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Abstract 
Market power potential is a serious concern for 
efficient and competitive operation of centrally-
dispatched electricity markets. Traditional measures 
for market power ignore underlying physical 
characteristics of the electric grid that may be 
exploited for local advantage.  In our prior work we 
have proposed a revenue sensitivity-based approach 
for identifying market participants with market power 
potential, and we demonstrated detailed cases using 
a 30-bus system[1][2][3].  In this paper we address 
computational challenges for scaling our method to 
large systems, and we present practical extensions to 
a portion of our work that enables the evaluation of 
very large, RTO-scale electric power grids. 
 
 
I.  Introduction 
 
In a competitive environment with sufficient 
capacity to adequately meet demand and reserve 
requirements, a centrally-dispatched electricity 
market provides a transparent and efficient 
means for economic operation of the grid. When 
certain suppliers possess some advantage over 
other suppliers, then competition is jeopardized 
and the benefits of an electricity market may not 
be realized.   
 
This issue of supplier advantage versus 
competition can   be viewed in terms of 
substitutability.  If the market is competitive, 
then the electricity supplied by one generator is 
easily substituted by that of another generator at, 
or very near, the market price.  If a generator 
were to attempt to manipulate the market to its 
advantage, for example by maintaining dispatch 
while raising prices, they would not be able to do 
so.  Their competitors would provide energy to 
substitute for the profit-ambitious supplier’s 

higher-priced energy.  Conversely, if a supplier, 
or small group of suppliers do possess some 
locational advantage that limits their 
competitors’ ability to provide substitute power, 
then the profit-ambitious suppliers may be able 
to simultaneously maintain constant dispatch 
while increasing prices, and thereby increase 
revenues and profits.  
 
Taking into account network limitations in the 
electric grid, such examples of local market 
power are possible, and expected, in so-called 
“load pockets.” These are regions in which 
generation supply to meet demand is limited by 
network constraints (transmission capacity, 
voltage, or operational reliability constraints).  
Incremental increases in demand must be met by 
a small subset of suppliers, or even a single 
supplier, effectively reducing or eliminating the 
measure of substitutability.   
 
Traditional metrics to help identify market power 
such as the HHI, pivotal supplier index, and 
residual supplier index (RSI)[6] when applied to 
the entire network do not completely address the 
issue of load pockets.(See [7] for a discussion of 
this issue.)  Certainly if these metrics identify 
non-competitive operation, there should be 
immediate concern.  However, if these metrics 
do not identify non-competitive operation, one 
should still be concerned about the possibility of 
local market power in load pockets. Of course 
these metrics can and sometimes are applied to 
smaller portions of the network.  For example, in 
[5] the HHI index is applied to clusters of buses 
with similar prices within a network. But these 
metrics lack a representation for the electricity 
grid that can naturally distinguish cases of local 
market power.  
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In our approach, presented in previous work, we 
examine matrices of revenue-price sensitivity 
and dispatch-price sensitivity [1][2][3].  The 
former is used to identify suppliers with the 
ability to simultaneously raise prices and 
revenues, indicating market power potential.  
The latter can be directly used to identify load 
pockets in which suppliers may have locational 
advantage.  The matrices are related through a 
simple formula. Importantly, both matrices are 
derived from a detailed model of an optimal 
dispatch program that includes a representation 
for the physical network and its limiting 
constraints.  We demonstrated the potential for 
market power manipulation in a small system 
(30-bus, 6-supplier) both in theory and through 
experiment.  Using the revenue and dispatch 
sensitivity matrices we were able to clearly 
identify the suppliers with joint market power 
that were observed in the experiment. 
 
The mathematics used to develop the relevant 
matrices is admittedly sophisticated, and a 
complete search through the structure of the 
matrices to identify the suppliers with market 
power is fundamentally combinatorial.  
Unfortunately, we find that the computations 
required to perform these two tasks do not scale 
well to large systems of practical interest.  We 
need to find ways to improve the analysis. 
 
Specifically, given a matrix of revenue-price 
sensitivities, we need to search over all 
combinations of price perturbations that result in 
a revenue increase for candidates for market 
power.  Or, in terms of load pocket 
identification, we need to group those suppliers 
which can raise prices with negligible impact on 
dispatch. 
 
In [8] the authors simplified the search over the 
matrices by limiting the number of generator 
combinations that need to be considered, and 
assuming uniform increases in price for 
generators with market power.  Even with these 

simplifications, the resulting combinatorial 
analyses will be prohibitive for large systems, 
and we are also interested in nonuniform price 
increases that may result in market power 
potential.  In [3] we explored a spectral approach 
for identifying load pockets.  While effective and 
allowing for nonuniform prices increases, it 
likewise is difficult to adapt to very large 
systems. 
 
While we continue efforts to improve the 
efficiencies of such searches over the sensitivity 
matrices, we present here an intermediate 
screening process that allows the identification 
of suppliers with both market power potential 
and who are exercising this ability. This is 
accomplished through an evaluation of the 
geographical distribution of Locational Marginal 
Prices (LMPs).  LMPs in the network separate 
when there is some impediment to trade between 
locations (losses, transmission congestion, 
voltage constraints, etc.).  By clustering buses by 
LMP we screen for groups of generators that 
enjoy a privileged position in the network.  
These screened groupings are tested using an 
approximation of the sensitivity matrix [9][10] to 
confirm that the suppliers have market power 
ability. 
 
While this approach is practical, it is essential to 
mention what we give up for these large-scale 
calculations.    The clustering algorithm we 
employ is based on differences in locational 
marginal prices.  It will allow us to identify 
suppliers that may already be exercising some 
market power to their advantage, but it will not 
identify those generators with market power 
potential that is not being exploited.   
 
In the end, based on findings using this screening 
method, we test the hypothesis that certain 
suppliers share market power by performing 
detailed optimal power flows.  If these 
generators can simultaneously raise prices and 
revenues, then they enjoy a locational advantage 
and potential for market power. 
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In the remaining sections of this paper we review 
mathematical approaches for calculating the 
sensitivity matrix, and outline the LMP-based 
clustering algorithm.  Then we apply the 
clustering algorithm on a large model of the 
Western Interconnect. 
 
 
II. Sensitivity Matrix Calculations 
 
In this section we provide background on 
methods for calculating the matrix of dispatch-
price sensitivities.  This matrix, denoted by M 
below, relates how incremental changes in prices 
will result in changes in dispatch, 
                            λΔ=Δ Mg                            (1) 
where Δλ and Δg represent the changes in price 
and generation dispatch respectively. 
 
Since generator revenue is equal to the product 
of price and dispatch, the matrix of revenue-price 
sensitivities, denoted by N, is simply related to M 
by 
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where diag(λ) and diag(g) represent diagonal 
matrices of generator nodal prices and generator 
dispatches respectively. 
 
Before proceeding with a description of how one 
may compute the M sensitivity matrix we need to 
be clear about what we mean by dispatch-price 
sensitivity. In electricity markets, generator 
offers are typically submitted in discrete blocks, 
and the uniform clearing price will often differ 
from the block offer price at the generator 
location.  The generator block offer curve is 
essentially a discontinuous marginal costs curve 
that is not amenable to direct sensitivity analysis.  
To obtain a meaningful incremental model, we 
substitute the generator nodal clearing price for 
the generator offer price.  This is sensible in our 
incremental model because we want to know the 
effect on dispatch when a generator 
incrementally increases its offer over the LMP. 

By construction, an OPF run with these 
substituted offers will give the same result as the 
original OPF. By starting with the solution of an 
optimal power flow and replacing the generator 
offers with LMPs we essentially make all the 
generators marginal units, and then calculate the 
sensitivity of the dispatch to changes in price. 
 
This optimization problem takes the following 
form: 

gTλmin                                    (3) 
subject to the constraints 
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where f1(g,y) contains the network active power 
constraints at the generator buses, f2(y) contains 
the rest of binding constraints (other power flow 
constraints, transmission capacity constraints, 
voltage constraints), and y represents all 
remaining relevant variables in an OPF.  We 
omit the details here for brevity, but in [1] it is 
shown that the M sensitivity matrix can be 
derived from the linearized first-order conditions 
of the Lagrangian for this optimization problem.  
The exact M matrix takes the form 

                                                  (5) 
where H is a Hessian matrix associated with 
constraints f1 and variables y.  This matrix is 
difficult to obtain in practice since commercial 
power flow programs capable of solving OPFs 
for the large systems of ultimate interest do not 
do this calculation for us, or provide a means to 
extract the subcomponents in this equation.  
These programs could be adjusted to do so, and 
this may be beneficial to RTO market monitors. 
 
In this work we apply an approximate method 
for estimating this matrix [9][10] that is practical 
for our research purposes. The estimate of the 
sensitivity matrix M is based on a simplified 
model of the power network that focuses on the 
key variables and dominant effects while greatly 
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reducing the complexity of the representation.  
The key variables are generator dispatch and 
price, and the dominant phenomena are 
conservation of energy (of course!) and 
transmission congestion.  An optimization 
problem with these features include the original 
minimum costs function 

gTλmin      (6) 
subject to the conservation of energy constraint 

DLoss
T PgPg += )(1       (7) 

where PD is the total system demand and PLoss(g) 
is a network loss function expressed in terms of 
power injections, and binding transmission 
constraints 

MaxPWg =       (8) 
where PMax is a vector of maximum branch flow 
capacities for the constrained lines  and W is a 
matrix of “shift factors” that express branch flow 
in terms of generator power injections.  Note that 
the initial solution to the OPF provides the 
binding constraints, nominal dispatches and 
prices.   
 
In [9][10] it is shown that the estimate for the 
dispatch-price sensitivity matrix is given by  
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and B is a matrix of “B-factors” associated with 
the loss function PLoss(g) (see Appendix), W is 
the matrix of shift factors associated with 
binding transmission constraints, λ is the vector 
of prices, and μ* is the shadow price associated 
with constraint .   
 
The representation (9) of this estimate is not 
simple, but it has an advantage over the complex 
representation given by (5): it is easily calculated 
if one assumes a form for the loss function and 
can obtain the loss function “B-factors.”  We 
defer a specific discussion on how we compute 
these factors for our examples in this paper to the 

appendix. The more accurate the calculation for 
these factors, the better the approximation of the 
matrix will be. The only element of the 
representation that is not readily available or can 
be easily calculated is the value of μ*.  Since this 
is a scalar, however, it is not needed for analysis;  
any scaled version of M will allow us to identify 
load pockets. 
 
 
III. A Clustering Algorithm 
 
Using the dispatch-price sensitivity matrix, we 
now proceed to try to identify generators located 
in load pockets that may have some local 
advantage of limited substitutability.  
Specifically we seek combinations of generator 
price increases that result in no change in 
dispatch: 

0=ΔλM    (10) 
(or equivalently μ*MΔλ = 0 since μ * is a scalar). 
If a generator or a small group of generators can 
simultaneously raise prices without changing 
system dispatch, then they can increase their own 
revenues and have market power potential.   
 
There are two approaches to find vectors, Δλ, 
that satisfy (10): a combinatorial approach over 
all elements of the vector, and a spectral 
approach that notes that a vector that satisfies 
(10) must lie in the null space of M.  Given the 
form of (10) the latter approach seems direct and 
promising, so it is important to point out the 
computational challenges that may not obvious 
at first glance.  In practice it is too restrictive to 
require equality in (10); we need to allow 

ελ <ΔM    (11) 
where ε is some small limiting threshold for 
|Δλ|=1.  Vectors that satisfy (11) can be 
computed using eigenanalysis, but these alone do 
not completely solve our problem.  The 
eigenvectors will constitute a basis of vectors 
from which any linear combination will satisfy 
(11).  That is where the difficulty lies, we need to 
search over the space of possible vectors for 
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those with a very specific form – mostly zero 
entries and strictly positive nonzero entries. This 
is not impossible, but it does pose challenges. 
 
Alternatively, if we modify our goal to seek 
suppliers with both market power potential and 
who are exploiting this ability, a simple 
clustering algorithm is practical. The intuition 
for this approach comes from the information 
that may be inferred from locational marginal 
prices.  LMPs differ in the network when there is 
some impediment to the transfer of energy, such 
as resistances in transmission lines, and 
transmission congestion from capacity and 
voltage limits.  A grouping of connected buses 
with similar LMPs suggests that there are no 
impediments to energy transfer among them, and 
any generators within this group will be 
substitutable.  However, if there is significant 
variation between generator LMPs, then they 
will tend to not be substitutable.   
 
Consider the groupings shown pictorially in 
Figure 1. There is transmission congestion that 
prevents incremental energy transfer between 
them.  Within each group, energy transfer is 
unimpeded.  If there is only a single supplier, or 
a small group of suppliers in any group, they 
have some amount of market power.  In Figure 
1, if there only a few suppliers in Group C, then 
they will have the ability to simultaneous raise 
prices and revenues, essentially without bound.  
If there are a limited number of suppliers in 
Group B then they will be able to raise price, up 
to a point.  When the prices become comparable 
to those in Group C, the transmission congestion 
may be relieved and the number of substitutable 
generators will include those in both groups.  
Similarly, suppliers in Group A may be able to 
raise prices until they have to compete with the 
generators in Group B. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Three groups of buses with congestion 
between them. 

We propose to cluster buses into groups based on 
LMP.  The algorithm is simple: 

1. Identify those branches in the network 
connecting buses with LMP differences 
exceeding a user-specified threshold.  
Keep these branches. 

2. Remove the remaining branches for 
which the price difference is lower than 
the threshold by merging the terminal 
nodes.  A sequential process of merging 
nodes forms the clusters. 

 
The threshold in step 2 is important.  In practice 
we must allow for some variation in LMPs 
within a group, but we do not want to miss clear 
cases of market power exploitation.  Too low of 
a threshold will erroneously make distinctions 
that only arise due to expected small prices 
differences that always occur in a system with 
losses, and does not indicate uncompetitive 
behavior.  Too high of a threshold will fail to 
identify instances of market power exploitation.  
Also, for the operation of the clustering 
algorithm it also presumed that threshold serves 
to separate clusters using the retained branches.  
One needs to check that these branches do 
connect different clusters after the procedure is 
complete.  (This is a trivial check.) 
 
Once we have performed the clustering, we 
examine those groups with only a small number 
of units or suppliers.  These become candidates 
for further investigation, initially using the M 

A
$20/MWH 

B 
$40/MWH 

C
$80/MWH 
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sensitivity matrix, and ultimately, a detailed run 
of an OPF.  Knowing which generators we are 
interested in allows us to directly examine the 
sensitivity matrix to confirm these generators are 
in a load pocket and have market power 
potential.  We can indisputably confirm the 
generators have market power by running an 
OPF with increased prices and reexamine their 
dispatch and revenues.  We do this for a large 
example system in the next section. 
 
To be clear, this approach uses different 
information than that contained in the sensitivity 
matrix.  The screening based on LMP clusters 
will not identify market power potential that is 
not evident in price differences.  There may be 
other combinations of suppliers with market 
power potential that won’t be identified in this 
manner.  
 
IV. Western Interconnect Example 
 
In this section we apply our clustering algorithm 
to a detailed model of the Western Interconnect, 
to identify load pockets with market power 
potential.  The model has 13,374 buses, 16,000 
lines, 105 GW of load, and 117 GW of on-line 
capacity.  The model covers the Western United 
States and portions of Canada and Mexico.  We 
study a hypothetical condition in which the 
Western United States portion is dispatched as a 
single electricity market.  (Presently only 
California operates a central market, and only a 
balancing market.)  This portion of the network 
for which we calculate LMPs and perform our 
clustering contains 10,841 buses, and has 88 GW 
of load and 107 GW of on-line capacity.  We use 
the Powerworld Simulator optimal power flow to 
calculate dispatch and LMPs. 
 
We apply a threshold of $20/MWH in our 
clustering algorithm.  This number is large 
enough to distinguish between congested groups 
and small enough to catch market power 
exploitation before it reaches an extreme level. 
 

The clustering algorithm results in 70 groups.  
The largest covers most of the North and Central 
regions and contains 7318 buses and 860 
generators.  This large group has an average bus 
LMP of $23.6/MWH.  Including this group, 
there are 8 clusters with more than 100 buses.  
The 62 remaining clusters have fewer than 100 
buses.   
 
In our screening process we examine the clusters 
for groups that have four or fewer units with 
some remaining capacity (with which to be 
substitutable), and which are not at their 
minimum capacities.  (If they are all at minimum 
dispatch, raising prices will neither change 
dispatch nor LMPs.)  This screens four clusters 
with possible local market power.  Some of their 
relevant information is provided in Table 1. 
Table 1. List of clusters to be screen for market power. 

cluster 18 26 30 32 
LMP 63 17 87 50
Load 213 0 73 29
Buses 4 3 6 3
units 3 4 3 2
 
We show one of the representative clusters in 
detail to describe here in the paper.  (All of them 
prove to have market power.)  Cluster 17 is easy 
to depict – having only 4 buses – and contains a 
respectable amount of load.  A local diagram of 
this load pocket is shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Cluster 17 Load Pocket.  

 

213 MW 

166 MW (constrained) 

$39/MWh 

48 MW at $63/MWh 
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From the diagram it is obvious that this is a load 
pocket.  The load of 213 MW is met in part by 
166 MW from outside the pocket through a 
capacity-constrained line.  The remaining power 
is supplied from three local generators.  Acting 
together, explicitly (if they have a common 
owner) or implicitly, they have the ability to 
raise prices without bound, with no effect on 
dispatch. 
 
To confirm this in our mathematical description 
we examine the corresponding columns of the M 
sensitivity matrix to determine if a strictly 
positive linear combination of these columns will 
equal zero.  This would confirm that it is 
possible to raise prices without changing 
dispatch. 
 
For this example we compute the M matrix, or 
more precisely, μ*M, if the multiplier μ* is not 
known.  There are 910 active generators, and the 
dispatch-price sensitivity matrix is a completely 
full 910 by 910 matrix.  First we extract the 3 by 
3 submatrix corresponding to the three 
generators in Cluster 17: 
 

−379.4 349.4 29.98 
349.4 −379.3 29.89 
29.98 29.89 −59.87 

 
The negative diagonal entries suggest that any 
generator acting alone will decrease its market 
share. Acting together however, they can raise 
prices without changing dispatches. The 
eigenvalues for this submatrix are -728.8,  -89.81 
and -0.0124. The eigenvector corresponding to 
the (near) zero eigenvalue is  
 

[ ]T5771.05775.05775.0  
A change in prices aligned with this eigenvector 
will result in no change in dispatch for these 
generators.  Furthermore, a full check of the 
entire matrix M shows that such a change in 
prices will have little effect on the dispatch 
anywhere in the system.  These generators have 

the ability to raise prices without changing 
dispatch, and hence enjoy market power 
potential.  Since their prices are significantly 
higher than the neighboring portion of the 
system, there could be concern that market 
power is being exploited.  Of course it is possible 
that the three units are all expensive peaking 
units and that the prices are justifiable.  One 
should consider this (possibly automated) 
process as flagging units for further 
investigation. 
 
The ultimate test for confirming market power 
ability is to run an OPF of the entire system with 
increased offer prices at the generators identified 
as having market power potential.  In the case of 
the load pocket associated with Cluster 17, we 
find that these generators can raise the prices 
arbitrarily with no change in net dispatch among 
the three generators.  They have unlimited 
market power in this location. 
 
From the configuration shown in Figure 2, it is 
obvious that Cluster 17 is a load pocket in which 
the generators will have joint market power.  
There is a single constrained line into this area.  
Of the four clusters listed in Table 1, three are of 
this type; they are isolated by a single 
constrained line.  The remaining cluster, Cluster 
30, is connected to the rest of the system through 
two lines, only one of which is constrained.  The 
eigenvalues of submatrix corresponding to the 
generator (buses) are –90.15 and –7.040.   
 
At first glance it would appear that these four 
generators (located at two buses) in group 30 do 
not have market power potential.  Perturbation 
studies with the OPF suggest the opposite. The 
generators in this load pocket can raise their 
prices without affecting dispatch.  To resolve this 
seeming inconsistency we examined the M 
matrix to determine which generators should be 
substitutable for those in group 30 and we 
identify two generators located in a different 
cluster.  Closer examination of the original OPF 
solution shows that these units are dispatched 
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and operating at their minimum generation 
limits.  In a practical sense, since their LMPs are 
lower than their offer prices, these generators are 
not substitutable for other sources, at least not in 
an incremental sense (and perhaps should not be 
included in the M matrix). 
 
As we discussed earlier, some suppliers may 
enjoy limited market power having the ability to 
raise price until they must compete with other 
higher-priced suppliers.  Since our threshold is 
set to $20/MWh, the suppliers in each load 
pocket should be able to raise their prices by this 
amount before reaching the price levels of the 
possible competitors.  Repeated OPFs confirm 
that this is true for all four of the load pockets we 
identify using the clustering algorithm. 
 
 
V. Discussion and Conclusions 
 
In this paper we report on our recent activities to 
extend our work on market power monitoring to 
address practical problems associated with large 
systems.  Our approach to detecting the potential 
for market power relies on the calculation and 
analysis of sensitivity matrices that relate price to 
dispatch and revenue.  Brute force analysis of the 
matrices is combinatorial in nature because it is 
necessary to consider all combinations of 
suppliers for market power potential.  The 
spectral approach we presented in [3] is 
promising and we continue to seek a way to 
apply the ideas to large systems.   
 
Here, we consider an alternative approach to 
screen for supplier combinations that may have 
market power potential.  Using a clustering 
algorithm that exploits information in LMP 
distributions, we identify candidates for further 
investigation that will use the sensitivity matrix 
and apply subsequent OPF perturbation analysis.  
To be clear, the information garnered from the 
LMP distribution is not the same information in 
the sensitivity matrix, and it can only detect load 
pockets and potential for market power that is 

evident from prices differences.  It will not be 
possible, for example, to detect market power 
potential that does not result in a pattern of price 
differences in the network.  Nevertheless, it 
provides another method for examining the 
network for some instances of market power; a 
topic of fundamental importance.  This interim 
approach complements the commonly-used 
concentration-based methods mentioned in the 
Introduction. 
 
In this paper we use the approximation for the 
sensitivity matrix found in [9][10] which 
requires knowledge of the system B-factors. In 
the appendix we describe how we calculated the 
factors for this study.  The Appendix focuses on 
a particular load bus based distributed slack that 
provides a full rank B-factor matrix with entries 
for all the generators.  This particular form is 
desirable because of the matrix inversions 
required in Equation (9). Otherwise we used a 
textbook approach for the approximation and it 
does not account for a shift in operating 
conditions.  For a more accurate estimate we 
recommend calculating the factors using a 
linearization about the specified OPF operating 
point, and using a distributed slack similar to that 
presented here. 
 
Our application to a large-scale model is 
encouraging.  It demonstrates that the 
calculations are practical.  In this study we 
limited our investigation to clusters containing 
no more than 4 generating units to focus on 
pockets with few suppliers.  With more complete 
information, it would be better to focus on 
regions with few owners as this would be a more 
accurate description of “few suppliers.”  
 
Analysis of cluster 30 revealed that we may have 
to reconsider how we represent generators 
operating at minimum dispatch in our sensitivity 
matrix since they neither have the ability to raise 
prices nor are they (incrementally) substitutable 
for other generators that attempt to raise prices. 
Generators that are on-line at minimum dispatch 
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are there for a reason other than economic supply 
of energy for the present demand.  They may be 
on line for system security, reserves, reactive 
support, etc., or to be available to supply energy 
(economically) at some future time.  In any case, 
they effectively do not contribute to the 
sensitivity analysis and we may choose to 
exclude them in our calculation and analysis of 
the sensitivity matrix. 
 
Finally, we conclude this discussion by pointing 
out the importance of a well-chosen threshold for 
the clustering algorithm.  It must be large enough 
that the separation in LMPs between clusters is 
truly representative of some limitation in the 
network, and small enough to identify 
exploitation of market power. Of course we 
would like to identify all instance of market 
power potential – which this method will not do 
– and we continue related work on examination 
of the sensitivity matrices using spectral 
approaches. 
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Appendix: B-factor calculation 
 
There is no unique way to calculate the B-factors 
that are used in the estimation of M.  We follow 
a traditional approach in which the line flows 
and power injections are approximated using a 
lossless linearized system and the losses are 
approximated as a quadratic function of the 
generator injections (see, for example,[11]): 

FgggP T
Loss =)(              (A1) 

from which the B-factors are simply 
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FB 2=               (A2) 
 
First we start with an approximation for the total 
lines losses in terms of bus angles, 

θθθ AGAP branch
TT

Loss =)(             (A3) 
where Gbranch is a diagonal matrix of branch 
conductances and A is the branch-node incidence 
matrix.  One can derive (A3) as the sum of 
branch losses assuming nominal voltages near 
1pu and truncating a cosine approximation at the 
quadratic term.  To transform (A3) into (A1) we 
need to express the angles in terms of the bus 
injections.  For this we use a lossless linearized 
angle model.  (This is somewhat inconsistent, 
and it can only be expected to give an 
approximate result in the end.)  In the following 
expression we separate the generator injections, 
g, the load injections, Pd, and the reference bus 
injection, Pr.  We also make the same distinction 
among angle variables.  The power injections in 
terms of angles are 
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         (A4) 

 
To proceed we must make some assumptions 
about a “slack” bus.  It turns out that the 
resulting B-factors will depend on the choice of 
slack, and while in practice the matrix M appears 
robust to variations in B, it is important to pick a 
sensible slack.  (See [4] for a discussion of the 
role of slack bus in marginal loss calculations.)  
Since we want a description of losses in terms of 
all the generators, we assign the reference bus to 
be at a load bus.  In the spirit of a distributed 
slack, we enforce a condition in which any 
change in load must be in constant proportion to 
the nominal load, 

( ) ( )rr
r

d
dd PP

P
P

PP Δ+=Δ+ *
*

*
*                (A5) 

(We require a choice of reference bus that has 
non-zero load present.) Based on the condition 
expressed in (A5), we left multiply (A4) by the 
matrix 
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where α = Pd
*/Pr

*.  This yields 
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                (A6) 
Partial inversion of the matrix gives an 
expression for angles in terms of generator 
injections: 
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gD 1−=                (A7) 
With (A7) we get our expression for (A1) from 
(A3), 

Fgg

gADGADggP
T

branch
TTT

Loss

=

= −− 11)(
 

The expression for the B-factors is then 
112 −−= ADGADgB branch

TTT             (A8) 
 
Using (A7) we can also get an approximation for 
the shift factors that describe branch flows in 
terms of generator injections, 

Wg
gADB

ABP

branch

branchbranch

=
=
=

−1

θ
 

where Bbranch is a diagonal matrix of branch 
susceptances. 
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