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Abstract
Aims/hypothesis The aim was to identify potential microRNA
(miRNA) biomarkers of type 2 diabetes.
Methods Controlled studies were retrieved from PubMed to
compare miRNA expression profiles of type 2 diabetes and
nondiabetic control samples. Meta-analysis under a random
effects model was conducted. Subgroup analyses examined
tissue specificity and species specificity. Sensitivity analyses
were also performed to explain the heterogeneity among stud-
ies. Results were represented as log odds ratios (logOR), 95%
confidence intervals (CI) and p values after Bonferroni
correction.
Results Among 343 differentially expressed miRNAs in 38
miRNA expression profiling studies published between
1993 and March 2014, only 151 miRNAs were tested by
multiple studies, out of which 102 miRNAs were reported to
be upregulated or downregulated. Meta-analysis identified 51
significantly dysregulated miRNAs. The top upregulated
miRNA was miR-142-3p (logOR 6.4721; 95% CI 4.9537,
7.9904; adjusted p=4.60×10−16). The top downregulated
miRNA was miR-126a (logOR 7.5237; 95% CI 4.7159,
10.3316; adjusted p=3.01×10−07). The dysregulation of two
miRNAs (miR-199a-3p and miR-223) was highly pancreas-
specific and liver-specific. miR-30e was downregulated in
patients with type 2 diabetes, while miR-92a was

downregulated in animal models of diabetes. In sensitivity
analysis, 40 out of 47 miRNAs (85%) were robustly and con-
sistently dysregulated.
Conclusions/interpretation This meta-analysis confirms that
40 miRNAs are significantly dysregulated in type 2 diabetes.
miR-29a, miR-34a, miR-375, miR-103, miR-107, miR-132,
miR-142-3p and miR-144 are potential circulating biomarkers
of type 2 diabetes. In addition, miR-199a-3p and miR-223 are
potential tissue biomarkers of type 2 diabetes.
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Abbreviations
LogOR Log odds ratio
MIAME Minimum information about a microarray

experiment
MIQE Minimum information for publication of quanti-

tative real-time PCR experiments
miRNA MicroRNA
qPCR Quantitative PCR

Introduction

Type 2 diabetes is a complex metabolic disorder characterised
by insulin resistance [1] that is often undetected until
hyperglycaemia is observed [2]. Over time, multiple organ
damage can occur, especially to the heart, blood vessels, eyes,
kidneys and nerves [3]; thus, exploring novel early biomarkers
and therapeutics for diabetes is of great importance.
MicroRNAs (miRNAs) are likely to represent early bio-
markers of type 2 diabetes that can be used to detect and
monitor progression of the disease [4].
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miRNAs are a class of small (approximately 22 nucleo-
tides), endogenous, noncoding, highly stable RNAs that reg-
ulate gene and protein expression. miRNAs are involved in
many biological processes, including cellular differentiation,
metabolism and cancer development [5–7], and their modes of
dysregulation are linked to many diseases [8]. In studies
attempting to identify novel early biomarkers of type 2 diabe-
tes, miRNA expression profiling was often performed in cul-
tured cells, blood or solid tissue samples [9–12]. Large num-
bers of miRNAs were identified to be differentially expressed,
either overexpressed or underexpressed, while only a small
number may actually be important signatures or therapeutic
targets. Different profiling studies have employed different
profiling platforms and different methods. It is, therefore,
challenging to determine which miRNAs are potential bio-
markers, which miRNAs are tissue-specific, whether circulat-
ing miRNAs make the best biomarkers and whether animal
models are sufficient for pilot studies. The results of these
studies are, however, subject to evaluation by meta-analysis.
Recent studies have indicated that the seminal findings from
academic laboratories could only be reproduced 11–50% of
the time [13, 14]. A survey on data reproducibility of biomed-
ical science also found the problem of data irreproducibility
[15]. As literature reviews onmiRNAs in type 2 diabetes were
purely narrative without any meta-analysis, it came as no sur-
prise that the overall findings were inconsistent (Table 1).
Therefore, no consistent and definitive picture is available.
For example, a review [16] reported that the regulation of
miR-103 in adipose tissue was different according to different
experiments, while a second review [18] deemed miR-103 to
be downregulated in adipose tissue and a third review [19]
found it to be upregulated in adipose tissue. This study
aims to fill this gap by using a meta-analysis to identify
consistently dysregulated miRNAs that have been shown

in reproducible profiling results to be potential biomarkers
for type 2 diabetes.

Methods

Search strategies PubMed was searched for type 2 diabetes
miRNA expression profiling studies published between 1993
and 11 March 2014 using the following terms: (‘miRNA’,
‘diabetes’ and ‘expression’ in the title/abstract) or (‘miRNA’,
‘diabetes’ and ‘profile’ in the title/abstract) or (‘miRNA’, ‘di-
abetes’ and ‘profiling’ in the title/abstract) or (‘microRNA’,
‘diabetes’ and ‘expression’ in the title/abstract) or
(‘microRNA’, ‘diabetes’ and ‘profile’ in the title/abstract) or
(‘microRNA’, ‘diabetes’ and ‘profiling’ in the title/abstract).

Study selection Eligible studies had to meet the inclusion
criteria: (1) they were miRNA expression profiling studies
on patients with type 2 diabetes or on animal models of dia-
betes; (2) they used diabetic and nondiabetic control samples
for comparison; (3) they used miRNA expression arrays; (4)
they reported cut-off criteria of differentially expressed
miRNAs; and (5) they reported sample sizes. miRNA profil-
ing studies using saliva or urine of type 2 diabetes patients
were excluded because we focused on miRNAs in blood, and
miRNAs studies in saliva and urine were mostly related to oral
cancer [21] and urinary tract cancer [22–24], respectively.

Data extraction and quality assessment From the full text and
supplementary information of each expression profiling study,
the following eligibility items were collected and recorded:
first author, year of publication, location of study, selection
and characteristics of recruited type 2 diabetes patients or an-
imal models of diabetes, miRNA expression profiling

Table 1 Inconsistent findings of literature reviews on possible associations of miRNA dysregulation

miRNA Literature review Meta-analysis

Guay 2011
[16]

Guay 2012
[17]

Hamar
2012 [18]

Karolina
2012 [2]

McClelland
2014 [19]

Natarajan
2012 [20]

Shantikumar
2012 [4]

The present
study

miR-103 (adipose) N – D – U – N N

miR-107 (adipose) D – – – U – – N

miR-132 (adipose) – – U – – – D N

miR-143 (adipose) N – – D – – N N

miR-144 (liver) D – – U – – – N

miR-192 (kidney) – – U N N N – N

miR-192 (liver) D – – – – – – U

miR-21 (kidney) – – – D U N – N

miR-29c (liver) N – – – – – – U

miR-375 (islets) D U – U U – U U

D, downregulated; U, upregulated; N, inconsistent findings identified; –, not reported
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platform, sample sizes, tissue types, cut-off criteria of upreg-
ulated and downregulated miRNAs and the list of differential-
ly expressedmiRNAs and their corresponding fold changes (if
available). Quality assessment of microarrays was performed
according to the Minimum Information About a Microarray
Experiment (MIAME) guideline version 2.0 [25]. Studies in-
volving quantitative PCR (qPCR)-based miRNA arrays were
assessed according to the Minimum Information for
Publication of Quantitative Real-time PCR Experiments
(MIQE) guideline [26], which is equivalent to the MIAME
guideline.

Meta-analysis Extracted data were transferred to the statisti-
cal software R (Revolution R Enterprise, version 6.1.0) with
the Metafor package (http://cran.r-project.org/web/packages/
metafor/index.html, version1.9-5) [27] for meta-analysis un-
der a random effects model. The outcomes are presented as
log10 odds ratios (logORs), based on the numbers of dysreg-
ulation events in both type 2 diabetes and nondiabetic control
samples, with their 95% confidence intervals. Bonferroni cor-
rections were performed on p values. Adjusted p values less
than 0.05 were considered significant. When compared with
nondiabetic control groups, a significant logOR higher than 1
indicated miRNA upregulation. When compared with the di-
abetic group, a significant logOR higher than 1 indicated
miRNA downregulation. Potential circulating biomarkers
should be significantly upregulated or downregulated and de-
tectable in both human and animal blood or in both blood and
tissues. Potential tissue biomarkers should be significantly
upregulated or downregulated and highly tissue-specific.
Differentially expressed miRNAs in type 2 diabetes and

nondiabetic control samples were ranked according to the fol-
lowing order of importance: (1) p values; (2) the number of
consistent reports; and (3) logOR values.

Subgroup analysis miRNAs are differentially expressed
among tissue types and species, with corresponding overall
effects and heterogeneities. Subgroup analyses split the ex-
tracted data according to tissue types and species in order to
compare miRNA expression profiles among tissue types
(blood, muscle, pancreas, liver, etc.) and species (i.e. tissue
specificity and species specificity). Studies using serum, plas-
ma or peripheral blood mononuclear cells were classified as
blood as they were from blood and aimed to investigate cir-
culating miRNAs. Studies that did not report the pancreatic
tissue was whole pancreas or pancreatic islets were pooled
with the other studies on pancreatic islets.

Sensitivity analysis Sensitivity analysis was performed on the
sample size to test the robustness of findings. Sample size is a
dominant factor that affects precision in determining the over-
all effects. Thus, the meta-analysis was repeated after exclud-
ing the studies for which sample sizes were ten or less.

Results

Included studies and their characteristics Figure 1 shows the
selection process of the studies. A total of 253 potentially
relevant studies were identified in PubMed. After removal of
duplicated publications and reviews, 38 articles met the

Identification

Screening

Eligibility

Inclusion

Records retrieved from 
PubMed (n=253)    

Records after removing 

duplicates and non-research 

articles (n=198) 

Full-text articles assessed 

for eligibility (n=46)    

Studies included for meta-

analysis (n=38) 

Full-text articles excluded (n=8):
No report of cut-off criteria                              1
No report of sample sizes       7

Records excluded (n=152):

Non-T2D studies                                            78

No report of the types of diabetes    22

No comparison of T2D to nondiabetic control  39

Non-expression profiling studies                      13

Records excluded (n=55):
Duplicates 3
Non-research 52

Fig. 1 Flow diagram of study
selection. The process of study
selection including identification,
screening, eligibility extraction
and inclusion steps is depicted in
the flow diagram. Out of the 253
records identified from PubMed,
38 studies met the selection
criteria. T2D, type 2 diabetes
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eligibility criteria. Details of study characteristics are shown in
Tables 2 and 3. Among the 38 included studies, 22 reported
only human miRNA expression profiles (Table 2), 15 focused
on miRNA expression profiles in animal models (Table 3),
and only one was based on both humans and animals. The
numbers of differentially expressed miRNAs ranged from 1 to
130, with a median of 10. Fold change information of
miRNAs was available in 17 of the 38 studies.

Quality assessment of studies MIAME guideline 2.0 [25] and
MIQE guideline [26] were used to assess study quality.
Figure 2 and electronic supplementary material (ESM)
Table 1 summarise the quality assessment process. Of the
included studies, 74% did not report raw data of hybridisation
and 82% of studies did not give sufficient information about
experimental design and sample data relationships. For more
than 30% of the studies, other key aspects (such as final proc-
essed data and array design) were not always fully reported.

Differentially expressed miRNAs Out of 343 differentially
expressed miRNAs reported in the 38 studies that compared
type 2 diabetes samples with nondiabetic control samples, 151
miRNAs (44.0%) were reported in at least two substudies.
Among the 151 differentially expressed miRNAs, 51
(33.8%) were consistent in their direction of dysregulation
(30 were reported to be upregulated and 21 downregulated).
In the meta-analysis of dysregulated miRNAs, the dysregula-
tion of these 51 miRNAs was significant, as shown in ESM
Tables 2 and 3 (30 upregulated and 21 downregulated). The
most reported upregulated miRNA was miR-29a, which was
reported in ten substudies with an adjusted p=3.72×10−14.
miR-487b (adjusted p=6.24×10−06) was the most reported
downregulated miRNA, which was reported in four
substudies.

Subgroup analysis Eighteen of the 38 studies investigated
circulating miRNAs, which used plasma, serum, peripheral
blood mononuclear cells and whole blood as profiling sam-
ples. Six investigated muscle tissue, eight investigated pancre-
as tissue, three investigated glomeruli tissue, six investigated
liver tissue and six investigated adipose tissue. Among the
eight pancreas tissue profiling studies, five studies reported
using pancreatic islets and the others reported using whole
pancreas. Details are shown in Tables 2 and 3. Significant
dysregulation of miRNAs in different tissue types is shown
in ESM Tables 4–9. Among the dysregulated miRNAs, ten
upregulated miRNAs (miR-103, miR-107, miR-132, miR-
143, miR-144, miR-21, miR-29a, miR-29b, miR-34a and
miR-375) were consistently reported in at least two tissue
types, while 36 miRNAs (26 upregulated and ten downregu-
lated) were reported in only one tissue. The other two dysreg-
ulated miRNAs (miR-199a-3p and miR-223) were upregulat-
ed in one tissue type and downregulated in another (ESM

Table 10), which suggests that their regulation is highly tis-
sue-specific.

In subgroup analysis of species, 190 miRNAs were report-
ed in 23 human profiling studies with 54 reported in at least
two substudies. Among these 54 miRNAs, 18 were upregu-
lated and seven were downregulated (ESM Table 11), while
differential expression of the other 29 was not significant
(adjusted p>0.05).

A total of 241miRNAswere reported in 16 animal profiling
studies with 119 reported in at least two substudies. Among the
119 differentially expressed miRNAs, 35 miRNAs had adjust-
ed p values <0.05 (27 were upregulated and eight were down-
regulated). Details are shown in ESMTable 12. Comparison of
upregulated miRNAs (n=30) in all profiling studies showed
thatmiR-185 (adjusted p=6.29×10−05), miR-187 (adjusted p=
5.27×10−05) and miR-103 (adjusted p=1.40×10−03) were up-
regulated in human profiling studies, while miR-19a (adjusted
p=9.47×10−04), let-7d (adjusted p=5.53×10−06), miR-191
(adjusted p=1.14×10−04), miR-320 (adjusted p=2.08×
10−06), miR-27a (adjusted p=5.36×10−04) and miR-29b (ad-
justed p=1.57×10−07), amongst other miRNAs, were upregu-
lated in animal profiling studies. Comparison of significantly
downregulated miRNAs (n=21) in all profiling studies
showed that miR-652 (adjusted p=8.64×10−05) and miR-30e
(adjusted p=5.56×10−08) were downregulated in human pro-
filing studies, while miR-92a (adjusted p=3.15×10−04) was
downregulated in animal profiling studies. These results indi-
cate that miRNAs might be expressed differently in various
species. Human tissue-specific and animal tissue-specific
miRNAs had already been analysed. There were no sufficient
samples for analysis; thus, the results are not included in this
manuscript.

Sensitivity analysis Sensitivity analysis was conducted to ex-
amine the robustness of the findings and to determine what
effect sample size had on the overall analysis. Thirty of the 38
included reports had sample sizes greater than ten. We exclud-
ed studies where sample size was no more than ten. Analysing
the thirty studies identified 47 miRNAs that were significantly
differentially expressed, with 29 upregulated and 18 downreg-
ulated (ESM Table 13). Forty of the 47 miRNAs (85%) were
significantly differentially expressed both in the sensitivity
analysis and the overall analysis, while the other seven were
not significantly differentially expressed in the overall analy-
sis. This result indicated that the small sample sizes used in
miRNA profiling studies may explain some differences in the
results of miRNA profiling studies.

Discussion

This study is the first meta-analysis of type 2 diabetes miRNA
expression profiling studies and identified specific miRNAs

Diabetologia (2015) 58:900–911 903
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as potential biomarkers of type 2 diabetes. AVenn diagram of
miRNA categories and a flow chart of the meta-analysis is
shown in Fig. 3.

A total of 151 differentially expressed miRNAs were re-
ported in at least two independent substudies. Among these

151 miRNAs, only 51 (34%) were significantly differentially
expressed, while 100 (66%) were not. This result is not a
surprise as initially we expected that the number of signifi-
cantly differentially expressed miRNAs might be the same as
or less than that of nonsignificantly differentially expressed

Fig. 2 Quality assessment
according to the MIAME
guidelines. White bars, grey bars
and black bars, respectively,
indicate the items that were
sufficient in annotation, not
sufficient in annotation and not
reported

Statisticallysignificant

Statistically significantStatistically significant

Statistically significant

Overall (n=51) 

miR-142-5p, miR-296, miR-93

Human (n=25) Animal (n=35)

miR-103,
miR-185,
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miR-221, miR-144, 
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miR-125b-5p, 
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let-7f, miR-212,
miR-29c, miR-499, 
miR-146b, miR-26b,
miR-676, miR-125a, 
miR-140*, miR-146, 
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Fig. 3 Flow diagram showing miRNA categories analysed in this meta-
analysis. The blocks in the upper part of the diagram show the tissue
specificity. The Venn diagram in the lower part summarises the results
of the overall analysis, species specificity and sensitivity analyses.

miRNAs in orange (n=40) were found to be robustly and consistently
dysregulated in sensitivity analysis. n, number of statistically significant
miRNAs
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miRNAs. Several factors may explain the meta-analysis re-
sults of the differentially expressed miRNAs, such as publica-
tion bias, biological complexity (for example, variations in
environmental backgrounds and gene susceptibility), insuffi-
cient information about the pattern of miRNA expression in
different tissue types (the heterogeneity in different kinds of
specimens) and heterogeneous conditions.

The miRNAs exert actions in different tissues, while circu-
lating miRNAs hold much promise as biomarkers of type 2
diabetes. In the tissue subgroup study, 36 miRNAs were only
expressed in one tissue, while two (miR-199a-3p and miR-
223) were upregulated in one tissue and downregulated in
another. Ten miRNAs (miR-103, miR-107, miR-132, miR-
143, miR-144, miR-21, miR-29a, miR-29b, miR-34a and
miR-375) were consistently reported in multiple tissue types,
for example muscle, adipose tissue, liver and pancreas, and
seven of these (miR-103, miR-107, miR-132, miR-144, miR-
29a, miR-34a and miR-375) were identified in blood. This
finding indicates that circulatingmiRNAs holdmuch potential
as biomarkers of type 2 diabetes [65]. Laterza et al [66] and
Kosaka et al [67] have demonstrated how circulating miRNAs
may indicate the physiological state at the tissue level. The
miRNAs that circulate in the blood are in a stable form and
remain stable even after multiple freeze–thaw cycles. They
can be detected by minimally invasive techniques [68] and
are specific to tissue and disease states [69]. If these
miRNAs in circulating blood can serve as biomarkers, they
would provide a minimally invasive biomarker approach that
would be extremely useful in diagnosing and monitoring type
2 diabetes. Studies on multiple tissues were also analysed
(ESM Table 14). Ten miRNAs with significant differential
expression were consistently found in liver and adipose tissue
among all the studies. The high agreement between the liver
and adipose tissue analyses indicate the reliability of liver-
specific and adipose-tissue-specific miRNAs. However, more
studies are needed to identify miRNAs that are tissue-specific
in other tissue types.

miRNAs can be differentially expressed between animals
and humans. Although animal studies might be informative
about type 2 diabetes indicators in humans, animals are still
different from humans. In the species subgroup analysis, the
differential expression of some miRNAs was significant in
both humans and animals, but other miRNAs, such as let-7d
(adjusted p=5.53×10−06) and miR-29b (adjusted p=1.57×
10−07), were significantly differentially expressed in animals
but not in humans. These results indicate that miRNAs can be
differentially expressed in various species and animal models
are insufficient to determine indicators of type 2 diabetes in
humans. Thus, miRNAs identified as candidates in animal
models require verification in humans.

This study identified ten miRNAs (miR-103, miR-107,
miR-132, miR-142-3p, miR-144, miR-199a-3p, miR-223,
miR-29a, miR-34a and miR-375) as potential biomarkers of

type 2 diabetes, including circulating and tissue biomarkers.
Circulating biomarkers are preferred to tissue biomarkers due
to easier sampling and testing. For extensive validation of
tissue biomarkers, animal experiments would be less costly
than clinical studies. In cases in which resources for clinical
studies are constrained, we would suggest validating the tissue
miRNA biomarkers commonly found in both animals and
humans before those found only in humans. The potential
circulating biomarkers detected in both human and animal
blood or in both blood and tissues are shown in Fig. 4. The
potential tissue biomarkers were miR-199a-3p and miR-223.
Among all the profiling studies, the most frequently reported
(ten studies) and upregulated miRNAwas miR-29a (adjusted
p=3.72×10−14), which was overexpressed together with miR-
29c (adjusted p=5.13×10−10) during hyperglycaemia and
hyperinsulinaemia. Overexpression of the miR-29 family im-
pairs insulin-stimulated glucose uptake by inhibiting insulin
signalling via the Akt signalling pathway [52]. miR-34a (ad-
justed p=3.69×10−14) ranked second among the upregulated
miRNAs in all profiling studies. miR-34a in beta cells in-
creased in response to palmitate, impairing nutrient-induced
insulin secretion by repressing vesicle-associated membrane
protein 2 (VAMP2) expression [59] and making the beta cells
more susceptible to apoptosis [70]. miR-103 and miR-107,
which play a central role in regulating insulin sensitivity by
targeting caveolin-1 (a regulator of the insulin receptor) [62],
were upregulated in the blood of both humans and animals in
our analysis. The most upregulated miRNA in human profil-
ing studies was miR-375 (adjusted p=3.60×10−13), which
inhibits insulin secretion by repressing its targets myotrophin
[71] and phosphoinositide-dependent protein kinase-1
(PDK1) [72]. In both overall analysis and subgroup analysis
of species, miR-144 (adjusted p=4.81×10−10) and miR-142-
3p (adjusted p=9.71×10−13) were upregulated in human type
2 diabetes blood samples. miR-144 impairs insulin signalling
by inhibiting the expression of insulin receptor substrate 1
(IRS1) [31] and miR-142-3p regulates Akt1 (also known as
protein kinase B ) in adipogenesis regulation [73, 74]. In the
subgroup analysis of tissue types, miR-223 was downregulat-
ed in one tissue and upregulated in another. Upregulated miR-
223 in cardiomyocytes induces glucose transporter 4
(GLUT4) protein expression to restore normal glucose uptake
[36]. miR-132 was upregulated in both blood and liver. miR-
132 targets insulin-mediated regulation of CYP2E1 (cyto-
chrome P450, family 2, subfamily E, polypeptide 1), which
is involved in hepatic metabolism [75].

miR-132 inhibits the expression of LRRFIP1 (leucine-rich
repeat (in Flightless 1) interacting protein-1) to block vascular
smooth muscle cell proliferation in atherosclerosis and reste-
nosis [76] , and miR-144 is reported to regulate
haematopoiesis and vascular development by repressing the
expression of meis homeobox 1 [77]. Likewise, the miR-29
family, which direct ly targets Mmp2 (the matrix
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metalloproteinase 2 gene), Col1a1 (the collagen, type I, alpha
1 gene) and Col3a1 (the collagen, type III, alpha 1 gene), is
involved in renal and cardiovascular injury [78]. miR-34a
modulates p53 that is related to human atherosclerosis [79].
It also inhibits sirtuin-1 and HMGCR (3-hydroxy-3-methyl-
glutaryl-CoA reductase) in nonalcoholic fatty liver disease
[80]. miR-375 targets caveolin1, janus kinase 2 (JAK2) and
yes-associated protein 1 (YAP1) that are related to cancer [81,
82]. These plausible relationships indicate that miRNAs are
associated with not only type 2 diabetes but also the compli-
cations of type 2 diabetes. Since specific miRNAs were con-
sistently detected as being dysregulated in multiple studies of
(1) both human and animal blood or (2) both blood and tis-
sues, they represent potential biomarkers of type 2 diabetes for
extensive validation.

Conclusion This meta-analysis of type 2 diabetes miRNA ex-
pression profiling studies identified 40 significantly

dysregulated miRNAs. Eight miRNAs (miR-103, miR-107,
miR-132, miR-144, miR-142-3p, miR-29a, miR-34a and
miR-375) are potential blood biomarkers, while two
miRNAs (miR-199a-3p and miR-223) have high tissue-
specific regulation and are potential tissue biomarkers.
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Fig. 4 Venn diagrams showing some potential miRNA biomarkers of
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area. The shaded area of Fig. 4b also contains identified potential miRNA
biomarkers in both blood and tissues
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