheequationerrorformulationgivenin Eqs.(30)and

(31)wasthemostaccurateandrobustoverall,comparedto othermodelparameterizationsand

frequencyweightings. Thisjudgmentwasbasedontheparticularsimulationcasesstudied,and

maynot betrue in general.

Theequationerrorformulationresultsin anonlinearestimationproblem,becausethe

equivalenttimedelayparameterappearsin theexponentof e -jc°r . The equation error

parameter estimation problem can be solved using a nonlinear estimation routine like the simplex

method, modified Newton-Raphson, or Levenberg-Marquardt 24. If the time delay parameter r

is fixed, r = %, the problem becomes a linear parameter estimation problem involving complex

numbers. Denoting the measured pitch rate and longitudinal stick deflection Fourier transforms

by _" and qe (i.e., omitting the E subscript to simplify the notation),

where

Y = XO + e (32)

2N T

Y =[-(o2q'l -(O2q2 ... -o).,q.,] (33)

X

j(o1Tleze-JC°zr° Tie1e-j_°l"_° -J0)lql -ql

jco2 e2e  e2e -jc02 2

jo).,Tl_.e -ja'.,ro Tl% e -ja'.,ro -jo).,'_., -'_.,

(34)

0:[bl bo al ao] T (35)

12



e=[_'l _'2 ... _,,,]r (36)

The solution is 17

O=[Re{X r X}]-IRe{XTY} (37)

and the estimated parameter covariance matrix is

C(b) = E{(O-b)(O-b)T} = 0-2[Re{XT X}] -1
(38)

where 0 -2 is estimated from

V/'/

_2 1 Z_.2 2 1- - JEE - _

m- Up i=1 m- Up m- Up

(39)

and np is the number of elements in the parameter vector 0. The estimated vector of equation

errors i is computed using Eq. (32) and the estimated parameter values from Eq. (37).

Since the time delay is a small bounded positive number, 0 < z"< 0500 sec, the equation

error cost function in Eq. (31) can be minimized by first fixing z"= %, where % is an initial

guess for the time delay. With z" fixed at %, the linear parameter estimation problem outlined

above can be solved in a single step using Eq. (37). Then the z" parameter can be found by

minimizing the cost via a line search on z" in the range 0 < z"< 0500 sec, while holding the other

parameters fixed at the values found from the linear parameter estimation solution for fixed

z" = %. Linear parameter estimation with fixed z'is alternated with a line search on z" with the

other parameters fixed until all the parameters converge. This method can be classified as a

relaxation method, and was found to be very fast and accurate. All Single-Input, Single-Output

(SISO) LOES model parameters estimated using the equation error formulation were found using

this relaxation optimization method.

13



For airplaneproblems,typically thestatesarealsomeasuredoutputs.If astatespace

parameterizationisused,thenequationerrorin thefrequencydomaincanbe formulatedusing

thefirst timederivativesof the states.For multiplestateequations,denotingthemeasuredstate

vectorfor the ith frequency as z'i, and the equation error cost function is

(40)

where See is a weighting matrix estimated by

ff/

_ 1 y__, (41)
m - F/p i=1

In this case, higher frequencies are weighted more heavily in the parameter estimation cost

function due to the multiplication of each term by j(o i . Each equation in the state space model

contains a subset of the unknown parameters, and each parameter appears in only one equation.

An example of this can be seen in Eq. (11). The result is an increased ratio of information to

unknown parameters for each equation, which improves the parameter estimation.

If a transfer function parameterization were used with multiple outputs in the equation error

formulation, each equation would include a larger subset of the unknown parameters, because all

the denominator parameters appear in every equation. In addition, the equation error parameter

estimation would be coupled, because the same denominator parameters appear in every

equation.

14



PARAMETER CORRELATION ANALYSIS

Output Error

Output error parameter correlations can be diagnosed by examining the sensitivities, which

are partial derivatives of the model output with respect to the parameters. Eq. (21) shows that

the sensitivities direct the parameter update steps in Newton-Raphson optimization, and Eq. (22)

shows that the sensitivities are important in determining the estimated parameter covariance

matrix.

Considering Eq. (2) with s = j0) to examine frequency response, the sensitivities of output

_" to parameters bl,bo,al,a o, and rare:

0__ff__: j0) N -joltr/e e (42)

_bl (-0)2+j0)a1+ao)

3_ T?ee - j°)r
-- = (43)

Obo (-0)2 + j0)a1+ao)

O'q j0)(j0)b I +bo) Ylee-ja'r

_a 1
_0) -+-j0)a I +ao) 2

(44)

_a o

( j0)bl + bo ) -rl_e - j_or

--0) + j0)a I +ao) 2

(45)

15



jco(jCObl+bo)-r/e e (46)

a,- (_0,2+jo,,,l+ao)

Equations (42)-(46) show that the sensitivities depend on the parameter values, frequency,

and the spectral content of the input _e. The sensitivities are complex quantities, which can be

characterized by magnitude and phase as a function of frequency for given parameter values and

a given input. Note also that the sensitivities can be calculated analytically in the frequency

domain, because time differentiation has been converted to multiplication by jco. In the time

domain, the sensitivities would have to be calculated by solving a set of differential equations, or

by finite difference 15,16,25.

Small magnitude for a sensitivity indicates that the model output is only slightly affected by

changes in that parameter. This leads to an inaccurate parameter estimate, because the parameter

value can be changed by large amounts without significantly affecting the model fit to the data.

Eqs. (42)-(46) show that the frequency content of the input in relation to the system break

frequencies can have a strong effect on the sensitivities, and therefore also on estimated

parameter accuracies.

Apart from the sensitivity magnitude issue, it is also necessary that the phase angles of the

sensitivities differ from one another by a value that is not an integer multiple of 180 deg. If the

complex sensitivities are pictured as vectors in the complex plane, this simply means that the

vectors representing the complex sensitivities cannot be collinear. When two or more complex

sensitivities have phase angles that differ by a multiple of 180 deg, the output can be influenced

similarly by changes in any of the corresponding parameters, and the parameters are correlated.

As in the gain example given above, the modeling problem is indeterminate, because movement

of any of the correlated parameters could be used to produce a particular model output.

Mathematically, sensitivities that are nearly linearly dependent will cause problems with the

matrix inversion in Eqs. (21) and (22).

Figure 1 is a Bode plot indicating the frequency response for the sensitivities in

Eqs. (42)-(46), using an impulse input and the following nominal values for the model

parameters:
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bl = 1.0 bo = 1.0

a I = 2.0 a o = 4.0

r = 0.1

(47)

or

re= 0.1

(48)

The frequencies plotted in Figure 1 cover the frequency range for LOES modeling I 3, where

most pilot inputs occur:

0.1 rad / sec < (o < 10 rad / sec (49)

Parameter values in Eqs. (47) and (48) are representative values chosen for demonstration

purposes. The general discussion to follow applies regardless of the specific values taken by

these parameters, provided the statements referring to frequency ranges are understood to be

relative to the break frequencies defined by the particular parameter values used.

Figure 1 illustrates the two important qualities of sensitivities that relate directly to the

success of the parameter estimation - magnitude and correlation. All model sensitivities are

relatively large in the mid-range frequencies, and the equivalent time delay has high sensitivity at

high frequencies. Good estimates of the equivalent time delay can therefore be achieved with

sharp-edged inputs, which contain high frequency components from the sharp edges. In the

lower part of Figure 1, phase plots for the bo and a o sensitivities indicate correlation at low

frequencies, while the phase plots for b I ,a I , and r sensitivities show a separate correlation at low

frequencies. For high frequency inputs, parameters b I and a o are correlated. Parameters b o, a I ,

and r show a separate high frequency correlation. The high frequency correlation between

parameters bI and a o is moderated because of the steep roll-off in magnitude for the a o

sensitivity at high frequency.
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Thesituationis summarizedby thediagramin Figure2, which showsall strongsensitivity

correlations(absolutevaluegreaterthan0.9) from Eqs.(42)-(46)for low frequencies(solid

lines)andhigh frequencies(dashedlines). Thedatafor Figure2 wasgeneratednumericallyin

thetime domainusinglow andhighfrequencyinputsappliedto themodelof Eq. (17) (time

domainversionof Eq. (2)),with parametervaluesfrom Eq. (47). Table1givesthe sensitivity

correlationmatrix for the sensitivitiesusingalow frequency(0.1rad/sec)unit amplitude

sinusoidallongitudinalstickinput. Thetimehistorywas200secondslongwith A t = 0.025 sec.

The sensitivities were computed in the time domain using central finite differences, as a check on

the analytical expressions in Eqs. (42)-(46). Table 2 contains similar information for a high

frequency (10 rad/sec) unit amplitude sinusoidal input lasting 200 seconds with A t = 0.025 sec.

The data in Tables 1 and 2 corroborate the sensitivity analysis given above, and are consistent

with the sensitivity correlations shown in Figures 1 and 2.

When parameter sensitivities are correlated, any estimation routine will produce inaccurate

parameter estimates with high variances due to an indeterminacy in the dependence of the output

on the model parameters. Correlation between parameter sensitivities is directly related to

ill-conditioning in the numerical algorithms used to estimate model parameters from measured

data, leading to convergence problems and inaccurate, non-physical values for the estimated

parameters. Such phenomena have been reported in the literature 1,4,5, but without an explanation

from a system identification point of view. Later simulation examples will demonstrate these

effects.

The implication for experiment design is that a mix of high and low frequencies in the input

would break all the parameter correlations except the a 1 and rcorrelation, which is present at

both high and low frequencies. Including some mid-range frequencies would help to accurately

estimate the a 1 and rparameters. A predominantly low frequency input (such as a step input)

would be particularly bad for parameter estimation purposes, because Figure 1 shows parameters

b1 , a 1, and ras highly correlated, and parameters bl, al, ao, and ras insensitive for such an

input. Inputs with frequencies near the break frequencies (1 rad/sec for the numerator zero,

2 rad/sec for the denominator quadratic in this case), would produce sensitivities that have

relatively high magnitudes with phase characteristics that vary sufficiently to avoid high

parameter correlations. The problem with using inputs in this frequency range indiscriminately
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is thatthe systemresponseis largestin this frequencyrange,andthereforetheoutputcan

becomelargeenoughto invalidatetheassumedlinearmodelstructureof theLOESmodel. A

balancemustbestruckbetweengoodexcitationin thefrequencyrangeof thesystembreak

frequenciesandkeepingtheoutputresponsein therangewherethelinearmodel isvalid.

Optimalinput designtechniques2528canbeusedto do this,but goodresultscanalsobeachieved

heuristically15usingmulti-stepinputsor doublets.

Whenarelativelylargeamountof flight testtime is available(e.g.,3-4minutesateach

flight condition),frequencysweep inputs 19'22 can be used effectively to collect data for LOES

modeling. Experiments are conducted using individual maneuvers for each axis (roll, pitch, and

yaw) at each flight condition. The parameter estimation method generally used 19,22,23 to analyze

the data from this type of flight test maneuver involves estimating accurate spectral densities in

the frequency domain, which in turn requires that sufficient input power be applied over the

frequency range of interest. Relatively large amounts of total flight test time are required to

achieve extended time on all frequencies of interest, or to run the repeated maneuvers necessary

to achieve sufficient accuracy for the spectral estimates. Long maneuver times result from the

requirement that the maneuver include sufficient input power (i.e., 2-3 cycles in the time

domain) throughout the frequency range of interest. For lower frequencies, long periods are

involved, and there is added difficulty in keeping output responses inside the range for which the

LOES model is valid. Some economy in flight test time required to collect data for accurate

model parameter estimation can be achieved using targeted robust optimal inputs 28 with some

rough idea of the location of the break frequencies a priori. Such information is usually

available from wind tunnel aerodynamic data and nonlinear simulation including the control law

implementation.

From Eq. (14), state space output error sensitivities for _" are:

O_ _ - Mrl _M aT?_ e -st

OLc_ [s2 +(Lc_-Mq)S-(MqLc_+ Mc_)l 2

(50)
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OM a

i (51)

OMq

MTle (s + La)2 TIe e-st

[s 2 +(La- Mq)s-(MqLa+ Ma)] 2

(52)

O_ (s+L,_)Tl_e -st
i

s2+(L -Mq)s-(MqL +M )
(53)

a_ -sMve(s+L,_)Tl_e-Sr
-- = (54)

Figures 3 and 4 give parameter correlation information for the state space output error

formulation in the same format as before, using equivalent parameter values computed from

Eqs. (16) and (47), and the same impulse input. Figure 3 shows parameters La, Ma, Mq, and

Mrl _ as highly correlated at low frequency. Low frequency correlations with r are moderated

because of the low frequency roll-off in magnitude for the aT/0r sensitivity. This same effect

moderates most of the high frequency sensitivities that would be expected for many of the

parameters, based on phase angles. Figure 4 shows that most of the strong parameter

correlations occur at low frequency, in contrast to the transfer function parameterization, where

the strong parameter correlations were roughly evenly divided between high and low

frequencies. In this case, mid-range frequency inputs would produce sensitivities with relatively

high magnitudes and phase characteristics that vary sufficiently to avoid high correlations.

From the above discussion, it is clear that the frequency content of the input has a

significant effect on the sensitivities. It is also true that the model parameterization interacts with

the frequency content of the input and the model parameter values in a complicated way to

determine the magnitude and correlations of the parameter sensitivities.
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Equation Error

From Eq. (30), the parameter sensitivities for the equation error formulation are

0

gl[-_o_]--_o_ee_ (55)

0
= r/e e (56)

0

_al[-_]---_ (57)

0

_ao[-_]---_ (_

0

_ [-_ _]--(_1- _o)_ee _ (59)

If the time delay is fixed, equation error sensitivities in Eqs. (55)-(59) depend only on the

data and not on estimated parameter values, so the parameter estimation problem is linear with a

single step solution from Eq. (37), as discussed above. When the relaxation method is used to

estimate equation error parameters, the sensitivity vector for the time delay parameter from

Eq. (59) is appended to the matrix X of equation error sensitivities in Eq. (34) to compute the

parameter covariance matrix for all the parameters (cf. Eq. (38)), from which estimated

parameter standard errors are obtained.
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Comparisonof outputerror sensitivitiesin Eqs.(42)-(46)with thecorrespondingequation

error sensitivitiesin Eqs(55)-(59)revealsthatthe sensitivitiesdiffer onlyby afactorof

/(--0) 2 -t- alj0) + a 0), as long as the parameters used to compute the output error1 sensitivities

produce a model pitch rate that matches the measured pitch rate. It follows that when the

parameters used to compute output error sensitivities also produce an output error cost close to

the minimum, the convergence behavior of equation error and output error should be similar.

When the parameter values used to compute output error sensitivities are farther from the values

for minimum output error, the output error sensitivities are misleading, sometimes to the extent

that the output error parameter estimation does not converge or converges to non-physical

values. In some cases, the output error method fails to produce realistic values for the

parameters even when started at values considered close to the values for minimum output error,

e.g., equation error estimates. It appears that the interplay between the frequency content in the

measured input/output data and the sequence of parameter estimates inherent in nonlinear

parameter estimation (cf. Eqs. (20) and (21)) can produce sensitivities that never direct the

optimizer to a realistic solution. Some of these issues are demonstrated using simulation

examples described later.

LOES MODELING ISSUES

Neither output error nor equation error parameter estimation in the frequency domain

require integration, because all time derivatives become multiplications in frequency. Bias

parameters are avoided in both techniques by detrending the time domain data and selecting

2_/T as the lowest frequency for the Fourier transformation, where T is the time length of the

data record. There are no ratios of spectral estimates to compute, as required for a Bode plot.

The data has simply been transformed from the time domain to the frequency domain for

analysis. For most practical flight test data analysis, the number of data points in the frequency

domain is much less than in the time domain (m << N), so that data analysis in the frequency

domain involves many fewer data points. This advantage is gained by using the arbitrary

frequency, high accuracy Fourier transform 21. The result is more efficient calculation and faster

parameter estimation because only chosen frequencies in the frequency band of interest are used

for the Fourier transformation and data analysis. Also, in the frequency domain, the estimated
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parametercovariancesareautomaticallycorrectedfor thespectralcontentof theresiduals15,16,19.

Transformationto thefrequencydomainallowsmultiplemaneuversto beanalyzed

simultaneously,thusenhancingtheinformationcontentin thedatausedfor modeling. Themain

disadvantagefor parameterestimationin thefrequencydomainis that atimedomainsimulation

mustbecarriedoutusingtheidentifiedmodelto checkthemodelfit to measuredoutputsin the

timedomain.

An effectiveapproachfor LOESmodel identificationis to usetheequationerror solutionto

providestartingvaluesfor theoutputerrorproblem. This two stagetechniqueretainsthe

favorablestatisticalpropertiesof theoutputerrorparameterestimates18,andavoidsconvergence

problemsthatresultwhenthestartingvaluesof theparametersarefar from theminimum,which

meanstheoutputerror sensitivities(cf. Eqs.(42)-(46))canbemisleading.Usingtheequation

errorformulationwith fixed r means that no starting values are needed, except for r. A good

starting value for r is 0.1 sec in nearly all cases. Since the equation error estimate for r is

found using a line search with the other parameters fixed, each equation error parameter

estimation is a linear parameter estimation problem, which is solved in a single step. Figures 1

and 2 show that the equivalent time delay parameter r is one of the most troublesome in terms

of parameter correlations. Fixing the value of r in each step of the equation error parameter

estimation therefore makes each step toward the solution both fast and well-conditioned. In

many cases, a short iterative output error parameter estimation using the equation error parameter

estimates as starting values is a simple operation, because the parameter estimates from the

equation error solution are very close to the final parameter estimates using output error. Later

simulation examples explore this further.

Another option available to improve closed loop LOES modeling is to use more output

measurements. This improves the parameter estimation, because the ratio of information to

unknown parameters increases, assuming the experiment was designed well.

Aircraft longitudinal short period dynamics involve angle of attack o_, in addition to pitch

rate q, and this fact can be used advantageously in LOES model identification. From

Eqs. (13)-(15), the longitudinal LOES transfer function models are
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0¢ b 1 e -st
-- = (60)
_e $2 + al s + a 0

= (bls+b°) e-St (61)

_]e $2 + al s + a 0

The LOES model for incremental z body axis acceleration at the c.g. is

Vo s-
r/_ g r/_ _ _g tie g S 2 +als+a o

(62)

The LOES _" / _ transfer function model in Eq. (61) can be identified at the same time as either

the _ / qe model in Eq. (60) or the h"Z / _e model in Eq. (62).

Flying qualities specifications were historically developed for conventional airplanes,

where stick deflection commands angle of attack 29. It therefore makes sense to include the angle

of attack response in estimating LOES models for comparison with the flying qualities

specifications, which are based largely on flight testing of conventional airplanes. The angle of

attack measurement is normally from a vane which is subject to systematic errors, particularly at

high angles of attack. These systematic errors can be estimated using data compatibility

analysis 3°. The linear acceleration at the c.g. would be preferred when the angle of attack

measurement is suspect, for example, because of the position of the sensor in the flow field.

The transfer function models of Eqs. (60)-(62) each involve only a single output

measurement. In contrast, if a state space model structure like Eq. (11) is chosen, each equation

in the state space model involves more than one state. The state space model of Eq. (11)

therefore requires both pitch rate and angle of attack measurements for the equation error

formulation.

The equation error and output error formulations in the frequency domain differ in how the

sensitivities are computed, i.e., using measured quantities for equation error sensitivities and
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computed model outputs for output error sensitivities. In addition, the equation error method

minimizes the equation error, which involves matching state derivatives, rather than matching

outputs, as in the output error method. The method for computing the weighting matrix is the

same for both methods, except for the fact that the equation error applies to time derivatives of

the states rather than the outputs, as for the output error method (cf. Eqs (24)-(25) and (40)-(41)).

Another approach for ameliorating parameter correlation and insensitivity problems is to fix

one or more parameters at specific a priori values. Frequently the 1�To2 parameter in Eq. (1)

(equivalently, Lc_ in Eq. (14)) is set equal to the open loop Lc_ stability derivative, i.e.,

1�To 2 = (Lot)bare ah.frame 1,3,5 The reasoning behind this a priori choice of 1�To2 is that if the

effects of the higher order control system dynamics and nonlinearities are taken up in the

equivalent time delay, then classical linear flight dynamic analysis can be used to show that the

LOES zero location should be roughly the same as open loop Lc_, cf. Eqs. (1) and (14).

Figures 5 and 6 give parameter correlation information for the output error formulation and

the transfer function model of Eq. (1), in the same format as before, using equivalent parameter

values from Eq. (48), with the same impulse input. Figures 5 and 6 show that the 1�To2

parameter has the largest number of strong correlations, including both high and low frequency

correlations, and is correlated in some way with every other model parameter. Fixing the value

of 1�To2 therefore greatly improves parameter identifiability.

Unfortunately, no claim can be made concerning the satisfaction of Mil-Spec requirements

related to parameter 1�To2 when it is fixed a priori, rather than estimated from measured flight

test data. In addition, examination of Eq. (1) and Figure 6 reveals that if 1�To2 is fixed in the

numerator of Eq. (1) to an incorrect value, then any other parameter can be badly biased,

depending on the frequency content of the input. The following excerpt from the Mil-Spec 1

relates directly to this discussion, showing the effects of parameter correlation on parameter

estimates and how fixing the value of 1�To2 can change the modeling results significantly:
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"An exampleof thedifferenceswith 1/T02 fixed and free is seen in table XII (taken from

MDC Rpt. A6792 fits of the AFFDL-TR-70-74 data). It can be seen that substantial

differences in all the effective parameters exist between the 1/To2 -fixed and -free fits.

Hence the dilemma is not a trivial one. ''"

TABLE XII. Examples of variations in LOES parameters with 1�To2 fixed and free b

CONFIGU-

RATION

lifo2 O)sp

FIXED FREE

1.25 0.43

1.25 176.0

1.25 4.08

1.25 5.25

_sp

FIXED FREEFIXED FREE

3.14 2.54

0.78 1.55

2.56 3.80

3.47 4.61

"fie

FIXED FREE

1A 0.39 0.65 0 0.020

1G 0.74 1.07 0.185 0.043

2H 0.80 0.52 0.126 0.098

4D 0.58 0.23 0.169 0.111

Deterministic modeling error, such as high order control system dynamics and

nonlinearities, cannot be restricted to a single free parameter, e.g., the equivalent time delay.

Some of the deterministic modeling error will be taken up in the 1/ro2 parameter estimate (and

the other parameter estimates as well), which means that an adequate LOES model will need a

value for 1/To2 that is different from the open loop value of La. Movements in the free

parameters can and will account for deterministic modeling error to some extent when used in

the LOES modeling context. Assuming the input is sufficiently rich, when one or more of the

parameters is fixed to a value different from what would be chosen with all parameters free, then

the estimation algorithm adjusts the remaining parameters to compensate for the parameter(s)

whose freedom has been taken away. Naturally, the free parameters chosen for this task by the

Military Standard- Flying Qualities of Piloted Aircraft, MIL-STD-1797A, January 1990,

(Ref. [1]), p. 176.

b ibid, p. 176.
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optimizerarethosemostcorrelatedwith thefrozenparameter(s).Later simulationexamples

demonstratetheseeffects.

Whenamodelparameteris fixed, its standarderroris assumedto bezero(orvery small),

indicatinga secureknowledgeof theparametervaluebeforeanalyzinganydatafrom the

experiment.Forthecaseof fixing La, the difficulty arises because this parameter cannot be

assigned the distinct role of accounting for only the open loop linear effect when used in the

LOES modeling context, and therefore its a priori value is inconsistent with a very small

standard error. High order control system dynamics and nonlinearities must also be partially

accounted for by movement of the La parameter in conjunction with the other free parameters.

If it were possible to assign a distinct role to a particular parameter in the LOES model, and

an accurate a priori value could be determined, then fixing that parameter to the a priori value

would be valid and the conditioning for remainder of the LOES model parameter estimation

problem would be improved. Such an opportunity exists for the equivalent time delay parameter,

as described next.

Some flight test investigations aimed at correlating low order equivalent systems with pilot

ratings 8 lO implement the equivalent time delay as a pure delay between the stick and the control

surface deflection. It can be inferred from the preceding discussion that when all LOES model

parameters are free, the estimated equivalent time delay parameter is not an estimate of any real

pure time delay but rather some combination of the pure time delay plus other dynamical effects.

Therefore, the estimate of the equivalent time delay parameter from flight test data can be

different from the quantity that has been correlated with pilot opinion through flight test.

In order to remedy the situation, it is proposed that the role of the equivalent time delay

parameter be assigned to that used in correlations with pilot opinion through flight research. The

equivalent time delay is estimated as the pure time delay from stick deflection to control surface

deflection. Figure 7 is an expanded view of longitudinal stick deflection and the corresponding

measured stabilator response near the initiation of a maneuver flown on the NASA F-18 HARV.

The pure time delay from stick deflection to control surface can be estimated accurately using a

time domain procedure described in the Mil-Spec and illustrated in Figure 7. Point A is the point

of departure from the trim value for the longitudinal stick deflection. Point C is the effective

departure from trim for the stabilator, which is computed as the projection back to the stabilator
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trim value(normalizedto zeroin Figure7) from thepoint with maximumslopefor the initial

stabilatordeflection,point B, usingthelocalslopeatpoint B. Theestimatedpuretimedelayis

thedistancebetweenpointsA andC on thetime axis.

Pilot inputsandthecontrolsurfacedeflectionsaregenerallymeasuredwith very low noise

levels,asevidencedby Figure7, which is unfilteredmeasuredflight testdatafrom theF-18

HARV. Theinitial longitudinalstickdeflectionfrom asteadytrim conditionmustbeused,

becauseof subsequentfeedbackcontrol andaircraftdynamicresponse.Squarewaveinput

forms,suchasthoseusedin the optimalinputdesigntechniqueof Ref. [28], helpthe accuracyof

thetime delayestimationbecauseof theabruptinput amplitudechangefrom trim. Equivalent

timedelayestimatedin this waycorrespondsdirectlyto thetimedelaycorrelatedwith pilot

ratingsin the literature8lO,includingtheMil-Spec1.

In practice,sometimesmorethanonecontrol surfacerespondsto pilot inputs,dueto the

actionof thecontrolsystem.In thiscase,it is reasonableto computeanaverageof thepuretime

delayvaluesestimatedfor eachof thecontrol surfacesthatmovesignificantlyin responseto the

pilot input, andassignthis averagevalueastheequivalenttimedelay. If controlsurface

effectivenessvaluesareknown,it maybemoreaccurateto useapuretime delayaverage

weightedbytherelativeeffectivenessvaluesfor thecontrol surfacesthat movesignificantlyin

responseto thepilot input.

At anotherlevel of sophistication,equivalenttime delayestimatedfrom controltime

histories,asshownin Figure7, couldbe introducedasana priori value of the time delay

parameter for output error parameter estimation in the frequency domain. Reference [15]

outlines how this can be done for any model parameter. A reasonable uncertainty for the a priori

value of the time delay estimated in this way would be + At�2. This approach removes

parameter correlations by using an a priori estimate for the equivalent time delay that is

consistent with the time delay that has been correlated with pilot opinion in flight tests.

Finally, the preferred approach is to estimate all model parameters, including equivalent

time delay, from measured input/output data using the equation error or output error methods

described above. When parameter correlation difficulties occur, however, the technique outlined

here can be used to find an independent estimate of the equivalent time delay, which can then be

used to improve the conditioning of the complete parameter estimation problem.
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III. Simulation Examples

The first simulation example is a Single-Input, Single-Output (SISO) longitudinal case,

using a longitudinal stick input measured in flight on the F-18 HARV and shown in Figure 8.

This pilot input was chosen because of its wide-band frequency content centered near the natural

frequency of the simulation model; however, the input was not optimized in any way for this

work. Simulated data was generated by applying this longitudinal stick input to the model of

Eq. (2) using parameter values from column 2 of Table 3. Since this first example has no

modeling error, it is not a LOES modeling case. The example was included to demonstrate the

parameter estimation algorithms in the frequency domain and to study some parameter

correlation issues. Sample rate for the time domain data was 50 Hz. White Gaussian noise was

added to the simulated pitch rate output so that the signal-to-noise ratio was approximately 5 to

1. The simulated noisy pitch rate measurement is shown in Figure 9.

Parameters in the model of Eq. (2) were estimated from the simulation input and output

data using equation error and output error in the frequency domain, as described above. The

Fourier transform was done at frequencies evenly spaced at 0.1 rad/sec intervals for

0.1 tad / sec _<co _<10 tad /sec, giving 100 data points in the frequency domain for each signal.

The output error method used the equation error parameter estimates as starting values. The

equation error method did not require starting values, except for the equivalent time delay

parameter z', for which the starting value was 0.1 sec. The parameter estimation results given in

Table 3 indicate that the equation error method gave parameter estimates that matched the true

values within approximately +1 standard error, indicating that the input was sufficiently rich to

allow accurate estimation of the LOES model parameters. The output error method, starting

from the equation error parameter estimates and using the same data, improved the accuracy of

every parameter estimate and lowered every standard error. The standard errors from the output

error method were still representative of the true accuracy of the output error parameter

estimates. Similar results were seen when the simulation example was repeated for numerous

realizations of the Gaussian noise sequence added to the simulated pitch rate.

The state space model parameterization of Eq. (14) was also used for the output error

parameter estimation. The results obtained were similar both in terms of the proximity of the
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parameterestimatesto thetruevalues,andin thefact thattheparameterstandarderrorscorrectly

representedtheaccuracyof theparameterestimates.

A randomlow frequencyorhigh frequencyinputcanbegeneratedby passingaGaussian

whitenoisesequencethroughafilter. A low frequencyinput wasgeneratedin this wayusinga

5thorderButterworthlow passfilter with cut-off frequency0.3Hz. Theresultis shownin

Figure10. Theinputpowerspectrumin Figure 11indicatesthatthefiltering successfully

removedfrequencycomponentsabove0.3Hz. Simulatedpitch rateresponseusingthe same

modelasbeforewith 20%white Gaussianmeasurementnoiseaddedisplottedin Figure 12.

Table4 containsresultsfrom theparameterestimation.Thethirdcolumnof Table4

containsequationerrorparameterestimatesandstandarderrors. Column4 of Table4 shows

resultsfrom outputerrorparameterestimationusingtheequationerrorparameterestimatesfor

startingvalues. The samefrequenciesasin thepreviousexamplewereusedfor theFourier

transforms.Again,theoutputerrormethodimprovedtheresultsboth in termsof parameter

accuracyandsmallerstandarderrors. Althoughtheequationerrorestimateswerelessaccurate,

theassociatedstandarderrorsproperlyreflectedthis. Similarly, the standarderrorsfrom the

outputerrormethodcorrectlyquantifiedthetrueparameteraccuracy.Thefifth columnof Table

4 showstheresultsobtainedfrom outputerrorparameterestimationwhenthestartingvaluesof

theparameterswerenot asgoodastheequationerrorestimates,but still reasonableguesses.In

thiscase,theoutputerrorestimationconvergedto very inaccurateparametervalues. Standard

errorswerebadly inaccurateandthereforedid notreflect thetrueparameteraccuracy.This

behaviorwastheresultof thenumeroushigh parametercorrelationsfor low frequencyinputs

usingtheoutputerror formulationandmisleadingsensitivities,asdiscussedabove.

Othersimilarsimulationrunswerecarriedout,using low frequencyinputsfrom different

filterednoisesequencesanddifferentoutputmeasurementnoisesequences.Equationerror

alwaysproducedananswer.Theproximity of theequationerrorparameterestimatesto thetrue

parametervaluescorrelatedwell with thetimedomainmatchof measuredoutputto model

outputusingtheequationerrorparameterestimates.Whentheequationerrortime domain

matchwasnotgood,thesubsequentoutputerrorestimationusuallydid not convergewhen

startedfrom theequationerrorparameterestimates.This suggestedthatthetime domainfit
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usingequationerrorparameterscouldbeusedasanindicationof thesuitabilityof theequation

errorparameterestimatesasstartingvaluesfor theoutputerrorparameterestimation.

In thisexample,ausefulmetric for areasonabletimedomainmodelfit to thedatawas:

J = _(z- y)fCz- y) _ rmsCv)

X/7-f7 rmsCY)

< OA for a good fit (63)

Since the random noise component of z comprised 20% of rms(y), the cutoff value of 0.4

given for the time domain fit means the root mean square (rms) of the deterministic model

mismatch was roughly equivalent to that of the non-deterministic model mismatch. The above

metric worked well for this example, but cannot be recommended for general application without

further study.

As long as the equation error time domain match was reasonable (as defined above), the

subsequent output error parameter estimation converged and produced improvement in the

results similar to that shown in Table 3 and columns 3 and 4 of Table 4. Similar statements

apply for high frequency inputs, which were also tested using the same simulation, with similar

results.

Table 5 contains parameter estimation results for the same simulation using the flight test

input of Figure 8 and the same output noise level, but using both o_and q measurements in the

data analysis, with the same frequencies for the Fourier transform. Figure 13 shows the

simulated measured outputs. The pitch rate plot in Figure 13 is identical to Figure 9. Compared

to the results in Table 3 for the same simulation and parameter estimation method, but using only

the q measurement, the results in Table 5 show that the additional measurement improved

parameter accuracy and lowered standard errors for both the equation error and output error

methods. As in the single output case, the output error method converged to reasonable

parameter estimates when the starting values were relatively close to the true values. The

equation error method again provided good starting values for the output error parameter

estimation, and the proximity of the equation error parameter estimates to the true values

correlated well with the time domain match. State space parameterization using both the o_and q
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measurementsfor this simulationexampleproducedsimilar results. In all cases,usingeitherthe

equationerroror theoutputerrormethod,theproximity of theestimatedparametersto thetrue

valueswasaccuratelyrepresentedby theestimatedstandarderrors.

Forthemultipleoutputcases,theequationerrormethodconvergedwell usingthe same

modifiedNewton-Raphsonoptimizationtechniqueusedfor theoutputerror cases.This

optimizationtechniquemovesall unknownparametersatthe sametime. For thesingleoutput

equationerror case,it wasnecessaryto usetherelaxationmethod,whereintheequivalenttime

delaywasestimatedwhile the linearmodelparameterswerefixed, andviceversa.Multiple

measuredoutputsprovidedenoughadditionalinformationin thedatathattherelaxation

techniquewasnotrequiredfor theequationerrormethodin themultiple outputcase.

Theoutputerrormethodusingtherelaxationmethodfor equivalenttime delayestimation

did not improveconvergencebehaviorcomparedto the outputerrormethodusingmodified

Newton-Raphsonoptimization.Theoutputerrormethodrequiredstartingvaluesfrom the

equationerrormethodin conjunctionwith modifiedNewton-Raphsonoptimizationto converge

reliablyin all cases.

Returningto theSISOcase,thenextexampleintroducesdeterministicmodelingerror,

which is theusualsituationfor LOESmodeling. Thehigh ordersystemtransferfunctionwas:

q-if--= A(s)C(s)= [(s/1.25) + 1]

L(4.9)2  4.9j J 2 JL(63) 2

(64)

where

[(s/1.25) + 1]
(65)
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wasthetransferfunctionfor theopenloop shortperioddynamicsof the aircraft,and

1
(66)

wasthetransferfunctionfor thecontrol systemdynamics. Thehigh ordersystemin Eq. (64) is

configuration2H from Ref. [12], quotedin Refs.[1] and[3]. In Ref. [12], thelongitudinal

dynamicsin Eq. (64) (andmanyotherhigh orderdynamicsystems)weresimulatedin-flight and

ratedby testpilots usingtheCooper-Harperscalefor aflying qualitiesevaluationtask. LOES

parameterestimationresults(givenfor configuration2H in theMil-Spectableabove,cf. Theory

section)wereobtainedusingaleastsquaresfit to Bodeplot magnitudeandphaseinformationfor

thehigh ordersystemoverthefrequencyrange0.1to 10rad/sec,usingthecostfunction:

JLS = _(2010glO'q(O)i)hos --2010glOq(O)i)LOES ) 2-I- O'0175({O(O)i)hos--{O(O)i)LOES) 2

i=i

(67)

For the present example, the same longitudinal pilot input shown in Figure 8 was applied to

the high order system of Eq. (64), and the output was corrupted with 20% white Gaussian noise.

The same frequencies as before were used for the data analysis.

Table 6 shows parameter estimation results. The second column of Table 6 contains the

equation error parameter estimation results and corresponding standard errors. Column 3

contains the output error results using the same data with starting values from the equation error

results. Column 4 contains output error results with l/To2 fixed at 1.25 for the same data. The

fifth and sixth columns of Table 6 are results from the Mil-Spec table quoted in the last section,

converted to the parameterization of Eq. (2) for comparison purposes. For the results in columns

5 and 6 of Table 6, the LOES gain parameter was set to one (the true value for the high order

system), and therefore was not estimated. Standard errors for the estimated parameters in

columns 5 and 6 of Table 6 were not included in Refs. [1] or [12].
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Outputerrorparameterestimationresultsusingthesimulateddatawith 1�To2 fixed at 1.25

(column 4, Table 6) were similar to the results in column 5, which were obtained from a least

squares fit of the frequency response magnitude and phase, as described above. This indicates

that the short 16 second time record using the input of Figure 8 had enough information for the

output error estimator to match results from the least squares Bode plot analysis. The Bode plot

for the high order system in Eq. (64), which comprised the data for the results in columns 5 and 6

of Table 6, corresponds to a perfect spectral estimation of the dynamic response. In practice,

extended sine sweep inputs would be necessary to generate something close to the frequency

response data used for the Bode plot least squares fit. In addition, the gain parameter was set to

one (the true value) for the Bode plot analysis, and therefore was not estimated. This helps the

parameter estimation, since the LOES gain value is exactly correct and there is one fewer

unknown parameter to be estimated. In practice, the LOES gain parameter is unknown and must

be estimated from the data.

The third row from the bottom of Table 6 shows the ratio of flying qualities level predicted

from the estimated parameters and the Mil-Spec, to the actual pilot ratings for this high order

system in flight, taken from Ref. [12]. The Bode plot analysis required a fixed and accurate

value of 1/To2 to correctly predict the handling qualities rating. The output error parameter

estimates in column 3 of Table 6 correctly predicted actual pilot flying qualities ratings using

only the pilot longitudinal stick and pitch rate data from a short maneuver.

The last two rows of Table 6 give some insight into the modeling. Cost values using

Eq. (67) for frequency ranges 0.1 to 10 rad/sec and 1.5 to 6 rad/sec were computed for all the

parameter estimation results, using a constant 0.1 rad/sec frequency spacing. Most of the power

(88%) for the input of Figure 8 lies in the frequency range 1.5 to 6 rad/sec. The methods that

used simulation data (columns 2 through 4) gave low cost values for this frequency range, with

the output error method giving the lowest cost. For the full frequency range, the least squares

Bode plot method with all parameters free gave the lowest cost value, because the optimization

problem was formulated that way. However, the LOES model parameters estimated using this

method did not correctly predict flying qualities level (cf. Table 6, column 6). As noted above,

the Bode plot method required a fixed and accurate a priori value of the LOES 1/T02 parameter

to correctly predict the flying qualities level in this case. In practice, accurate a priori values for
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theLOESmodel 1�To2 parameter are not available, because model parameters must include both

bare airframe and control system effects in the LOES context.

Previous work I on pilot sensitivity to variations in the dynamic aircraft response as a

function of frequency have shown that the pilot is most sensitive to changes in dynamics near the

crossover frequency. It is therefore reasonable to identify the LOES model based on data in this

region to accurately predict flying qualities ratings from the pilot. This example demonstrates

that data from short flight test maneuvers with input energy near the crossover frequency of the

high order system can be used with the methods described in this work to identify accurate

LOES models that successfully predict pilot ratings from flight.

Model parameters in the LOES context do not have "true" values, because the structure of

the model is incorrect by assumption. The main requirements are that the identified LOES

model, whatever its parameter values, accurately represents the data with parameter values that

have good identifiability (indicated by low standard errors). Such models predict flying qualities

well. Parameter values for adequate LOES modeling are therefore not unique, and could easily

change with the frequency range of the modeling, for example. Parameter standard errors in the

LOES modeling context are more indicative of parameter identifiability, and should not be

interpreted as a measure of the accuracy of the LOES parameter estimate relative to some "true"

value.

The last simulation example includes deterministic modeling error that interacts

significantly with the techniques used for LOES modeling. Specifically, this example

investigates the "galloping L_" problem. The true high order system transfer function was:

= A(s)C(s)= [(s/1.25) + 1]

[(22)2 2.2 ) + 1 J[(63)2 63 )

(68)

where
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A(s) = [(s/1.25) + 1]

[ $2 2(0"69"]S + 1]_-+ \2.2)

(69)

was the transfer function for the open loop short period dynamics of the aircraft, and

1

C(s)= [_ +I]FjL(63)2s2 +2(_5_9s+i ]

(70)

was the transfer function for the control system dynamics. The high order system in Eq. (68) is

configuration 1G from Ref. [12], quoted in Refs. [1] and [3]. This is also one of the cases

included in the table excerpted from the Mil-Spec in the last section.

The same longitudinal pilot input shown in Figure 8 was applied to the high order system of

Eq. (68), and the output was corrupted with 20% white Gaussian noise. The same frequencies as

before were used for the data analysis.

Table 7 shows parameter estimation results for this example in the same format used for

Table 6. The second column of Table 7 contains the equation error parameter estimation results

and corresponding standard errors using the pitch rate output and longitudinal stick input.

Column 3 contains the output error results using the same data with starting values from the

equation error results. Column 4 contains output error results using transfer function models and

both the pitch rate and angle of attack outputs. The fifth and sixth columns of Table 7 are results

from the Mil-Spec table quoted in the last section, with the parameters converted to the

parameterization in Eq. (2) for comparison purposes. The latter results were obtained using a

least squares fit to Bode plot data, in the same manner described above for case 2H.

The results in column 6 of Table 7 show the characteristic "galloping La" problem, namely

that La is estimated as a very large value (La =bo/b I = 1�To2 ) . The results in column 3 of

Table 7, which were obtained from simulated data using the input of Figure 8, show a close

similarity to the results in column 6 of Table 7, which were generated from a least squares fit of a
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perfectBodeplot for thehigh-ordersystempitch rateresponse.The"galloping La" problem

has therefore been reproduced using the data from the 16 sec simulated maneuver.

The last two rows of Table 7 show cost values using Eq. (67) for the pitch rate only, over

frequency ranges 0.1 to 10 rad/sec and 1.5 to 6 rad/sec, using a constant 0.1 rad/sec frequency

spacing. Most of the power (88%) for the input of Figure 8 lies in the frequency range 1.5 to

6 rad/sec. Results in column 2 of Table 7 show that the equation error parameter estimation

results are reasonable, and the costs are comparable to the output error cases in columns 3 and 6,

which used only the pitch rate output with all parameters free. Reasonable parameter estimation

results were also obtained in column 4 of Table 7, where the output error method was used with

both the angle of attack and pitch rate outputs. For this method, the costs are significantly higher

than the others, indicating that some trade-off in fit error between the two outputs occurred in the

output error minimization. The standard errors in column 3 of Table 7 indicate that the output

error parameter estimates with the "galloping La" characteristic had poor identifiability and

were very inaccurate. In contrast, the standard errors were low for the equation error results in

column 2 and the output error results using both angle of attack and pitch rate in column 4,

indicating that the estimated LOES model parameters were accurate with good identifiability.

The standard errors computed for all the methods described in this work gave important

information regarding the adequacy of the LOES model parameters, even when deterministic

modeling error was present. The time domain matches of model output pitch rate to measured

pitch rate were similar and very good for all the LOES parameter estimation results given in

Table 7.

In all cases, the third row from the bottom of Table 7 indicates that the predicted flying

qualities matched the pilot ratings from flight. In the cases with "galloping La" (columns 3 and

6, Table 7), level 3 flying qualities was correctly predicted only because the "galloping La"

parameter caused a level 3 flying qualities prediction. The remaining parameter values would

predict level 1 flying qualities. In the case with the best LOES model parameter accuracy

(column 4 of Table 7), flying qualities level 3 was predicted from two of the criteria specified in

the Mil-Spec.
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This example demonstrated that the output error correlation problem that manifests itself as

a "galloping La" can be solved using an equation error method with the same data, or an output

error method with an additional output measurement. The corresponding LOES modeling results

in columns 2 and 4 of Table 7 are not in agreement, yet both models contain parameter values

with low standard errors, and both predict flying qualities correctly. This demonstrates that the

adequate LOES model is not unique. The LOES models in columns 2 and 4 of Table 7 were

generated from different parameter estimation formulations, with an additional output

measurement used in the output error case.
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IV. Flight Test Examples

Flight test data from the NASA F-18 HARV was used to demonstrate the LOES modeling

techniques described above. The F-18 HARV is an F/A-18A airframe which was modified

extensively for high angle of attack dynamics and control research, as part of the NASA High

Alpha Technology Program. Modifications included thrust vectoring, a research-quality

instrumentation system, additional emergency systems, forebody strakes, and a research flight

control computer capable of implementing multiple control laws. More details on the F- 18

HARV are available in Ref. [31].

The first example involved longitudinal tracking at approximately 40 deg angle of attack.

At this high angle of attack condition, the parameters in the fixed LOES model structure must

characterize both the control system dynamics and the open loop airplane dynamics, which are

typically nonlinear. The LOES modeling task is therefore very challenging.

Data for this example was taken from 3 identical tracking task maneuvers on the

F-18 HARV using the same control law, but flown by different pilots on different days. The

upper plots of Figures 14-16 show the longitudinal stick deflection for a 20 second time slice

from each maneuver. The lower plots in Figures 14-16 indicate the measured pitch rate response

with a solid line, and the identified LOES model fit with a dashed line. The LOES model

identification was done using the SISO model of Eq. (2), and equation error in the frequency

domain with relaxation applied to the time delay estimation, as described above. The fit of the

LOES model to the data was excellent, considering the high angle of attack, the short time length

of data, and the fact that only the measured pitch rate output was used.

Table 8 contains the LOES model parameter estimates and standard errors for the 3

maneuvers depicted in Figures 14-16. The estimated values of the gain parameter b1 and the

damping parameter a 1 show statistical agreement among the 3 maneuvers, meaning that the 95%

confidence intervals (parameter estimate +2 standard errors) overlap. The other parameters,

bo , a o , and r, do not agree in this way. At the bottom of Table 8, values for numerator zero

parameter 1/To2 , short period damping (sp, and natural frequency (Osp, based on the LOES

parameter estimates, are listed. The last row of Table 8 contains the flying qualities levels given

by the pilot in flight, compared to values computed from the Mil-Spec I using LOES model
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parametersestimatedfrom theflight testdata.

includesflight conditionandmassproperties.

maneuver.

LOESmodelingis dimensional,andtherefore

Table9containsthepertinentvaluesfor each

Althoughtheairplane,control law,andapproximateflight conditionwerethe same,three

differentpilotsratedthe sametrackingtaskaslevel 1,2, and3. This interestingphenomenawas

in fact thereasonthatthesemaneuverswerechosenfor analysis.LOESmodelingresultsin

Table8 indicatethatthepilots,who wereall experiencedtestpilots, actuallygaveratingsthat

wereconsistentwith theresponseof theaircraftindicatedby thedata. Forthedynamicresponse

thateachpilot experienced,his flying qualitiesratingswereconsistentwith thosepredictedby

theMil-SpecandtheLOESmodelidentifiedfrom themeasureddata.

Theflight conditionandmasspropertydifferencesshownin Table9,thoughnotnegligible,

werenotconsideredsufficientto accountfor thedifferentpilot ratings. Anotherpossible

explanationfor thedifferentpilot ratingscouldbethat in thisnonlinearflight regime,the

differencein how eachpilot perceivedtheflying qualitieswasrelatedto how he flew theaircraft.

Figure17showsthatthepowerspectraof the longitudinalstickdeflectionsfor eachpilot were

quitedifferentduringthe20 secondtrackingtasksshownin Figures14-16. Thepilot for

Maneuver376d(upperplot in Figure 17)flew theairplanewith predominantlylow frequency

inputs,andratedtheairplanelevel 1. Thepilot for Maneuver321e(middleplot in Figure 17)

flew theairplanewith awide spectrumof input power,fairly equallydistributedacrossthe

LOESmodelingfrequencyrangeof 0.016-1.6Hz, andratedtheairplanelevel2. Thepilot for

Maneuver320jwasahigh frequency,high gainpilot (notethevertical scaledifferencein the

lowerplot of Figure17). Thiscausedalargeamountof control surfaceratelimiting, which is

reflectedin theestimateof equivalenttimedelayfor thismaneuverin Table8. Thispilot rated

theairplanelevel 3. Basedon thisanalysis,it is possibleto conjecturethattheratingsthepilots

gavewerein fact consistentwith theMil-Specguidelines,andthatthewidely differentratings

weretheresultof themannerin whichthe airplanewasflown to accomplishthetask.

Themaneuverswereflown athigh angleof attack,wheretheaerodynamicsareknownto

benonlinear,andthecontrol surfacedeflectionsandratescanreachhardlimits. Nonlinear

dynamicalsystemresponseis knownto besensitiveto input frequencyandamplitude,andthe

LOESmodel is largelya linearapproximationto anonlinearsystemin this case.It seems
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reasonablethattheLOESmodelwouldchangesignificantlydependingonthe amplitudeand

frequencyrangeof the input whentheunderlyingphysicalsystemdynamicsarenonlinear.

Dueto thenatureof thetrackingtask,theflight testdatausedfor theLOESmodelingwas

concentratedin afrequencybandaroundthepilot crossoverfrequency.TheLOESmodeling

techniquethereforeidentifiedthebestLOESmodel for this frequencybandonly, sincethe

identificationwasbasedonly on flight testdatafrom eachtrackingmaneuver.TheMil-Spec

guidelines,whichweredevelopedat low angleof attack,translatedwell to thishigh angleof

attackcasewheretheLOESidentificationwaslimited to afrequencybandnearthepilot

crossoverfrequency.Thisresultis in consonancewith empiricalinformationin theMil-Spec

showingthat agoodLOESmodelmustcloselymatchtheaircraftclosedloopdynamicsin the

vicinity of thepilot crossoverfrequency(cf. Figure 15,p. 181,AppendixA in Ref. [1]). The

highaccuracyLOESidentificationmethodsoutlinedin thisreportmadethis analysispossible

with very little computationaleffort.

Thelastexampleis a Multiple-Input,Multiple-Output(MIMO) LOESmodelingproblem.

Closedlooplateral/directionaldynamicsof theF-18HARV at45 degangleof attackwere

modeledbasedonmeasureddatafrom a24secondmaneuver,usingtheLOESmodelstatespace

formulation:

=

N¢_

0

Yp Yr g c°S®o
Vo

Lp L,. L 0

Np N,. 0

1 tanO o 0

I Lq,. Lqa

+ 3°)/
Noa

(71)

The Yr parameter includes the inertial term, and the L 0 parameter is due to the control law,

which in this case was the research flight control law in thrust vectoring (TV) mode. This LOES

modeling problem is challenging because of the short data record available, the high angle of

attack flight condition, and the MIMO model, which contains a relatively large number of

parameters.
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Figure18showstherudderpedalandlateralstick inputs,whichwereimplementedby the

researchflight controlcomputerandweredesignedto maximizedatainformationcontent28.

Eachinputhadanindependentequivalenttimedelayparameter.Thesolid lines in Figure19

showthemeasuredoutputsusedin theLOESmodelidentification. Themodelstructurefor the

statespacesystemwasdeterminedusingequationerrorin thefrequencydomain,applied

individually to eachline of thestatespacesystemin Eq. (71),with thetimedelaysfixed atzero.

Thefinal modelparameterestimatesweredeterminedusingoutputerrorin thefrequencydomain

with all parametersfree,usingequationerror startingvalues. Startingvaluesfor thetime delay

parametersz',, and z"a were both 0.1 sec. Table 10 contains the state space model parameter

estimates and standard errors. Most parameter standard errors were less than 15% of the

respective nominal parameter estimate.

The dashed lines in Figure 19 show that the model fit to the data was excellent, even at this

high angle of attack flight condition using a LOES model structure to characterize the end-to-end

dynamic MIMO response. Modal parameters are given at the bottom of Table 10. LOES

transfer functions can be computed easily 2° from the parameter estimates in Table 10 and the

state space model of Eq. (71). Using the state space model formulation for the LOES model

identification allowed inclusion of important control law parameters (L O) without violating the

fixed transfer function structure imposed by the Mil-Spec for lateral/directional LOES models.

In addition, the state space model formulation allowed the use of many output measurements to

improve model parameter estimate accuracy. The identified closed loop dutch roll damping is

0.72, which was close to the 0.70 target value for the control law design. Correlations of pilot

ratings with lateral/directional LOES identified from flight test data using the methods described

in this report can be found in Ref. [32].
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V. Summary

_Low Order _Equivalent S_ystem (LOES) models are low order linear models with input time

delay, used to characterize closed loop aircraft response to pilot inputs. In this work, methods

for accurately identifying LOES models from flight test data were developed and demonstrated.

Data analysis was done in the frequency domain using a high accuracy Fourier transform

with selectable frequency range and resolution. Data analysis in the frequency domain was

chosen because of the equivalent time delay parameter appearing in LOES models, in addition to

computational and practical advantages. Effective output error and equation error parameter

estimation methods were developed, and their properties were examined using sensitivity

analysis and simulation examples. A variety of modeling topics were discussed, including

experiment design implications and data requirements for LOES modeling, model parameter

identifiability and sensitivity analysis, frequency resolution, the "galloping L_" problem, and a

method for independent estimation of the equivalent time delay, with interpretation in the LOES

modeling context. Modeling techniques were demonstrated using simulation cases, then applied

to Single-Input, Single-Output (SISO) and Multiple-Input, Multiple-Output (MIMO) closed loop

flight test data from the NASA F-18 High Alpha Research Vehicle.

Flight-determined LOES models are useful in many applications, including control law

design validation, simulation, flying qualities research, aircraft development and specification

compliance, and quantifying dynamic response and flying qualities using flight test data from

flying qualities evaluation tasks.
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VII. Tables

Table 1 Output Error Longitudinal LOES Parameter Sensitivity Correlations

for a Low Frequency (0.1 rad/sec) Input

_q/_bl _q/_bo _q/_a 1 3q/3a o 3q13r

1 0.037 -0.997 _).087 _0.990 3q/3b 1

1 0.011 -0.999 0.061 3q/3b o

1 0.039 0.992 3q/3a 1

1 _).011 3q/3a o

i aq/a 

Table 2 Output Error Longitudinal LOES Parameter Sensitivity Correlations

for a High Frequency (10 rad/sec) Input

OqlObl OqlObo OqlOal OqlOao Oq/OY

1 0.000 _).110 0.690 _).100 3q/3b 1

1 -0.962 _).223 0.967 3q/3b o

1 0.000 -0.960 3q/3a 1

1 _).145 3q/3a o

i aq/ar
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Table 3 Longitudinal LOES Modeling Results

Parameter True Value Equation Error

Estimate

Output Error

Estimate

(Std. Error) (Std. Error)

0.977 1.009
b 1 1.000

(0.037) (0.013)

1.181 1.046
b o 1.000

(0.370) (0.047)

1.946 1.998
a 1 2.000

(0.256) (0.029)

4.332 3.973
a o 4.000

(0.695) (0.093)

0.090 0.098
r 0.100

(0.007) (0.003)

Table 4 Longitudinal LOES Modeling Results for Low Frequency Input

Parameter True Value Equation Error

Estimate

(Std. Error)

Output Error

Estimate

(Std. Error)

Output Error Estimate

 o=[O6 o6 o6 1 o3]

(Std. Error)

0.997 0.985 q).434
b I 1.000

(0.616) (0.070) (0.018)

1.519 1.020 0.833
b o 1.000

(0.427) (0.037) (0.026)

1.503 1.980 1.136
a I 2.000

(0.741) (0.108) (0.024)

5.645 4.040 3.183
a o 4.000

(1.577) (0.153) (0.067)

0.208 0.099 -1.031
r 0.100

(0.176) (0.022) (0.031)
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Table 5 Multiple Output Longitudinal LOES Modeling Results

Parameter True Value Equation Error

Estimate

Output Error

Estimate

(Std. Error) (Std. Error)

0.983 1.005
b 1 1.000

(0.017) (0.006)

0.988 1.010
b o 1.000

(0.094) (0.020)

1.900 2.001
a 1 2.000

(0.096) (0.018)

4.119 3.998
a o 4.000

(0.187) (0.026)

0.096 0.100
r 0.100

(0.004) (0.002)
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Table 6 Longitudinal LOES Modeling Results for Neal-Smith Case 2H

Parameter

bl

bo

al

ao

l/to2

Equation

Error

Estimate

(Std. Error)

3.188

(0.271)

17.08

(1.69)

4.198

(0.208)

16.10

(1.16)

0.076

(0.008)

5.36

Output Error

Estimate

(Std. Error)

All free

4.593

(0.185)

12.39

(0.730)

4.362

(0.096)

12.27

(0.552)

0.110

(0.005)

2.70

Output Error

Estimate

(Std. Error)

l/To2 = 1.25

5.848

(0.141)

7.310

4.643

(0.139)

8.383

(0.193)

0.138

(0.004)

1.25

MDC Bode Plot Estimates

(Ref. [1])

l/T02 = 1.25

5.243

6.554

4.096

6.554

0.126

All free

3.539

14.44

3.952

14.44

0.098

1.25 4.08

o)sp 4.01 3.50 2.90 2.56 3.80

(sp 0.52 0.62 0.80 0.80 0.52

Pred. FQ level / 3/2 2/2 2/2 2/2 3/2

Pilot FQ level

Cost 73.3 101.0 252.9 163.4 36.3

0.1< co < 10

Cost 9.0 3.9 5.2 42.1 16.7

15<o)<6
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Table 7 Longitudinal LOES Modeling Results for Neil-Smith Case 1G

Parameter Equation

Error

Estimate

(Std. Error)

Output Error

Estimate

Output Error

Estimate

MDC Bode Plot Estimates

(Ref. [1])

(Std. Error)

All free

q only

(Std. Error)

All free

q and o_

l/T02 = 1.25 All free

q only

bl 0.206 9.110e-04 0.618 0.487 0.0136

(0.054) (18.853) (0.014)

bo 1.627 2.497 0.596 0.608 2.402

(0.208) (0.192) (0.027)

al 1.989 3.726 1.515 1.154 3.317

(0.356) (0.269) (0.048)

a o 2.425 2.938 0.775 0.608 2.402

(0.310) (0.204) (0.024)

r 0.111 0.068 0.258
0.185 0.043

(0.024) (7.539) (0.007)

l/To 2 7.907 2741.3 0.965 1.25 176.0

°)st, 1.56 1.71 0.88 0.78 1.55

(sp 0.64 1.09 0.86 0.74 1.07

Pred. FQ level / 3/3 3/3 3/3 3/3 3/3

Pilot FQ level

Cost 231.5 234.4 3887.0 1933.1 129.1

0.1< (o < 10

Cost 27.8 26.2 398.8 294.9 26.0

15<(o<6

51



Table 8 Longitudinal LOES Modeling Results

for F-18 HARV Longitudinal Tracking Data

Maneuver 376d Maneuver 321e Maneuver 320j

Parameter Estimate Estimate Estimate

(Standard Error) (Standard Error) (Standard Error)

bl 0.787 0.745 0.638

(0.103) (0.152) (0.041)

b o 1.401 3.346 0.451

(0.493) (0.701) (0.203)

a I 3.785 4.371 4.670

(0.678) (0.675) (0.314)

a o 15.49 33.84 10.30

(3.39) (4.50) (1.53)

r 0.026 0.042 0.236

(0.018) (0.020) (0.018)

l/To 2 1.78 4.49 0.71

(Osp 3.94 5.82 3.21

(sp 0.48 0.38 0.73

Pred. FQ level / 1/1 2/2 3/3

Pilot FQ level

Table 9 Flight Conditions for F-18 HARV Longitudinal Tracking Data

Maneuver 376d Maneuver 321e Maneuver 320j

Oeavg (deg) 37.8 42.6 33.5

q--avg (psf) 75.3 64.1 73.6

Wavg (lbf) 36,010 38,400 32,930

Xcgavg (in) 458.8 456.7 459.5

(?-= 1152 ft)
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Table 10 Lateral/Directional LOES Modeling Results

for F- 18 HARV Flight Test Data

Maneuver 329r

Parameter Estimate Parameter Estimate Parameter Estimate

(Standard Error) (Standard Error) (Standard Error)

y/_ _).073 L/_ -2.85 N/_ 0.0282

(0.053) (0.17) (0.053)

0.748 -2.55 _). 169
Yp Lp Np

(0.024) (0.09) (0.053)

_).690 2.97 _).478
Yr L,. N,.

(0.035) (o.15) (0.053)

Yv,. -2.43e-04 L0 q).452 Nv,. 2.12eq)3

(7.30eq)5) (0.025) (3.39)

Yva -9.1 le-03 Lv,. -5.86eq)3 Nv a 0.0888

(1.64eq)3) (2.30eq)4) (3.39)

q).0592 0.0588
Lr/_ Vr

(6.39e_)3) (7.94e_)3)

0.0125
"/'a

(O.OLO4)

Modal Parameters

Spiral Mode Roll Mode Dutch Roll Mode

Ts 11.5 TR 1.80 (DDR 1.71

(DR 0.72
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