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Identification of methylation haplotype blocks aids in 
deconvolution of heterogeneous tissue samples and tumor 
tissue-of-origin mapping from plasma DNA

Shicheng Guo1,3, Dinh Diep1,3, Nongluk Plongthongkum1, Ho-Lim Fung1, Kang Zhang2, 
and Kun Zhang1,2,*

1Department of Bioengineering, University of California at San Diego, La Jolla, California, USA

2Institute for Genomic Medicine, University of California at San Diego, La Jolla, California, USA

Abstract

Adjacent CpG sites in mammalian genomes can be co-methylated due to the processivity of 

methyltransferases or demethylases. Yet discordant methylation patterns have also been observed, 

and found related to stochastic or uncoordinated molecular processes. We focused on a systematic 

search and investigation of regions in the full human genome that exhibit highly coordinated 

methylation. We defined 147,888 blocks of tightly coupled CpG sites, called methylation 

haplotype blocks (MHBs) with 61 sets of whole genome bisulfite sequencing (WGBS) data, and 

further validated with 101 sets of reduced representation bisulfite sequencing (RRBS) data and 

637 sets of methylation array data. Using a metric called methylation haplotype load (MHL), we 

performed tissue-specific methylation analysis at the block level. Subsets of informative blocks 

were further identified for deconvolution of heterogeneous samples. Finally, we demonstrated 

quantitative estimation of tumor load and tissue-of-origin mapping in the circulating cell-free 

DNA of 59 cancer patients using methylation haplotypes.

Introduction

Mammalian CpG methylation is a relatively stable epigenetic modification, which can be 

transmitted across cell division1 through DNMT1, and dynamically established, or removed 

by DNMT3 A/B and TET proteins. Due to the locally coordinated activities of these 

enzymes, adjacent CpG sites on the same DNA molecules can share similar methylation 

status, although discordant CpG methylation has been observed, especially in cancer2. The 
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theoretical framework of linkage disequilibrium3, which was developed to model the co-

segregation of adjacent genetic variants on human chromosomes in human populations, can 

be applied to the analysis of CpG co-methylation in cell populations. A number of studies 

related to the concepts of methylation haplotypes4, epi-alleles5, or epi-haplotypes6 have been 

reported, albeit at small numbers of genomic regions or limited numbers of cell/tissue types. 

Recent data production efforts, especially by large consortia7, have produced a large number 

of whole-genome, base-resolution bisulfite sequencing data sets for many tissue and cell 

types. These public data sets, in combination with additional WGBS data generated in this 

study, allowed us to perform full-genome characterization of locally coupled CpG 

methylation across the largest set of human tissue types available to date, and annotate these 

blocks of co-methylated CpGs as a distinct set of genomic features.

DNA methylation is cell-type specific, and the pattern can be harnessed for analyzing the 

relative cell composition of heterogeneous samples, such as different white blood cells in 

whole blood8, fetal components in maternal circulating cell-free DNA(cfDNA)9, or 

circulating tumor DNA (ctDNA) in plasma9. Most of these recent efforts relies on the 

methylation level of individual CpG sites, and are fundamentally limited by the technical 

noise and sensitivity in measuring single CpG methylation. Recently, Lehmann-Werman 

demonstrated a superior sensitivity with multi-CpG haplotypes in detecting tissue-specific 

signatures in cfDNA10, although based on the sparse genome coverage of Illumina 450k 

methylation arrays (HM450K). Here we performed an exhaustive search of tissue-specific 

methylation haplotype blocks across the full genome, and proposed a block-level metric, 

termed methylated haplotype load (MHL), for a systematic discovery of informative 

markers. Applying our analytic framework and identified markers, we demonstrated accurate 

determination of tissue origin and prediction of cancer status in clinical plasma samples 

from patients of lung cancer (LC) and colorectal cancer (CRC) (Fig. 1a).

Results

Identification and characterization of methylation haplotype blocks

To investigate the co-methylation status of adjacent CpG sites along single DNA molecules, 

we extended the concept of genetic linkage disequilibrium3,4 and the r2 metric to quantify 

the degree of coupled CpG methylation among different DNA molecules. CpG methylation 

status of multiple CpG sites in single- or paired-end Illumina sequencing reads were 

extracted to form methylation haplotypes, and pairwise “linkage disequilibrium” of CpG 

methylation r2 was calculated from the fractions of different methylation haplotypes (see 

Methods).

We started with 51 sets of published WGBS data from human primary tissues11,12, as well 

as the H1 human embryonic stem cells, in vitro derived progenitors13 and human cancer cell 

line14,15. We also included an in-house generated WGBS dataset from 10 adult tissues of 

one human donor. Across these 61 samples (>2000x combined genome coverage) we 

identified a total of ~ 55 billion methylation haplotype informative reads that cover 58.2% of 

autosomal CpGs. The uncovered CpG sites were either in regions with low mappability, or 

CpG sparse regions where there are too few CpG sites within Illumina read pairs for 

deriving informative haplotypes. We partitioned the human genome into blocks of tightly 
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coupled CpG methylation sites, called methylation haplotype blocks (MHBs, Fig. 1b), using 

a r2 cutoff of 0.5. We identified 147,888 MHBs at the average size of 95bp and minimum 3 

CpGs per block, which represents ~0.5% of the human genome that tends to be tightly co-

regulated on the epigenetic status at the level of single DNA molecules (Supplementary 

Table 1, Supplementary Fig. 1a, b). The majority of CpG sites within the same MHBs are 

near perfectly coupled (r2 ~1.0) regardless of the sample type. We found that the fraction of 

tightly coupled CpG pairs (r2 > 0.9, Fig. 1c) slightly decreased over CpG spacing from stem 

and progenitor cells (94.8%, mostly cultured cells) to somatic cells (91.2%, mixture of 

primary adult tissues) to cancer cells (87.8%, mixture of CRC tissues and LC cell lines). The 

loss of LD in cancer cells was validated by another independent WGBS data from primary 

kidney cancer tissues16 (Supplementary Fig. 2). Although the WGBS data came from 

different laboratories that might have batch technical differences, we found that that 

methylation LD extends further over CpG distance in stem and progenitor cells, which is 

consistent with our previous observations on 2,020 CpG islands4 for culture cell lines and 

with another report17. Interestingly, in cancer samples, we observed a reduction of perfectly 

coupled CpG pairs, which could be related to the pattern of discordant methylation recently 

reported in variable methylation regions (VMR)2,18. The cancer-specific decayed MHBs 

were enriched for cancer related pathways and functions (Supplementary Table 2). 

Nonetheless, the majority of MHBs in cancers still contains tightly coupled CpGs (87.8%), 

allowing us to harness the pattern for detecting tumor in plasma. We further validated the co-

methylation of these MHBs in 101 ENCODE RRBS datasets and 637 TCGA HM450K 

datasets (Supplementary Note, Supplementary Fig. 3).

Co-localization of methylation haplotype blocks with known regulatory elements

The MHBs established by 61 sets of WGBS data represent a distinct type of genomic feature 

that partially overlaps with multiple known genomic elements (Fig. 1d). Among all MHBs, 

60,828 (41.1%) located in intergenic regions while 87,060 (58.9%) regions in transcribed 

regions. These MHBs were significantly enriched (P <1.0×10−6) in enhancers, super 

enhancers, promoters, CpG islands and imprinted genes. In addition, we observed modest 

depletion in the lamina-associated domains (LAD)19 and the large organized chromatin K9 

modifications (LOCK) regions20 modest enrichment in TAD21. Importantly, we observed a 

strong (26-fold) enrichment in VMR (Fig. 1e), suggesting that increased epigenetic 

variability in a cell population or tissue can be coordinated locally among hundreds of 

thousands of genomic regions22. We further examined a subset of MHBs that do not overlap 

with CpG islands, and observed a consistent enrichment pattern (Fig. 1e, Supplementary 

Fig. 1c), suggesting that local CpG density alone does not account for the enrichment. 

Previous studies on mouse and human23,24 demonstrated that dynamically methylated 

regions were associated with regulatory regions such as enhancer-like regions marked by 

H3K27ac and transcription factor binding sites. Using publicly histone mapping data for 

human adult tissues, we found co-localization of methylation haplotype blocks with marks 

for active promoters (H3K4me3 with H3K27ac), but not for active enhancers25 (no peak for 

H3K4me1) (Supplementary Fig. 4). We found that enhancers tend to overlap with CpG 

sparse MHBs, whereas the co-localization with super enhancers were independent of CpG 

density (Supplementary Fig. 1c). Therefore, MHBs likely capture the local coherent 

epigenetic signatures that are directly or indirectly coupled to transcriptional regulation.
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Block-level analysis of human normal tissues and stem cell lines with methylation 
haplotype load

To enable quantitative analysis of the methylation patterns within individual MHBs across 

many samples, we need a single metric to define the methylated pattern of multiple CpG 

sites within each block. Ideally this metric is not only a function of average methylation 

level for all the CpG sites in the block, but also can capture the pattern of co-methylation on 

single DNA molecules. Therefore, we defined methylation haplotype load (MHL), a 

weighted mean of the fraction of fully methylated haplotypes and substrings at different 

lengths (i.e. all possible substrings, see Methods). Compared with other metrics used in the 

literature (methylation level, methylation entropy, epi-polymorphism and haplotypes 

counts), MHL is capable of distinguishing blocks that have the same average methylation 

but various degrees of coordinated methylation (Fig. 2). In addition, MHL is bounded 

between 0 and 1, which allows for direct comparison of different regions across many data 

sets.

We next asked whether treating MHBs as individual genomic features and performing 

quantitative analysis based on MHL would provide an advantage over previous approaches 

using individual CpG sites or weighted (or unweighted) averaging of multiple CpG sites in 

certain genomic windows. Therefore, we clustered 65 WGBS data sets (including 4 

additional colon and lung cancer WGBS sets26) from human solid tissues based on MHL. 

Unsupervised clustering with the 15% most variable MHBs showed that, regardless of the 

data sources, samples of the same tissue origin clustered together (Fig. 3a), while cancer 

samples and stem cell samples exhibit distinct patterns from human adult tissues. PCA 

analysis on all MHBs yielded a similar pattern (Supplementary Fig. 5). To identify a subset 

of MHBs for effective clustering of human somatic tissues, we calculated a tissue specific 

index (TSI) for each MHB. Feature selection using random forest identified a set of 1,365 

tissue-specific MHBs (Supplementary Table 3) that can predict tissue type at an accuracy of 

0.89 (95%CI: 0.84–0.93), although several tissue types share rather similar cell 

compositions (i.e. muscle vs. heart). Using these MHBs, we compared the performance 

between MHL, average methylation fraction(AMF) in the MHBs and all individual CpG 

methylation fraction(IMF). MHL and AMF provided similar tissue specificity, while MHL 

has a lower noise (background: 0.29, 95%CI: 0.23–0.35) compared with AMF (background: 

0.4, 95%CI: 0.32–0.48). Clustering based on individual CpGs in the blocks has the worst 

performance, which might be due to higher biological or technical viability of individual 

CpG sites (Fig. 3c). Thus, block-level analysis based on MHL is advantageous over single 

CpG or local averaging of multiple CpG sites in distinguishing tissue types.

The human adult tissues that we used have various degrees of similarity amongst each other. 

We hypothesize that this is primarily defined by their developmental lineage, and that the 

related MHBs might reveal epigenetic insights relevant to germ layer speciation. We 

searched for MHBs that have differential MHL among data sets from the three germ layers. 

In total we identified 114 ectoderm-specific MHBs (99 hyper- and 15 hypo-methylated), 75 

endoderm specific MHBs (58 hyper and 17 hypo-methylated) and 31 mesoderm specific 

MHBs (9 hyper and 22 hypo-methylated) (Supplementary Table 4). Cluster analysis based 

on layer specific MHBs shows expected aggregation among tissues of same the lineage (Fig. 
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3b). We speculated that some of these MHBs might capture binding events of transcription 

factors (TF) specific to developmental germ-layers. Overlapped with TF binding events 

identified from ENCODE TF binding data27, we observed patterns of TFs binding to layer 

specific MHBs. (Supplementary Fig. 6). For layer specific MHBs with low MHL, we 

identified 53 TFs in mesoderm specific MHBs, 71 in endoderm specific MHBs and 2 in 

ectoderm specific MHBs. Gene ontology analysis showed TFs binding to mesoderm exhibit 

negative regulator activity, while TFs binding to endoderm exhibited positive regulator 

activity (Supplementary Table 5). For layer specific MHBs with high MHL, we identified 38 

TFs in mesoderm specific MHBs, 102 in endoderm specific MHB and 145 in ectoderm 

specific MHBs. Interestingly, ectoderm and endoderm shared few bounded TFs, while 

mesoderm tissues share multiple groups of TFs with ectoderm and endoderm. We identified 

two endoderm specific high-MHL regions, which are associated with ERR1 and NANOG. 

This is consistent with a previous finding that mouse ES cells differentiated spontaneously 

into visceral/parietal endoderm upon NANOG knock-out28. Mesoderm and endoderm 

shared low-MHL regions might have regulatory functions in the fate commitment towards 

multiple tissues, whereas ectoderm specific high-MHL regions might induce the ectoderm 

development by suppressing the path towards the immune lineage (Supplementary Fig. 6). 

These observations are indicative of two distinctive “push” and “pull” mechanisms in the 

transition of cell states that have been harnessed for the induction of pluripotency by over-

expressing lineage specifiers29.

Methylation-haplotype based analysis of circulating cell-free DNA in cancer patients and 
healthy donors

A unique aspect of methylation haplotype analysis is that the pattern of co-methylation, 

especially within MHBs, is robust in capturing low-frequency alleles among a 

heterogeneous population of molecules or cells, in the presence of biological noise or 

technical variability (ie. incomplete bisulfite conversion or sequencing errors). To explore 

potential clinical applications, we next focused on the methylation haplotype analysis of 

cfDNA from healthy donors and cancer patients, of which various low fractions of DNA 

molecules were released from tumor cells and potentially carry epigenetic signatures 

different from blood. We isolated cfDNA from human plasma of 75 normal individuals 

(NCP), 29 lung cancer patients (LCP), and 30 colorectal cancer patients (CCP). Due to the 

limited DNA availability, we performed scRRBS30 and obtained an average of 13 million 

paired-end 150bp reads per sample. On average, 57.7% WGBS-defined MHBs were covered 

in our RRBS data set from clinical samples.

We queried the presence of tumor specific signatures in the plasma samples, using 

methylation haplotypes identified from tumor tissues as the reference and normal samples as 

the negative controls. For five LCP and five CCP samples, we obtained matched primary 

tumor tissues, and generated RRBS data from 100 ng of tumor genomic DNA. Focusing on 

the MHBs with low MHL in the blood, we identified cancer-associated highly methylated 

haplotypes (caHMHs). Such haplotypes were present only in the tumor tissues and the 

matched plasma from the same patient, but not in whole blood or any other non-cancer 

samples. We found caHMHs in all cancer patient plasma samples (Average=36, IQR=17, 

Supplementary Table 6). These caHMHs were associated with 183 genes, some of which are 
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known to be aberrantly methylated in human cancers such as WDR37, VAX1, SMPD1 

(Supplementary Table 6). Next, we extended the analysis to 49 additional cancer plasma 

samples that have no matched tumor samples, using 75 NCPs as the background. On average 

60 (IQR=31) caHMHs were identified for each cancer plasma sample (Supplementary Table 

6). Interestingly, a significant fraction (35%) of caHMHs called on matched tumor-plasma 

pairs were also detected the expanded set of cancer patient plasma samples. Most caHMHs 

were individual specific, while several caHMHs were present in at least 53% CCPs and 62% 

LCPs (Supplementary Fig. 7). Improving the sampling depth, by using more input cfDNA or 

reducing sample loss during the experiments, will likely increase the number of caHMHs 

commonly observed in multiple patients.

Next we sought to quantify the cancer DNA fraction in cancer plasma samples using 

deconvolution. We used the reference data from primary cancer biopsies (LCT and CCT) 

and from 10 normal tissues, and estimated that a predominant fraction, 72.0% (IQR=40%) in 

the cancer and normal plasma were contributed by white blood cells, which is consistent 

with the levels reported recently based on shallow WGBS (69.4%)9. Primary tumor and 

normal tissue-of-origin contributed at the similar levels of 2.3% (IQR=3.7%) and 3.0% 

(IQR=4.4%). In contrast, when we applied the same deconvolution analysis to normal 

plasma, we found only residual plasma fragments with a tumor signature (0.17%, IQR=2.9% 

for CCT and 1.0%, IQR=3.1% for LCT), which were significantly lower (P=3.4x10−5 and 

5.2x10−10 for CCT and LCT, two-sample t-test) than cancer plasma. We also found that 

23/30 CCPs and only 10/75 NCPs have detectable contribution from CCT while 26/29 LCPs 

and 20/75 NCPs have detectable contribution from LCT (Supplementary Fig. 8). Therefore, 

cfDNA contains a relatively stable fraction of molecules released from various normal 

tissues, whereas in cancer patients tumor cells released DNA molecules at higher levels than 

normal tissues (Supplementary Table 7). The fractions of white blood cells observed are 

lower than what was reported previously9, and is likely due to the inclusion of 10 normal 

tissue types in deconvolution.

Next, we searched for a small subset of MHBs among all the RRBS targets that have 

significantly higher levels of MHL in cancer plasma than in normal plasma. We found 81 

and 94 MHBs with significantly higher MHL for CCPs and LCPs (Supplementary Table 8). 

The majority (71/81 for CCP and 83/94 for LCP) were also present in at least one of the 

matched primary tumor-plasma pairs. Some of these regions (such as HOXA3) have been 

shown aberrantly methylated in lung cancer and colorectal cancer. Using these MHBs as 

markers, the diagnostic sensitivity is 96.7% and 93.1% for colorectal cancer and lung cancer 

respectively at the specificity 94.6% and 90.6% respectively. As a comparison, we also 

performed a prediction based on average 5mC methylation level within these MHB regions, 

or based on single CpG sites. MHL was found to be superior to average 5mC methylation 

level (sensitivity of 90.0% and 86.2%; specificity of 89.3% and 90.6% for CCP and LCP 

respectively) and methylation of individual CpG site (sensitivity of 89.6% and 80.6%; 

specificity of 89.3% and 92.0%).

We then sought to use the information from normal human tissues, primary tumor biopsies 

and cancer cell lines to improve the detection of ctDNA. We started by selecting a subset of 

MHBs that show high MHL (>0.5) in primary cancer biopsies and low MHL (<0.1) in whole 
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blood, then clustered these MHBs into three groups based on the MHL in all normal and 

cancer plasma, as well as cancer and normal tissues (Fig. 4a,b). We identified a subset 

(Group II) of MHBs that have high MHL in cancer tissues and low MHLs in normal tissues 

(Supplementary Table 9). Cancer plasma showed significantly higher MHL in these regions 

than normal plasma (P=1.4×10−12 and 6.2×10−8 for CCP and LCP). By computationally 

mixing the sequencing reads from cancer tissues and whole blood samples (WB), we created 

synthetic admixtures at various levels of tumor fraction. We found that MHL is 2–5 folder 

higher than the methylation level of individual CpG sites across the full range of tumor 

fractions (Supplementary Table 9). Remarkably, MHL provides additional gain of signal-to-

noise ratio (mean divided by standard deviation) compared with AMF as the fraction of 

tumor DNA decreases below 10%, which is typical for clinical samples (Fig. 4c). We then 

took the individual plasma data sets, and predicted the tumor fraction based on the MHL 

distribution established by computational mixing (Fig. 4a,b). Except for a small number 

(N<5) of outliers, we observed significantly higher average MHL in cancer plasma than in 

normal plasma (Fig. 4d). Note that all Group II MHBs were selected without using any 

information from the plasma samples, and hence they should be generally applicable to 

other plasma samples. Interestingly, we also found that the estimated tumor DNA fractions 

were positively correlated with normalized cfDNA yield from the cancer patients 

(P=0.000023, Supplementary Fig. 9; Supplementary Table 10).

Recent studies9,10,31 have demonstrated that epigenetic information imbedded in cfDNA has 

the potential for predicting tumor’s tissue-of-origin. Consistently, we found that tissue-of-

origin derived methylation haplotypes were the most abundant fraction in cancer plasma 

(Supplementary Table 6, 7). To predict tissue-of-origin with quantifiable sensitivity and 

specificity with MHBs, we compiled 43 WGBS and RRBS data sets for 10 human normal 

tissues that have high cancer incident rate, and identified a set of 2,880 tissue-specific MHBs 

(Supplementary Table 11). We then used these tissue-specific MHBs or subsets to predict 

the tissue-of-origin for the cancer plasma samples. Although we found many tissue-of-origin 

specific MHBs that have low MHL in normal plasma (Fig. 5a), the multiclass prediction 

based on random forest yielded limited power. This is likely due to the large number of the 

tissue classes (N=10). We then adopted an alternative approach by counting the number of 

methylated (or high MHL) tissue-specific MHBs in the plasma samples and comparing with 

all other tissues, to infer the most probable tissue-of-origin. At the cutoff of minimal 10 

tissue-specific MHL signals per tissue type, we observed an average of 90% accuracy for 

mapping a data set from the primary tissue to its tissue type (Fig. 5b). We then applied this 

method to the plasma data, and achieved an average prediction accuracy of 82.8%, 88.5%, 

91.2% for the CCP, LCP, and NCP samples respectively with 5-fold cross-validation (Fig. 

5c, Supplementary Fig. 10, Supplementary Table 12). The classified samples were mainly 

due to the inclusion of samples with heterogeneous clinical status: 4 out of 5 CCP were from 

metastatic colorectal cancer patients while the fifth was in fact tubular adenoma; one 

misclassified LCP sample came from a patient with cryptococcal pulmonary infection.

Discussions

In this study, we extended a well-established concept in population genetics, linkage 

disequilibrium, to the analysis of co-methylated CpG patterns. While the mathematical 
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representations are identical, there are two key differences. First, traditional linkage 

disequilibrium was defined on human individuals in a population, whereas in this study the 

analysis was performed on the diploid genome of individual cells in a heterogeneous cell 

population. Second, linkage disequilibrium in human populations depends on the mutation 

rate, frequency of meiotic recombination, effective population size and demographic history. 

The LD level decays typically over the range of hundreds of kilobases to megabases. In 

contrast, CpG co-methylation depends on DNA methytransferases and demethylases, which 

tend to have much lower processivity (if any), and, in the case of hemi-methyltransferases, 

much lower fidelity compared with DNA polymerases32. Therefore, methylation LD decays 

over much shorter distance in tens to hundreds of bases, with the exception of imprinting 

regions. Even if longer-read sequencing methods were used, we do not expect a radical 

change of the block-like pattern presented in this work, which is supported by another recent 

study33. Nonetheless, these short and punctuated blocks capture discrete entities of 

epigenetic regulation in individual cells widespread in the human genome. This phenomenon 

can be harnessed to improve the robustness and sensitivity of DNA methylation analysis, 

such as the deconvolution of data from heterogeneous samples including cfDNA.

While we demonstrated a superior power of MHL over single-CpG methylation level or 

average methylation level in classification and deconvolution using MHBs as features, the 

accuracy is slightly less than what has been reported on the deconvolution of blood cell 

types. One major difference is that each reference tissue type itself is a mixture of multiple 

cell types that might share various degrees of similarity with another reference tissue type. 

Furthermore, most solid tissues also contain blood vessels and blood cells. Given such 

background signals, the accuracy that we achieved is promising, and will be further 

improved once reference methylomes of pure adult cell types are available.

Practically, the amount of cfDNA per patient is rather limited, typically in the range of tens 

of nanogram. We therefore used 1–10 ng per patient for the scRRBS experiments. 

Considering the material losses during bisulfite conversion, library preparation, and the 

sequencing depth, there were most likely no more than 30 genome equivalents in each data 

set. Our data set is rather sparse, especially when the fraction of tumor DNA is low. Hence, 

the chance of finding cancer-specific methylation haplotypes in a specific region consistently 

across many samples is low. This is likely the reason that marker sets selected using random 

forest has limited sensitivity and specificity. However, epigenetic abnormalities tend to be 

more widespread across the genome (compared with somatic mutations), and hence, we 

managed to integrate the sparse coverage across many loci to achieve accurate prediction by 

direct counting of methylated haplotypes within the informative genomics regions. 

Importantly, we showed that, in cancer patients, plasma contains circulating DNA fragments 

from both normal and malignant cell types detectible with methylation haplotyping. This 

allowed us to detect the presence of cancer and map the tissue or organ of tumor growth. 

Interestingly, when we combined all the data from primary tumors and cancer cell lines as a 

“pan-cancer” tissue, and included it as the 11th reference for tissue-of-origin mapping, the 

detection sensitivity and specificity was further improved (Supplementary Fig. 11,12), 

suggesting that a joint analysis of cancer signature and tissue-of-origin signature is more 

sensitive than focusing on cancer signature alone. In summary, methylation haplotyping in 

plasma is a promising strategy for early detection of tumor and its primary growth site, as 
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well as continuous monitoring of tumor progression and metastasis to multiple organs. With 

more plasma samples from patients at multiple clearly defined cancer stages and from 

healthy controls, it is possible to further improve the prediction sensitivity and specificity to 

a level adequate for clinical testing.

Online Methods

Normal and cancer samples

Ten human primary tissues were purchased from BioChain Institute Inc. Cancer patient 

tissues and plasma samples were purchased from UCSD Moores Cancer Center and normal 

plasma samples were obtained from UCSD Shirley Eye center under IRB protocols 

approved by UCSD Human Research Protections Program (HRPP). All data sets generated 

in this study or obtained from public databases were listed in Supplementary Table 13.

Generation of DNA libraries for sequencing

Extracted genomic DNA were prepared for bisulfite sequencing using published protocols. 

For whole genome bisulfite (WGBS) and reduced representation bisulfite sequencing 

(RRBS), the DNA fragments were adapted to barcoded methylated adaptors (Illumina). For 

WGBS, the adapted DNA were converted using the EZ DNA Methylation Lightning kit 

(Zymo Research) and then amplified for 10 cycles using iQ SYBR Green Supermix 

(BioRad). For RRBS, the adapted DNA were converted using the MethylCode™ Bisulfite 

Conversion kit (Thermo Fisher Scientific) and amplified using the PfuTurboCx polymerase 

(Agilent) for 12–14 cycles. Libraries were pooled and size selected using 6% TBE 

polyacrylamide gels. Libraries were sequenced using the Illumina HiSeq platform for 

paired-end 100–111 cycles, the Illumina MiSeq platform for paired-end 75 cycles, and the 

GAIIx (WGBS only) for single-end 36 cycles.

Read mapping

WGBS and RRBS data were processed in similar fashions. We first trimmed all PE or SE 

fastq files using trim-galore version 0.3.3 to remove low quality bases and biased read 

positions. Next, the reads were encoded to map to a three-letter genome via conversion of all 

C to T or G to A if the read appears to be from the reverse complement strand. Then the 

reads were mapped using BWA mem version 0.7.5a, with the options “-B2 -c1000” to both 

the Watson and Crick converted genomes. The alignments with mapping quality scores of 

less than 5 were discarded and only reads with a higher best mapping quality score in either 

Watson or Crick were kept. Finally, the encoded read sequences were replaced by the 

original read sequences in the final BAM files. Overlapping pair end reads were also clipped 

with bamUtils clipOverlap function.

Methylation haplotype blocks (MHBs)

Human genome was split into non-overlapping “sequenceable and mappable” segments 

using a set of in-house generated WGBS data from 10 tissues of a 25-year adult male donor. 

Mapped reads from WGBS data sets were converted into methylation haplotypes within 

each segment. Methylation linkage disequilibrium was calculated on the combined 

methylation haplotypes. We then partitioned each segment into methylation haplotype 
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blocks (MHBs). MHBs were defined as the genomic region in which the r2 value of two 

adjacent CpG sites is no less than 0.5.

High methylation linkage regions defined based on ENCODE and TCGA data

We collected RRBS data from the ENCODE project (downloaded from UCSC Browser) and 

HM450K data from the TCGA project. Pearson correlation coefficient were calculated 

between adjacent CpG sites across all samples. The Takai and Jones’s sliding-window 

algorithm34 was used to identify blocks of highly correlated methylation. We set a 100-base 

window in the beginning of genomic position and move the window to the downstream 

when there are least 2 probes in the window. Calculate the total probes in extended regions 

until the last window does not meet the criteria. The regions covering at least 4 probes were 

defined as CpG dense regions, and the average Pearson correlation coefficients among all 

the probes in cancer and normal samples were calculated respectively. Simulation analysis to 

investigate the relationship between LD at the single-read level and correlation coefficients 

of average 5mC between two CpG sites were performed based on random sampling of 10 

different methylation haplotypes from each of the 1000 individuals.

Enrichment analysis of methylation haplotype blocks for known functional elements

Enrichment analysis was performed by random sampling as previously described35. 

Genomic regions with same number (147,888), fragment length distribution and CpG ratios 

were randomly sampled within the mappable regions (genomic regions beyond CRG 

mappability blacklisted regions and non-cover regions in our WGBS dataset), and repeated 

1,000,000 times. Statistical significance was estimated based on empirical p-value (P). Fold 

changes (enrichment factors) were calculated as the ratios of observation over expectation. 

Exon, intron, 5-UTR, 3-UTR were collected UCSC database. Enhancer definition was based 

on Andersson et al36, super enhancer was derived from Hnisz et al37 and promoter regions 

were based on the definition by Thurman et al38. All the genomic coordinates were based on 

GRCh37/hg19.

Methylation haplotype load (MHL)

We defined a methylated haplotype load (MHL) for each candidate region, which is the 

normalized fraction of methylated haplotypes at different length:

Where l is the length of haplotypes, P(MHi) is the fraction of fully successive methylated 

CpGs with i loci. For a haplotype of length L, we considered all the sub-strings with length 

from 1 to L in this calculation. wi is the weight for i-locus haplotype. Options for weights 

are wi = i or wi = i2 to favor the contribution of longer haplotyes. In the present study, wi = i 

was applied.

Following the concept of Shannon entropy H(x), methylation entropy (ME) for haplotype 

variable in specific genome region were calculated with the following formula:
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For a genome region with b CpG loci and n methylation haplotype, P(Hi) represents the 

probability of observing methylation haplotype Hi, which can be calculated by dividing the 

number of reads carrying this haplotype by the total reads in this genomic region. ME is 

bounded between 0 and 1, and can be directly compared across different regions genome-

wide and across multiple samples. Methylation entropy were widely used in the 

measurement of variability of DNA methylation in specific genome regions39.

Epi-polymorphism40 was calculated as

where Pi is the frequency of epi-allele i the population (with 16 potential epialleles 

representing all possible methylation states of the set of four CpGs).

Developmental germ layers and tissue specific MHBs

To investigate the germ layer and tissue specific MHBs, group specific index (GSI, see 

below) was defined. An empirical threshold GSI>0.6 was used define layer and tissue 

specific MHBs. Layer specific MHBs were selected again to show the ability to distinguish 

different development layers. Tissue specific MHBs were further used for tissue mapping 

and cancer diagnosis.

n indicates the number of the groups. MHL(j) denotes the average of MHL of jth group. 

MHL(max) denotes the average of MHL of highest methylated group.

Genome-wide methylation haplotype load matrix (MHL) analysis

Methylation haplotype load was calculated for all MHBs on each sample. The MHBs with 

top 15% MHL were included in the heatmap to investigate the tissue relationship. The 

Euclidean distance and Ward.D aggregation were used in the heatmap plot (R, gplots 

package41). PCA (R package prcomp42) was conducted with default setting of the 

corresponding R packages42. Before the PCA analysis, raw data were quantile normalized 

within same tissue/cell groups. Standardization (scale) and batch effect elimination (the 

Combat algorithm43) were also applied to decrease the random noise. MAF and IMF were 
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extracted from BAM files with customized PileOMeth (https://github.com/dpryan79/

PileOMeth). Differential MHL analysis between cancer plasma and normal plasma were 

based on two-tailed Student’s t-test or Wilcoxon rank sum test. Correction for multiple 

testing was based on false discovery rate (FDR). Statistic variations were estimated among 

different groups and therefore one-way ANOVA analysis could be conducted.

Simulation and real-data deconvolution analysis

Deconvolution analysis was performed on simulated and experimental datasets. The 

deconvolution references were constructed on data from human normal primary tissues, 

whole blood (WB), colorectal cancer tissues (CCT) and lung cancer tissues (LCT). For the 

simulation analysis, methylation haplotypes from CCT and WB were randomly mixed to 

generate a series of synthetic data sets with CCT factions ranging from 0.1% to 50%. We 

then plotted the expected and observed CCT factions. Although MHL is a non-linear 

metrics, when mixing CCT and WB, we found the deconvolution result is accurate with log-

transform (median root-mean-square-error < 5%), which is within the acceptable region of 

the deconvolution method44 when the contribution of colorectal fraction is less than 20%. 

Tissue specific MHBs were selected features for deconvolution based on non-negative 

decomposition with quadratic programming9,44,45. MHL values were log-transformed before 

deconvolution.

Highly methylated haplotype in cancer plasma and normal tissues

Highly methylated haplotype (HMH) was defined as the methylation haplotype that have at 

least 2 methylated CpGs in the haplotype. Cancer-associated highly methylated haplotypes 

(caHMH) were the ones only found in cancer plasma samples but absence in any of the 

normal plasma samples and normal tissues. For the analysis of matched tumor-plasma data 

from the same individuals, caHMHs were the HMHs present in both the cancer plasma and 

the matched primary cancer tissues, but absence in all normal samples. In the analysis of 

plasma samples with no matched primary tumor tissue, we identified caHMHs by 

subtracting HMHs found in cancer plasma with those present in all normal tissues and all 

normal plasma samples.

Simulation of MHL in plasma mixture and comparison between MHL and 5mC in the 
plasma mixture

In evaluating caHMHs as potential markers for non-invasive diagnosis, we hypothesized that 

cfDNA in plasma is a mixture of DNA fragments from cancer cells and WB cells at different 

ratios (cancer DNA fragment from 0.1% to 50%). We created synthetic mixtures by random 

sampling of haplotypes in the Group II regions from cancer and WB data sets at different 

ratios, and repeated 1,000 times to empirically determined the mean and variance of MHL 

and 5mC levels at different fractions of cancer DNA. Once an empirical “standard curve” 

was constructed, we then used it to estimate the fraction cancer DNA in the plasma samples. 

In addition, we assessed the relationship between estimated cfDNA fraction and log-

transformed normalized plasma cfDNA yield by linear regression. Signal-to-noise ratio to 

MHL and 5mC was conducted with the 1,000-time sampling procedure and then the average 

estimated tumor fraction as well as the variation (standard deviation) were recorded and the 

ratio was calculated to measure the performance of the metric.
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Mapping cancer tissue-of-origin with plasma DNA

The workflow for data analysis is illustrated in Supplementary Fig. 13. Tissue specific 

methylation haplotype blocks (tsMHBs) were identified by a 2-tailed t-test with FDR 

correction. Additional statistical analyses with MHL were also conducted by 2-tailed t-test 

unless stated explicitly. CRC plasma and LC plasma distinguish prediction evaluation were 

applied random forecast therefore the test and validation sample were independent. Tissue-

of-origin prediction was performed using a tsMHBs counting strategy, in which the tissue-

of-origin of the plasma were assigned to the reference group with the maximum number of 

tsMHB fragments (assignment by maximum likelihood). Specifically, in the first stage, the 

tissue-specific MHBs were identified with WGBS and RRBS datasets from solid tissues in 

the training samples. tsMHBs (each tissue have ~ 300 MHBs) were identified with the cutoff 

GSI> 0.1. In the second stage, the predictions were validated with our own RRBS dataset 

that included 30 colorectal cancer plasma, 29 lung cancer plasma and 75 normal plasma 

samples. In the test dataset, we separated the samples into 5 parts so that 5-fold cross-

validation could be applied to estimate the stability of the prediction, and the number of 

tissue-specific MHB features were iterating from 50 to 300. The minimum number of 

features was selected when the accuracy for cancer plasma is higher than 0.8 and the 

accuracy for normal plasma is higher than 0.9 since we require high specificity in clinical 

applications. The selected number of features were used in the remaining samples to 

measure the accuracy of tissue-mapping. The variations of sensitivity, specificity, and 

accuracy in different subsets of 5-fold cross-variation were low (training dataset standard 

deviation<0.04 while testing dataset standard deviation<0.14)

Joint analysis of tumor and normal tissue for non-invasive cancer detection in plasma

Cancer-specific markers (GSI scores derived from 8 CRC, 8 LC and 2 KC) and tissue-

specific markers were integrated and considered as a “pan-cancer tissue”, and then together 

with the data sets from 10 normal tissues were applied for the tissue/reference-specific MHB 

identification. The top 200 MHBs specific to each of the 11 reference tissues were selected 

as the prediction features. The distribution for the reference specific MHBs in 75 normal 

plasma samples, 30 CRC plasma and 29 LC plasma samples were constructed for 11 

references. The p-value of each reference in the plasma could be inferred by comparison 

with background distribution of the reference in normal plasma. Meanwhile, tissue-of-origin 

was assigned by maximum Z-scores among different references. With leave-one out cross-

validation on normal plasma, the Type-1 error (FDR) for the corresponding Z-score 

threshold and sensitivity were estimated. Finally, setting a predefined Z-score threshold 

could be also used for tissue-of-origin assignment, meanwhile, ROC curve was built to show 

the performance of the predictors.

Data Availability

WGBS and RRBS data are available at the Gene Expression Omnibus (GEO) under 

accession GSE79279.
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Code Availability

All codes and scripts developed for this study are available for non-commercial use at http://

genome-tech.ucsd.edu/public/MONOD_NG_TR44413/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

MHB methylation haplotype load

MHL Methylation Haplotype Load

cf-DNA cell-free DNA

RRBS Reduced representation bisulfite sequencing

scRRBS single-cell reduced-representation bisulfite sequencing

WGBS genome-wide bisulfite sequencing

TCGA The Cancer Genome Atlas project

ENCODE the Encyclopedia of DNA Elements

GEO Gene Expression Omnibus

LC Lung Cancer

CRC Colorectal cancer

ACC Accuracy

caHMH cancer associated Highly Methylated Haplotype

tsMHB tissue specific methylation haplotype blocks

CCT Colorectal cancer tissue

CCP colorectal cancer plasma

LCT lung cancer tissue

LCP lung cancer plasma

NP normal plasma
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Figure 1. 

Identification and characterization of human methylation haplotype blocks (MHBs). (a) 

Schematic overview of data generation and analysis. (b) An example of MHB at the 

promoter of the gene APC. (c) Smooth scatterplots of methylation linkage disequilibrium 

within MHBs. Red indicate relative higher density and blue indicates relative low density. 

The yellow dotted lines and percentages highlight the reduction of high linkage 

disequilibrium (r2>0.9). (d) Co-localization of MHBs with known genomic features. (e) 

Enrichment of MHBs in known genomic features.
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Figure 2. 

Comparison of methylation haplotype load with four other metrics used in the literatures. 

Five patterns of methylation haplotype combinations are used to illustrate the difference 

between methylation frequency, methylation entropy, epi-polymorphism and methylation 

haplotype load. MHL is the only metric that can discriminate all the five patterns.
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Figure 3. 

Tissue clustering based on methylation haplotype load. (a) MHL based unsupervised 

clustering of human tissues using the 15% most variable regions. (b) Supervised clustering 

of germ-layer specific MHBs. (c) MHL exhibits better signal-to-noise ratio than AMF and 

IMF for sample clustering.
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Figure 4. 

Quantitative estimation of cancer DNA proportion in cell-free DNA based on MHL of 

informative MHBs. (a) Colorectal cancer (b) Lung cancer. Informative MHBs were selected 

based on the presence of high-MHL in cancer solid tissues (CT) and the absence of MHL in 

whole blood (WB). Group II regions have high MHL in cancer tissues (MHL>0.5) and 

cancer plasma while low MHL in WB and normal tissues (MHL<0.1), and hence were 

selected for further analysis. Bar-plots show average MHL in different groups of samples. 

MHL in cancer plasma (CCP and LCP) and normal plasma (NP) were compared with a two-

tail t-test. NCT denotes normal colon tissues, NLT denotes normal lung tissues, and ONT 

denotes other normal tissues. (c) MHL has higher signal-to-noise ratio (Mean/SD) than 

individual 5mC levels as tumor fraction decreases. X-axis is the tumor fraction in synthetic 

mixtures. (d) Estimation of the cancer DNA proportions in plasma samples. CCP denotes 

colorectal cancer plasma, LCP denotes lung cancer plasma, and NP denotes normal plasma.
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Figure 5. 

MHL-based prediction of cancer tissue-of-origin from plasma DNA. (a) Detection of tissue-

specific MHL in the plasma of cancer patients, but not normal plasma or whole blood. 

Tissue specific MHL were visible in corresponding tissue and cancer plasma, indicating the 

feasibility for tissue-of-origin mapping. (b) Identification of informative MHBs for tissue 

prediction, using training data included WGBS and RRBS datasets from 10 human normal 

tissues. (c) Application of the prediction model to plasma samples from cancer patients and 

normal individuals.
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