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Abstract

Background: Cellular senescence can be induced by a variety of extrinsic stimuli, and sustained exposure to

sunlight is a key factor in photoaging of the skin. Accordingly, irradiation of skin fibroblasts by UVB light triggers

cellular senescence, which is thought to contribute to extrinsic skin aging, although molecular mechanisms are

incompletely understood. Here, we addressed molecular mechanisms underlying UVB induced senescence of

human diploid fibroblasts.

Results: We observed a parallel activation of the p53/p21WAF1 and p16INK4a/pRb pathways. Using genome-wide

transcriptome analysis, we identified a transcriptional signature of UVB-induced senescence that was conserved in

three independent strains of human diploid fibroblasts (HDF) from skin. In parallel, a comprehensive screen for

microRNAs regulated during UVB-induced senescence was performed which identified five microRNAs that are

significantly regulated during the process. Bioinformatic analysis of miRNA-mRNA networks was performed to

identify new functional mRNA targets with high confidence for miR-15a, miR-20a, miR-20b, miR-93, and miR-101.

Already known targets of these miRNAs were identified in each case, validating the approach. Several new targets

were identified for all of these miRNAs, with the potential to provide new insight in the process of UVB-induced

senescence at a genome-wide level. Subsequent analysis was focused on miR-101 and its putative target gene

Ezh2. We confirmed that Ezh2 is regulated by miR-101 in human fibroblasts, and found that both overexpression of

miR-101 and downregulation of Ezh2 independently induce senescence in the absence of UVB irradiation. However,

the downregulation of miR-101 was not sufficient to block the phenotype of UVB-induced senescence, suggesting

that other UVB-induced processes induce the senescence response in a pathway redundant with upregulation of

miR-101.

Conclusion: We performed a comprehensive screen for UVB-regulated microRNAs in human diploid fibroblasts,

and identified a network of miRNA-mRNA interactions mediating UVB-induced senescence. In addition, miR-101

and Ezh2 were identified as key players in UVB-induced senescence of HDF.
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Background
Cellular senescence is controlled through a variety of

regulatory mechanisms with particular contribution of

the p53 [1] and Rb [2] tumor suppressor pathways.

Briefly, p53 is activated in response to telomere damage

or other kinds of DNA damage and orchestrates the

transcriptional activation of a variety of downstream

genes contributing to growth arrest, such as the CDK

inhibitor p21WAF1. In a parallel pathway, upregulation

of the CDK inhibitor p16INK4a leads to the inhibition

of phosphorylation of the retinoblastoma protein (pRb),

thereby enforcing prolonged cell cycle arrest [3], which

is also a useful marker for senescence in human tis-

sues [4]. Activation of p16INK4a triggers the appearance of

senescence-associated heterochromatin foci [5], at least in

some cell types. Activation of the p53/p21WAF1 and

p16INK4a/pRb pathways represent two alternative scenar-

ios for senescence initiation, and there is evidence that

parallel activation of both pathways leads to enforced

senescence [6], also referred to as “deep senescence”

[7]. The relative importance of each of these pathways

for cellular senescence seems to depend on the cell type.

It should be noted that, besides these central pathways, a

variety of signals have been shown to initiate a senescence

response [8].

Stress-induced premature senescence (SIPS) has been

identified as a model for telomere-independent senes-

cence that can be initiated by various forms of stress, in-

cluding oxidative stress, irradiation, replicative stress and

oncogene activation [9]. In the case of skin derived

human diploid fibroblasts (HDF), repeated mild treat-

ment with UVB has been established as an experimental

model for extrinsic skin aging [10], which depends on

the accumulation of senescent cells, in particular fibro-

blasts in the dermis [9]. UVB irradiation is known to in-

duce aspects of a DNA damage response, and it was

reported that knocking down p53 alleviates but does not

abrogate the senescence response of HDF to repeated

UVB stress [11], suggesting that both p53-dependent

and -independent pathways may cooperate to enforce

UVB-induced senescence. However, UVB irradiation is

known to affect a variety of intracellular signal transduc-

tion pathways [12,13] and the precise sequence of events

during establishment of UVB-induced premature senes-

cence remained elusive.

Recent studies have emphasized an important role of

non-coding RNAs, also referred to as microRNAs, as

regulators of gene expression [14]. MicroRNAs are gen-

erated from larger precursor RNAs and were shown to

interfere with the expression of protein coding genes by

several mechanisms, including i) destabilization of spe-

cific mRNAs and ii) prevention of translation of specific

mRNAs. Messenger RNAs targeted by microRNAs usu-

ally contain short sequences of homology [15]. It is

known that changes in microRNA expression are con-

tributing to cellular senescence [16] and organismic

aging [17,18]; however, the role of microRNAs, if any, in

UVB-induced senescence of human fibroblasts is only

poorly understood. In the present communication, we

have addressed molecular mechanisms underlying the

establishment of premature senescence in human fibro-

blasts exposed to repeated series of mild UVB irradia-

tions, as a model system to monitor molecular processes

involved in extrinsic skin aging. We identified a small

set of microRNAs, which are differentially regulated dur-

ing the process and performed transcriptome analysis, in

combination with advanced bioinformatics, to identify

potential targets for these microRNAs.

Results
UVB-induced changes in gene expression

Human diploid fibroblasts (HDF, strain HFF-2) derived

from newborn foreskin were subjected to eight consecu-

tive UVB treatments of 4000 J/m2 during four days.

Under these conditions no overt cell death was observed

(data not shown). Cell proliferation was strongly inhib-

ited, and UVB-treated cells performed less than 2 popu-

lation doublings (PDL) over 15 days of the experiment,

whereas untreated cells underwent 12 PDL in the same

time period. The growth arrest phenotype reached by re-

peated mild UVB stress resembled cellular senescence,

as judged by the changes of cell morphology and the ac-

cumulation of a large percentage of cells that stained

positive for senescence-associated β-galactosidase (SA-ß-

gal) (Additional file 1: Figure S1). As could be expected,

UVB treatment led to a strong but transient phosphoryl-

ation of p53 on serine 15, most notable at day 4, i.e. after

application of the last stress, indicative of p53 activation,

consistent with previous observations [19]. The overall

levels of p53 protein were also increased, in line with

previous findings [20]. Activation of p53 also resulted in

the upregulation of its downstream effector p21WAF1,

which is known to enforce cellular senescence in re-

sponse to DNA damage [21]. We also addressed effects

of UVB treatment on the p16INK4A/pRb pathway, repre-

senting the other important pathway relevant for cellular

senescence [22]. As could be expected from the ob-

served upregulation of p21WAF1, UVB treatment led to

the rapid disappearance of phosphorylated species of the

retinoblastoma protein (pRb), which was accompanied

by a delayed but significant upregulation of the CDK in-

hibitor p16INK4A (Additional file 1: Figure S1). Together

the data suggest that mild UVB stress induces premature

cellular senescence and that both the p53/p21WAF1 axis

and the p16INK4A/pRb pathway are involved in the sen-

escence response, consistent with previous reports

[23-25]. The same protocol of repeated mild UVB stress

induced premature senescence also in two other strains
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of human diploid fibroblasts, HFF-1 and PFF, with a very

similar kinetics (Additional file 2: Figure S2), along with

the activation of the p53/p21WAF1 and pRb/p16INK4A

pathways (Additional file 3: Figure S3).

To characterize the response of HDF to UVB-induced

premature senescence, genome-wide transcriptome ana-

lysis was performed at various time points. Applying a

cutoff of > 1.5 fold regulation, this analysis revealed the

upregulation of 1219 genes and the downregulation of

another 1077 genes in response to mild UVB treatment.

Changes in gene expression level were most pronounced

at days 7 and 9 after beginning of the treatment. Initial

analysis of UVB-responsive pathways by Ingenuity™ Soft-

ware, based on the results of Affymetrix chip analyses,

revealed several distinct molecular pathways preferen-

tially affected by the treatment, including G1/S cell cycle

checkpoint, DNA damage checkpoint, p53 signaling

pathway, cell migration, aryl hydrocarbon receptor sig-

naling, pyrimidine metabolism and nicotinate and nico-

tinamide metabolism (Figure 1A). For day 9 after UVB

irradiation, three independent Affymetrix chip experi-

ments were performed, which revealed significant upreg-

ulation (p < 0.05) for a total of 632 genes, whereas 716

genes were significantly downregulated (p < 0.05). The

list of all regulated genes and corresponding Affymetrix

expression data are provided as Additional file 4: Table S1.

From these genes, a set of 67 genes was selected for

an independent analysis by RT-qPCR, which confirmed

all regulations revealed by Affymetrix chips (Figure 1B).

microRNAs regulated in UVB-induced senescence

We also determined the expression levels of 806 miR-

NAs in UVB treated compared to control cells. The rela-

tive expression levels of miRNAs at various time points

after UVB stress, as determined by miRNA array, are

shown in Additional file 5: Table S2. We used publicly

available and in-house developed tools, to compare ex-

pression profiles of all miRNAs and the 67 validated

mRNAs (Figure 1B), and predicted target pairs to score

and identify high confidence miRNA targets. Thereby,

eight miRNAs (miR-15a, miR-17, miR-20a, miR-20b,

miR-34, miR-93, miR-101, miR-155) were identified

for which regulated mRNA targets were found with high

confidence. Subsequently, the expression levels of se-

lected miRNAs were analyzed by qPCR. In these experi-

ments, data obtained by the miRNA array for miR-15a,

miR-20a, miR-20b, miR-93, and miR-101 were confirmed

(Figure 2); whereas miR-17, miR-34 and miR-155 were

also regulated in UVB-treated cells in accordance with the

miRNA array results, the observed differences did not

reach statistical significance (data not shown). Expression

levels for miR-15a, miR-20a, miR-20b, miR-93, and miR-

101 are shown in Figure 3, along with their established

target mRNAs.

miRNA-mRNA regulatory networks in UVB-induced

senescence

High confidence targets were identified for miR-20a and

miR-20b encoded by the miR-17-92 cluster which is

known to synergize with Myc in cancer development [26],

probably through repression of p21WAF1 expression at the

post-transcriptional level [27]. However, there is also evi-

dence that miR-17-92 blocks E2F-dependent steps in the

regulation of angiogenesis [28]. Our analysis confirmed a

high confidence interaction between both miR-20a and

miR-20b with p21WAF1 (CDKN1A), p15INK4B (CDKN2B),

RUNX1, and vEGF-A (Figure 4A,B), thereby validating

the analytical procedure. E2F1 and Cyclin D1 are pre-

dicted targets for both miR-20a and miR-20b. Whereas

decreased expression of miR-20a/b was not correlated

with altered mRNA levels of E2F1 and Cyclin D1

(Figure 4A,B), upregulation of Cyclin D1 gene expres-

sion during UVB-induced senescence was observed at

the protein level (Figure 4C). Results of the bioinfor-

matic analysis suggested several so far unreported po-

tential targets for miR-20a and miR-20b in the context of

UVB-induced senescence. Thus, DRAM, IDS, NFAT5,

EGR2, CCND2, and RARB were identified as potential

high confidence interactions for both miR-20a and miR-

20b (Figure 4A,B). In addition, the data suggest TIMP3,

ETV1, B2M, IGFBP-3, and RRAS2 as potential targets

for miR-20a (Figure 4A), and TGM2, CPE, RHOJ, and

SERPING1 as potential targets for miR-20b (Figure 4B).

miR-93 is known to inhibit angiogenesis by suppress-

ing VEGF release [29], and contributes to silencing of

p21WAF1 gene expression after DNA damage [30]. More-

over, miR-93 increases survival in cisplatin-resistant

ovarian cancer cells, by directly targeting PTEN and up-

regulation of the AKT signaling pathway [31]. Our

analysis in UVB-induced senescence confirmed a high

confidence interaction of miR-93 with CDKN1A and

vEGF-A (Figure 5A), thereby validating the analytical

procedure. Results of the bioinformatic analysis sug-

gested DRAM, PIK3IP1, DKK2, Serpin G1, ADAMTS5,

TIMP3, BTG2, RUNX1 and EGR2 as potential targets

for miR-93 (Figure 5A).

miR-15a, along with miR-16, is commonly deleted in

human chronic lymphocytic leukemia [32] and known to

target multiple oncogenes, including BCL2, MCL1,

CCND1, and WNT3A [33]. Our analysis confirmed a high

confidence interaction between miR-15a and vEGF-A in

UVB-induced senescence (Figure 5B), thereby validating

the analytical procedure. Results of the bioinformatic ana-

lysis suggested PAPPA, APOD, RRAS2, Runx1, RARB,

BTG2, Notch3 and SFRP1 as potential targets for miR-15

(Figure 5B).

miR-101 is known to suppress expression of the his-

tone methyltransferase Ezh2 [34,35]. Our analysis con-

firmed a high confidence interaction between miR-101
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and Ezh2 in UVB-induced senescence (Figure 6A),

thereby validating the analytical procedure. Accordingly,

Ezh2 expression was significantly downregulated at both

mRNA and protein level in UVB treated cells (Figure 6B).

Results of the bioinformatic analysis suggested BIRC5,

NAT13, and CXCL12 as potential targets for miR-101.

(Figure 6A). Whereas the majority of analyzed potential

mRNA targets for miR-101 displayed a positive correl-

ation with miR-101 levels (red lines in Figure 6A), the

biological meaning of these interactions remains to be

established.

To further validate the bioinformatics-based target se-

lection, regulation of several newly identified candidate

genes by specific microRNAs was addressed in HDF

overexpressing miR-15a, miR-20a, and miR-93, respect-

ively. In all cases, microRNA levels were significantly

( > 20 fold) increased by transfection (data not shown). For

the genes RARB, RUNX1 and CDKN2B, we found that

overexpression of the appropriate microRNA species

(miR-15a and miR-20a, respectively) reduced protein

levels of the respective gene products (Additional file 6:

Figure S4). Whereas these findings do not prove bind-

ing of microRNAs 15a and 20a to the 3'-UTR of the

target genes, downregulation of protein expression by

overexpression of selected miRNAs provides a func-

tional validation of the bioinformatics approach. The

mRNAs for several other genes, including VEGFA, RHOJ,

and NOTCH3 were significantly down-regulated by the

appropriate microRNAs (data not shown); however, the

limited availability of high-quality antibodies precluded

determination of protein expression levels in these cases.

A role of miR-101/Ezh2 in UVB-induced senescence?

To address the functionality of the miR-101-Ezh2 inter-

action in UVB-induced senescence of HDF and their im-

portance for UVB-induced senescence, we addressed the

potential of these molecules to affect cellular senescence

in HDF. In a first set of experiments, we analyzed conse-

quences of overexpression of miR-101. Using reverse

transfection, miR-101 was overexpressed in human dip-

loid fibroblasts, which resulted in a clear upregulation of

Figure 1 Transcriptome analysis of UVB-induced senescence.

A. Ingenuity pathway analysis. Activated pathways were determined

by Ingenuity System Pathway Analysis software (http://www.ingenuity.

com/) by Core Analysis. Shown are eight significantly activated

pathways (threshold p-value ≤ 0.05). B. In silico analysis of mRNA

expression change in response to UVB irradiation. (left) The differential

gene expression profile from total RNA was examined by Affymetrix

GeneChip analysis (cutoff of > 1.5 fold regulation) 1, 7, and 9 days

between control and UVB irradiated of HDF samples. The expression

values were sorted by level of Ezh2 expression (rows). (right) Heatmap

of selected 67 genes were determined by RT-PCR and sorted by level

of Ezh2 expression (rows), red representing overexpression and green

representing underexpression of the transcript.
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miR-101 (Figure 7A). The strong upregulation of miR-

101 induced a significant downregulation in the level of

Ezh2 mRNA (Figure 7B) and protein (Figure 7C). In

consequence, overexpression of miR-101 was sufficient

to reduce the rate of proliferation of human diploid fi-

broblasts (Figure 7D) and induced a significant increase

in the number of SA-β-gal positive cells (Figure 7E).

These experiments suggest that indeed miR-101 has the

potential to downregulate Ezh2 mRNA and protein

levels in HDF, and this can lead to growth arrest and

entry into premature senescence. To knock down Ezh2

expression in HDF, lentiviral vectors carrying Ezh2-

targeting shRNAs were used. Out of five shRNAs

tested, #73 and #75 effected a significant downregu-

lation of Ezh2 levels in transfected cells (Additional

file 7: Figure S5). Lentiviral vectors were prepared carry-

ing these shRNAs and used to infect HDF. Ezh2 knock-

down led to a downregulation of cell proliferation, along

with a significant increase in the percentage of SA-β-gal

positive cells, suggesting that knocking down Ezh2 can

Figure 3 microRNA expression level. The expression levels of 806 miRNAs were determined at day 1, 4, 7 and 9 by LNA microarray. Displayed

are five selected miRNAs with the corresponding mRNA targets, identified by DIANA LAB (http://diana.cslab.ece.ntua.gr/tarbase/) and miRecords

(http://mirecords.biolead.org/). In red are miRNAs and target mRNAs that are upregulated, downregulated genes are colored in blue and not

regulated genes are in black.

Figure 2 Validated miRNA expression levels. miRNA was isolated from UVB treated and control cells. miRNA expression levels for miR-20a,

miR-20b, miR-15a, and miR-93 were determined by Locked nucleic acid (LNA)-miRNA microarray. Experiments were performed in triplicates.

*p < 0.01; **p < 0.001.
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Figure 4 (See legend on next page.)

Greussing et al. BMC Genomics 2013, 14:224 Page 6 of 19

http://www.biomedcentral.com/1471-2164/14/224



induce premature senescence of HDF (Additional file 7:

Figure S5).

To address the role of miR-101 in UVB-induced cellu-

lar senescence, we attempted to experimentally reduce

miR-101 levels by transfection of miR-101 inhibitory

RNAs. This treatment was started one day before UVB

treatment and continued thereafter, in order to keep

miR-101 levels constantly low. Using reverse transfec-

tion, the levels of miR-101 were significantly reduced in

control HDF (Figure 8A) and miR-101 knockdown effi-

ciently abrogated miR-101 upregulation in UVB-treated

fibroblasts (Figure 8B). However, Ezh2 mRNA was not

significantly upregulated in miR-101 depleted cells, irre-

spective of UVB treatment (Figure 8A,B); and miR-101

knockdown failed to increase Ezh2 protein levels in

both cases (data not shown). To address potential mecha-

nisms underlying the failure to upregulate Ezh2, Ezh2 was

also overexpressed by lentiviral vectors. Both in HDF and

in easy-to-transfect human osteosarcoma (U2-OS) cells,

overexpression of Ezh2 mRNA was transient and no

elevation of Ezh2 protein levels was observed in HDF

(Additional file 8: Figure S6), for reasons that remain

to be established. Together, these experiments indi-

cate that reduction of miR-101 was not sufficient to

rescue Ezh2 expression in UVB-treated cells. Accord-

ingly, the phenotype of UVB-induced cellular senes-

cence was not significantly affected by preventing the

UVB-induced upregulation of miR-101 (Figure 8C).

Consistent with this observation, knockdown of miR-

101 also failed to significantly reduce the percentage

of SA-β-gal positive cells after UVB treatment (data

not shown).

Discussion

In this communication, we addressed molecular mecha-

nisms underlying UVB-induced senescence of human

diploid fibroblasts. Using genome-wide transcriptome

analysis, we identified a transcriptional signature of

UVB-induced senescence. In parallel, a comprehensive

screen for microRNAs regulated during UVB-induced

senescence was performed and five microRNAs were

identified that are significantly regulated during the

process. Subsequent analysis revealed several well estab-

lished miRNA-mRNA regulatory interactions including

miR-101/Ezh2, thereby validating the assay. In addition,

several new miRNA-mRNA regulatory interactions were

identified to occur in UVB-induced senescence. Overex-

pression of miR-101 and downregulation of Ezh2 inde-

pendently induced senescence in the absence of UVB

irradiation. However, the downregulation of miR-101 was

not sufficient to block the phenotype of UVB-induced

senescence, suggesting that other UVB-induced processes

contribute to the senescence response, partially redundant

with upregulation of miR-101. These findings extend our

knowledge of miR-mRNA regulatory interactions, and at

the same time provide a rich resource for data mining to

identify new players in UVB-induced senescence and po-

tential targets for interventions in extrinsic skin aging.

Transcriptional profiling of UVB-induced premature

senescence

Whereas a low-density DNA array was used previously

to study changes in the level of 240 senescence-related

genes in UVB-induced senescence of HDF [11], the

current study provides the first genome-wide transcrip-

tional analysis of UVB-induced senescence. As could be

expected [1], activation of p53 signaling and suppression

of the G1/S transition were observed along with a pro-

nounced DNA damage response, as revealed by pathway

analysis tools. We also observed concerted regulation of

genes in the aryl hydrocarbon receptor signaling and hep-

atic fibrosis/heaptic stellate activation pathways, which

conceivably reflect specific responses to UVB irradiation,

used here to trigger the senescence response. Of note,

there were also distinct changes in the regulation of genes

coding for enzymes in the pyrimidine and nicotinamide

metabolism; however, more work will be required to fully

understand the implications of these alterations for UVB-

induced senescence. Conceivably, the transcriptional sig-

nature of UVB-induced senescence, as shown here, will

pinpoint new targets for intervention in extrinsic photoag-

ing, which will be investigated in follow-up studies.

miRNA-mRNA regulatory networks in UVB-induced

senescence

miR-34, a known transcriptional target of p53 [36], was

strongly upregulated at day 7, as expected from the ob-

served activation of p53. Similarly, downregulation of

(See figure on previous page.)

Figure 4 Correlation network of miR-20a/b and their high confidence target genes. We used 10 prediction tools to obtain, based on public

data, candidate miRNA-mRNA target interactions and we identified high confidence targets by mRNA and miRNA expression. In positive cases,

miRNA expression should show a negative correlation with the respective target gene mRNA level. We calculated Pearson correlation coefficients

between miRNAs and their targets. Results of the analysis are presented here for miR-20a (A), and miR-20b (B). The color and shape of nodes are

based on different node attributes available for the analyzed dataset. The red triangles, purple circles and orange diamonds in the network are

indicating miRNAs, target genes, and transcription factors, respectively. Edges represent correlation between miRNAs and mRNAs, the color of the

edges designate the type of interaction. Red is for positive and green is for negative correlation. Protein was isolated from UVB irradiated and

control cells at the indicated time points. Protein levels were analyzed by standard Western blot for Cyclin D1 (C). Experiments were performed in

triplicates, one representative experiment is shown.
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Figure 5 (See legend on next page.)
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miR-20a and miR-20b is consistent with previous obser-

vations suggesting that members of the miR-17-92 clus-

ter are commonly downregulated in various senescence

models as well as in organismal aging [16]. These obser-

vations validated the miRNA screening approach. It is

known that miRNAs regulate both stability and transla-

tion of mRNAs, and in most cases upregulation of miR-

NAs leads to the inhibition of gene function [37]. The

miR-17-92 cluster, containing the microRNA-17-18-19-

20-92 polycistron, cooperates with Myc in tumorigenesis

[26], probably by silencing of p21WAF1 expression at the

post-transcriptional level [27]. On the other hand, miR-

17-92 inhibited proliferation and metastasis of pancre-

atic carcinoma cells [38], blocked E2F-dependent steps in

the regulation of angiogenesis [28], and repressed endo-

thelial cell migration [39], suggesting cell type specific

effects. Our finding that E2F1 and VEGFA are relevant

targets for miR-20a/b in the context of UVB-induced sen-

escence is consistent with these data.

Although frequently overexpressed in human malig-

nancies, miR-93 may actually function as a tumor sup-

pressor gene. Accordingly, miR-93 abrogated VEGF

protein secretion, suggesting that miR-93 interferes with

angiogenesis [29], blocked tumor development in mam-

mary fat pads [40], and suppressed proliferation of hu-

man colon cancer stem cells [41]. However, miR-93 was

also shown to i) promote tumor growth and angiogen-

esis by targeting integrin-β8 [42], ii) to contribute to si-

lencing of p21WAF1 gene expression after DNA damage

[30], and iii) to promote cell proliferation and clonogeni-

city of HepG2 Cells [43], suggesting that effects of miR-

93 depend on cellular context. Upregulation of p21WAF1

gene expression in UVB-treated cells was correlated with

the downregulation of miRNAs 20a/b and 93, known to

target p21WAF1 [27,30,44-46], and the identification of

E2F1 and VEGFA as relevant targets for miR-93 in the

context of UVB-induced senescence is consistent with

the available data.

miR-15a, along with miR-16, was the first microRNA

linked to cancer because both genes are commonly de-

leted in human chronic lymphocytic leukemia [32]. Ex-

pression of miRNAs encoded by the miR-15/16 cluster

inhibits cell proliferation, promotes apoptosis of cancer

cells, and suppresses tumorigenicity both in vitro and

in vivo. miR-15a and miR-16-1 function by targeting

multiple oncogenes, including BCL2, MCL1, CCND1,

and WNT3A [33,47]. In contrast to their function as

tumor suppressors, miR-15 can also promote tumor

growth and progression, when expressed in cancer-

associated fibroblasts [48]. The identification of VEGFA

as relevant target for miR-15 in the context of UVB-

induced senescence is consistent with these data. On the

other hand, mRNA levels of E2F1 and Bcl2 were down-

regulated in UVB-treated cells (Additional file 4: Table S1

and data not shown), although three miRNAs known to

target E2F1 (miR 20a, 20b and 93) and one miRNA

known to target Bcl2 (miR-15a) were all significantly

downregulated in UVB-treated cells (Figure 3). It is

conceivable that, in these cases, additional regulatory

processes take place, which remain to be identified. A

particular complication in the interpretation of the

current results lies in pleiotropic effects of UVB irradi-

ation, which are known to affect the expression of selected

miRNAs and mRNAs (also shown here) but also may in-

fluence protein translation [49] and/or protein stability

[50]. Accordingly, the assignment of miRNAs and gene

expression changes reflects plausibility rather than a strict

mechanistic dependence. Bioinformatics analysis and pre-

liminary validation analysis performed in the current

study highlighted several miRNA targets as potential

modulators of UVB-induced fibroblast senescence that

were not previously described, including the cdk inhibitor

CDKN2B and the transcription factors RUNX1 and RARB.

Whereas these findings establish CDKN2B, RUNX1 and

RARB as functional target genes for miR-15a and miR-

20A, respectively, the binding of these microRNAs to the

3'-UTR of the target genes remains to be confirmed by

additional experiments.

Regulation of UVB-induced senescence: the role of

miR-101 and Ezh2

The here reported data demonstrate for the first time the

implication of miR-101/Ezh2 signaling in UVB-induced

senescence of human dermal fibroblasts. In control exper-

iments, upregulation of miR-101 and the concomitant

downregulation of Ezh2 was also observed in two inde-

pendent HDF strains, HFF-1 and PFF (Additional file 3:

Figure S3), indicating that the regulation of these compo-

nents is a conserved feature in the senescence response of

human dermal fibroblasts to UVB irradiation. The inverse

relationship between miR-101 and Ezh2 expression levels

was noticed before [51,52] and Ezh2 has been shown by

(See figure on previous page.)

Figure 5 Correlation networks of miR-93/miR-15 and their high confidence target genes. We used 10 prediction tools to obtain, based on

public data, candidate miRNA-mRNA target interactions and we identified high confidence targets by mRNA and miRNA expression. We calculated

Pearson correlation coefficients between miRNAs and their targets. Results of the analysis are presented here for miR-93 (A), and miR-15 (B). The color

and shape of nodes are based on different node attributes available for the analyzed dataset. The red triangles, purple circles and orange diamonds in

the network are indicating miRNAs, target genes, and transcription factors, respectively. Edges represent correlation between miRNAs and mRNAs,

the color of the edges designate the type of interaction. Red is for positive and green is for negative correlation.
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others to play a role in cellular senescence [53,54]. When

this communication was under revision, it was reported

by others that miR-101 controlled Ezh2 function in cellu-

lar senescence of mouse embryonic fibroblasts [55]. In the

present communication, functional interactions between

miR-101 and Ezh2 in UVB-induced senescence of HDF

were analyzed in more detail. For example, we tried by

knockdown of miR-101 to rescue the expression levels of

Ezh2 in UVB irradiated cells. Although knockdown of

miR-101 was very efficient also in UVB treated cells, no

corresponding increase in the level of Ezh2 mRNA or pro-

tein was observed, suggesting that expression of the Ezh2

gene is regulated by additional signals, which remain to

be established. It is conceivable that p53 is respon-

sible for the effect, since p53 was shown to suppress

the Ezh2 gene promoter [56,57]. Conversely, we also

tried to rescue the phenotype of UVB-induced senes-

cence by overexpression of Ezh2 from a lentiviral overex-

pression vector. Whereas Ezh2 mRNA was significantly

upregulated in infected cells, this did not lead to any

detectable increase of Ezh2 protein levels, suggesting

that overexpression of Ezh2 protein is not well toler-

ated, at least in HDF. The mechanisms underlying

downregulation of Ezh2 in this cell type remain to be

understood. After UVB irradiation, Ezh2 protein levels

were rapidly reduced, even prior to the induction of

miR-101 (Figure 3), strongly suggesting that several

different UVB-dependent pathways converge to down-

regulate Ezh2, the upregulation of miR-101 being just

one of several triggers for this process.

Conclusions

We report here a comprehensive screen for microRNAs

and mRNAs regulated during UVB-induced senescence

in human diploid fibroblasts. Using advanced bioinfor-

matics solutions, we identified a network of miRNA-

mRNA interactions mediating UVB-induced senescence

in this cell type, providing a rich resource for future data

mining. The data reported in this communication illus-

trate the regulation of five distinct miRNAs during

UVB-induced cellular senescence. Together the results

obtained in this study suggest important roles for micro-

RNAs miR-15, miR-20a/b, miR-93 and miR-101, and

their mRNA targets, during UVB-induced senescence of

human diploid fibroblasts.

Methods

Chemicals

All chemicals were purchased from Sigma, unless indi-

cated otherwise.

Cell culture

Human diploid foreskin fibroblasts (HDF) were either pur-

chased from ATCC (Manassas, VA) (HFF-1 #SCRC-1041;

HFF-2 #SCRC-1042) or isolated from newborn foreskin

(PFF) in our laboratory, as described [58]. Cells were used

at passage 6 (HFF-2, PFF) and passage 10 (HFF-1). HDFs

and human osteosarcoma cells (U2-OS; obtained from

ATCC, Manassas, VA) were cultured in the same way in

DMEM (Sigma) as described [59]. The cumulative popula-

tion doublings (cPDL) were calculated using the following

equation: cPDL = (log(A) – log(B))/0.301 (A: number of

cells at the end of one passage; B: number of cells that

were seeded at the beginning of one passage).

SA-β-galactosidase staining

Senescence-associated-β-galactosidase (SA-ß-gal) stain-

ing was used to determine the senescent status of the

cells. To stain for SA-β-gal, cells were grown on 6-well

plates and washed three times with PBS. Afterwards, the

cells were fixed with 2% formaldehyde and 0.4% glutaral-

dehyde in PBS for 5 minutes at room temperature. Cells

were washed three times with PBS and prepared for

staining as described previously [59]. Therefore, cells

were covered with staining solution (150 mM NaCl,

2 mM MgCl, 5 mM potassium ferricyanide, 5 mM po-

tassium ferrocyanide, 40 mM citric acid, 12 mM sodium

phosphate, pH 6.0, adding 1 mg/mL 5-bromo-4-chloro-

3-indolyl-b-D-galactoside [X-gal] directly before use)

and incubated for 24 h at 37°C without light exposition.

The reaction was stopped by washing off the staining

solution with PBS. Cells were covered with PBS and blue

staining indicating the presence of SA-β-gal can be de-

tected under the microscope. To calculate the percentage

of SA-β-gal positive cells, stained cells were counted and

related to the total cell number.

(See figure on previous page.)

Figure 6 Correlation network of miR-101 and its high confidence target genes. (A) We used 10 prediction tools to obtain, based on public

data, candidate miRNA-mRNA target interactions and we identified high confidence targets by mRNA and miRNA expression. We calculated

Pearson correlation coefficients between miRNAs and their targets. Results of the analysis are presented here for miR-101. The color and shape of

nodes are based on different node attributes available for the analyzed dataset. The red triangles, purple circles and orange diamonds in the

network are indicating miRNAs, target genes, and transcription factors, respectively. Edges represent correlation between miRNAs and mRNAs,

the color of the edges designate the type of interaction. Red is for positive and green is for negative correlation. (B) Protein samples for the indicated

time points were collected as described (left panel). Protein levels were determined for Ezh2 by standard Western blot analysis. Experiments were

performed in triplicates, shown here is a representative result. miR-101 levels were determined by real-time qPCR as described (right panel). Data

represents the mean ± SE for three independent experiments. Co: untreated controls. *p < 0.01; **p < 0.001.
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UVB treatment

For UVB treatment fibroblasts were seeded out in 10 cm

dishes (Greiner Bio One, Austria) at a density of 6 × 105

(UVB) and 3 × 105 (control). Cells were washed with

HBSS (Sigma) and covered with 2 ml HBSS. To calculate

the irradiation time, power per area [W/m2] was mea-

sured by a UVX radiometer (Thermo Fisher) and the

following equation was used: irradiation time [s] = en-

ergy per area [J/m2] divided by power per area [W/m2].

The output of a Philips TL20W/01 lamp (Philips, The

Figure 7 miR-101 overexpression induces premature senescence in HDFs. Cells were reverse transfected as described with miR-101 precursors

for overexpression, negative control or with the transfection reagent (siPORT™ NeoFX™) at day 0, 3, 5 and 7. At day 9 RNA and protein were isolated.

Expression levels of (A) miR-101 and (B) Ezh2 mRNA were determined by real-time qPCR. Data represents the mean ± SE for three independent

experiments. (C) Standard Western blot analysis was performed with monoclonal mouse anti-Ezh2 antibody. Left panel represents densitometric data

calculated out of three independent experiments (± SD). (D) Growth curve analysis of miR-101 overexpressing HDFs. cPDLs were calculated. Data

represents the mean ± SD for three independent experiments. (E) To determine the senescence status of miR-101 overexpressing and control HDFs,

cells were stained for SA-β-gal at day 9. Bars represent the relative amount of SA-β-gal positive cells (± SD). OE: overexpression; cPDL: cumulative

population doublings. *p < 0.01; **p < 0.001.
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Netherlands) for 10 cm dishes was determined as 14.2 ±

0.5 W/m2. To test the sublethal dosage, cells were irradi-

ated with 3000, 3500, 4000 and 5000 J/m2. For experi-

ments, cells were irradiated twice a day with a dose of

4000 J/m2 for 4 consecutive days, where irradiation time

was 282 ± 10 s. UVB treatment of miRNA knockdown

cells were performed in 6-well plates at a density of

1.3 × 105 cells (UVB) and 5 × 104 cells (control). The out-

put of a Philips TL20W/01 lamp for 6-well plates was

determined as 17.3 ± 0.5 W/m2 and irradiation time was

231 ± 6 s. After the first (day 1) and the last (day 4) ir-

radiation, as well as after day 7, day 9 and day 15 after

the first irradiation, cells were lysed and RNA and pro-

tein were isolated.

Protein isolation

For the preparation of whole cell lysates, HDFs were

washed twice with cold PBS and scraped off on ice in

lysis buffer (50 mM Tris–HCl, 150 mM NaCl, 1% NP-

40, 0.25% Na-deoxycholate, 1 mM EDTA, 100 nM

Na3VO4, 1 mM NaF, 10 mM β-glycerophosphate,

pH 7.4) from the 6-well plate or 10 cm dish with a rub-

ber policeman. Cells were three times deep-frozen in li-

quid nitrogen and thawed and further kept on ice for

30 minutes. After centrifugation at 20,000 × g for 10 mi-

nutes at 4°C, supernatant was used to determine the

protein concentration by DC Protein Assay Kit (Biorad,

Austria).

mRNA and miRNA isolation

Total RNA was isolated using either TRIzolW Reagent

(Invitrogen; for miRNA) or the RNeasyW Mini Kit

(Qiagen; RNA) according the manufacturer’s protocol.

For the isolation of RNA with TRIzolW Reagent cells

were trysinized, centrifuged, washed with PBS and re-

suspended in 1 ml TRIzolW Reagent. After 5 minutes

incubation at room temperature 200 μl of Chloroform

was added and vigorously vortexed. After 3 minutes

incubation at room temperature a centrifugation step

was performed for 10 minutes at 14 000 × g at 4°C.

The aqueous phase was transferred to a micro-centrifuge

tube and mixed with 500 μl isopropanol and incubated at

room temperature for 10 minutes to precipitate the RNA.

After 10 minutes centrifugation at 14 000 × g (4°C) the

supernatant was discarded and the pellet was washed with

ethanol (70%) and centrifuged again for 5 minutes at

6 000 × g (4°C). The supernatant was discarded, the pellet

air dried and re-suspended in 30 μl of RNAse free water.

Using the RNeasyW Mini Kit up to 5 × 106 cells were tryp-

sinized and lysed in 350 μl RLT buffer (including 10 μl β-

mercaptoethanol per ml). The lysate was homogenously

mixed by pipetting up and down a few times. One volume

of 70% ethanol was added, mixed by pipetting and trans-

ferred to RNeasy spin column. After a centrifugation step

at 12 900 × g for 30 seconds at room temperature, three

washing steps were performed. First 700 μl RW1 buffer,

two times 500 μl RPE (one volume RPE added to four vol-

umes ethanol) whereas the last washing step was carried

out for 2 minutes at maximum speed to dry the RNA-

binding membrane. RNA was eluted using 30 μl of

RNAse-free water. RNA concentration was quantified by

photometric measurement at 260 nm and 280 nm.

Immunoblotting

Equal amounts of protein were subjected to SDS gel

electrophoresis (10–12.5% SDS/polyacrylamide gel) and

transferred to PVDF membrane by wet electro-blotting

(300 mA, 1 h) using the standard Western blot protocol.

The membranes were blocked with 5% skim milk in

PBS-T (Phosphate buffered saline + 0.1% Tween 20) or

in 5% BSA in PBS-T for the detection of phosphorylated

proteins for 1 h at room temperature. Primary anti-

bodies were incubated for 1 h at room temperature or

overnight at 4°C. After two times of washing with PBS-

T, the second antibody was incubated for 45 min at

room temperature. After a few washing steps with PBS-

T, immune-reactive proteins were detected using an en-

hanced chemiluminescence system (ECL+, Amersham

Life Science, Germany). The following antibodies were

used: mouse monoclonal anti-p21WAF1 (Pharmingen,

#556430) mouse monoclonal anti-pRb (Pharmingen,

#554136), mouse monoclonal anti-p53 (Santa Cruz, #sc-

126), rabbit polyclonal anti-GAPDH (Santa Cruz, #sc-

25778), rabbit polyclonal phospho-p53 (Ser15; Cell

Signaling, #9284), mouse monoclonal α-Tubulin (Sigma,

#t-5168), mouse monoclonal ant-Cyclin D1 (Neomarkers,

#MS-210-P) and mouse monoclonal anti-Ezh2 (BD

Biosciences, #612666), mouse monoclonal anti-p16INK4A

(See figure on previous page.)

Figure 8 Depletion of miR-101 fails to prevent UVB-induced senescence. Cells were irradiated with UVB twice a day for 4 days. After the last

exposure the cells were reverse transfected as described with miR-101 power inhibitors for knockdown, negative control or not treated. Reverse

transfection was repeated at day 7. At day 9 RNA and protein were isolated. A. Control cells. Expression levels of miR-101 and Ezh2 mRNA of

non-irradiated cells after miR-101 knockdown were determined by real-time qPCR. Bars indicate the mean ± SE of three independent experiments.

B. UVB-treated cells miR-101 and Ezh2 expression levels from UVB treated cells after miR-101 knockdown were determined by real-time qPCR.

Bars indicate the mean ± SE of three independent experiments. C. Growth curve analysis of miR-101 knockdown cells. cPDLs were calculated as

described. Data represent the mean ± SD of three independent experiments. cPDL: cumulative population doublings KD: knockdown. *p < 0.01;

**p < 0.001.
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(BD Biosciences, #511325GR), rabbit polyclonal anti-

p15INK4b (Abcam, #ab53034), mouse monoclonal anti-

RUNX1/AML1 (Abcam, #ab54869), rabbit monoclonal

anti-retinoic acid receptor beta – RARB (abcam,

#ab124701). As secondary antibodies, polyclonal anti-

bodies from Dako were used. For positive control, U2-OS

cells were transiently transfected with a pcDNA3.1 vector

carrying the sequence of either Ezh2 or p16INK4a.

Real-time q-PCR analysis of mRNAs

RNA was isolated using the RNeasyW Mini Kit (Qiagen)

and quantified as described above. For cDNA synthesis

0.4-1 μg of total RNA was reverse transcribed with the

Transcriptor First Strand cDNA Synthesis Kit purchased

from Roche Applied Science and diluted 1:4. Amplifica-

tion of Ezh2 mRNA was carried out with the following

primers: (forward) 5’-CAT TCG GTA AAT CCA AAC

TGC-3’ and (reverse) 5’-CGA CAT ACT TCA GGG

CAT CA-3’. RUNX1 (Runt-related transcription factor

1) (forward) 5’-CCC TCG TGC CTC CCT GAA CCA-3’ ;

(reverse) 5’-GGC TGG GGA GAG GGA TGG ACA-3’.

VEGFA (Vascular endothelial growth factor A) (forward)

5’-TTT GCT TGC CAT TCC CCA C-3’; (reverse) 5’-

GCT CTT GCT ACC TCT TTC CTC-3’. CDKN2B

(Cyclin-dependent kinase 4 inhibitor B) (forward) 5’-

GAT GAG GAC AAT GAG GCA AAG-3’ ; (reverse) 5’-

TGG GAA GAA AAG CAA GAC AAC-3’. NOTCH3

(Neurogenic locus notch homolog protein 3) (forward)

5’-TCA TCC TCT TCT CTT TCC ACC-3’; (reverse) 5’-

TCC CAG ACT CTT CAC AAG AC-3’. As a house-

keeper B2M (β-2 microglobulin) was amplified with the

following primers: (forward) 5’-GAATTC ACC CCC ACT

GAA AA-3’ and (reverse) 5’-CTC CAT GAT GCT GCT

TAC A-3’ and GAPDH (Glyceraldehyde 3-phosphate de-

hydrogenase) (forward) 5’-GAG TCA ACG GAT TTG

GTC GT-3’ ; (reverse) 5’-GAT CTC GCT CCT GGA AGA

TG-3’. Real-time q-PCR was performed in duplicates using

the SYBR Green I Master Mix in the LightCyclerW 480

Instrument (Roche Applied Science).

Real-time q-PCR analysis of microRNAs

RNA was extracted with TRIzolW Reagent (Invitrogen, as

described above). Using the Universal cDNA Synthesis

Kit (Exiqon, Denmark) cDNA synthesis was performed

according the manufacturer’s protocol. To perform real-

time PCR SYBR Green master mix and specific primer

for miR-101 (hsa-miR-101, LNA PCR primer set, UniRT;

Exiqon, Denmark) were used. Expression levels of miR-

101 were normalized to endogenous 5S rRNA (Exiqon,

Denmark). In addition, 7 other microRNAs (hsa-miR-

155, hsa-miR-15a, hsa-miR-17, hsa-miR-20a, hsa-miR-

20b, hsa-miR-34a, hsa-miR-93) were chosen for qPCR

confirmation of array data using the Taqman qPCR plat-

form (Life Technologies). In brief, specific reverse

transcription (RT) reactions were performed with each

microRNA primer and RNU44 as endogenous control

using 10 ng of total RNA as input material. Following

RT, qPCRs were run in 4 replicates using the Taqman

Universal Mastermix (Life Technologies) on a Rotor-Gene

Q (Qiagen) according to the manufacturer’s protocol. Data

analysis was performed using the ddCt method.

Genome-wide RNA profiling (microarray)

Total RNA was isolated using the RNeasyW Mini Kit

(Qiagen, as described above). After quantification RNA

was sent to The Microarray Facility (Tübingen, Germany).

The obtained data set was analyzed using CARMAweb

1.5 (https://carmaweb.genome.tugraz.at/carma/). A cut-off

of 1.5 fold change was used to determine the total number

of up- and downregulated genes.

Low density array (TaqMan q-PCR)

RT-q-PCR was performed using TaqmanW Low Density

Array technology (Applied Biosystems). A total of 93

candidate and three housekeeper genes were used to de-

sign TaqmanW custom array. According to the manufac-

turer’s protocol q-PCR was performed, as described [60].

Locked nucleic acid (LNA)-miRNA microarray

For miRNA expression profiling, LNA-miRNA microar-

rays (Exiqon, Denmark) consisting of 559 human and

170 mouse LNA-modified probes [61] against miRNAs

annotated in Sanger miRBase v9.2 [62] as well as 77 not

yet annotated probes (miRPlus, Exiqon, Denmark) were

used as previously described [16]. In brief, total RNA ex-

tracts were end-labeled using Cy3 dye and hybridized

against a common reference RNA-pool end-labeled with

Cy5 on a Tecan HS 400 hybridization station (Tecan,

Austria). Arrays were scanned at 10 μM resolution (Axon

Genepix 4000B, Axon Instruments) and raw intensities

were extracted using GenePixPro 4.1 software (Axon

Instruments). The acquired array signal data was fur-

ther processed under R/Bioconductor using linear models

for microarray analysis [63] and differential expression be-

tween control and UVB treated cells was calculated using

t-statistics and p-value adjustment to multiple testing ac-

cording to Benjamini-Hochberg.

Stable overexpression and knockdown of Ezh2

For the overexpression of Ezh2 the lentiviral pLenti6/

V5-DEST Gateway vector (Invitrogen) was used. Cloning

included the TOPO cloning of Ezh2 into pENTR/D-

TOPO. This vector was used to introduce the Ezh2 cod-

ing sequence into pLenti6/V5-DEST by recombination

to generate the transfer vector pLenti6-Ezh2 (for further

details see Invitrogen’s ViraPower Lentiviral Expression

System manual). The GFP-control vector was generated

in the same way. As a transfer vector for knockdown of
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Ezh2 lentiviral pLKO.1-TRC short-hairpin vector were

purchased from Addgene/Open Biosystems (United

Kindom). The following sequences were chosen: pLKO-

73 within the 3’UTR of Ezh2 (5’-TAT TGC CTT CTC

ACC AGC TGC-3’) and pLKO-75 within the coding re-

gion (5’-CCA ACA CAA GTC ATC CCA TTA-3’). As a

control the empty vector was used. For packaging of the

lentivirus in HEK293FT cells (Invitrogen), 3 μg of the

corresponding overexpression or knockdown vector was

combined with 7.5 μg vector backbone psPAX2, 2.5 μg

envelope encoding plasmid pMD2.G. HEK293FT cells

were cultivated in T75 flasks to 90% confluence and

transfected with the mixture using Lipofectamine 2000

(Invitrogen). The next day medium was replaced by

10 ml of growth medium without antibiotics. After

48 hours (day 5) the supernatant was harvested, centri-

fuged at 300 × g for 5 minutes at room temperature and

filtered through a 0.45 μm PVDF filter (Millipore, Vienna,

Austria). Afterwards, the virus containing supernatant was

concentrated using Polyethylene glycol. Therefore, to one

volume Polyethylene glycol solution (50 mM Polyethylene

glycol, 41 mM NaCl, autoclave, pH =7.2; PEG) four

volumes of supernatant was added and incubated for

2 hours at 4°C, carefully mixing every 20–30 minutes

by inverting. The solution was centrifuged at 1500 × g

for 30 minutes at 4°C and a white pellet should be

visible. After aspirating the supernatant an additional

centrifugation step was carried out at 1500 × g for

5 minutes at 4°C to collect remaining PEG which is

aspirated carefully. The white pellet was re-suspended

in medium by pipetting up and down and vigorously

vortexing for 20 to 30 seconds. As a guideline 500 μl

for one T75 flask was used, aliquoted to 100 μl and

stored at −80°C. The titer of the concentrated lenti-

viral supernatant was determined by seeding 5 × 104

U2-OS in 6-well plates with 8 mg/mL hexadimethrine

bromide (polybrene; Sigma-Aldrich) as transduction

enhancer. A stock of 4 mg/mL of polybrene was pre-

pared by resolving polybrene in sterile water and fil-

tered through a 0.22 μm sterile filter. The following

day the medium was replaced by 2 ml of DMEM.

After day 3 the selection was started. For overexpres-

sion selection 10 μg/ml Blasticidin, for knockdown

500 ng/ml puromycin was added to each well. The

antibiotic containing medium was replaced every sec-

ond day. Approximately 6–7 days after starting the

selection the untransduced cells are dead. For the

staining the cells are washed three times with PBS,

covered with crystal violet and incubated for 5–10 mi-

nutes at room temperature. Wells are washed twice

with ddH2O and air dried. The colonies are counted

and multiplied with 1 000 and the corresponding di-

lution. This procedure allows to calculate transfection

units (TU) of the virus/ml.

Overexpression and knockdown of miRNAs

To achieve the overexpression of microRNA in HDFs,

cells were reverse transfected with Pre-miR™ miRNA

Precursor for miR-15a, miR-20a, miR-93, miR-101, and

Pre-miR™ miRNA Precursor Molecules-Negative Control

#2 for negative control (Applied Biosystems, Austria) using

siPORT™ NeoFX™ Transfection Agent (Ambion, Austria)

according the manufacturer’s protocol. Cells were trysi-

nized, counted and 6 × 104 cells were centrifuged to be re-

suspended in 1.8 ml medium. The transfection reagent

siPORT™ NeoFX™ and Opti-MEM medium (Invitrogen)

were adjusted to room temperature. Opti-MEM medium

was mixed with Precursors and with the transfection re-

agent and incubated for 10 minutes incubation at room

temperature. Both reagents are mixed and additionally

incubated at room temperature for 10 minutes. After-

wards, the mixture is added together with the cell suspen-

sion to 6-well plates [22]. Cells were UVB treated as

described above. Experiments were done in 6-well plates

with 1.3 × 105 (UVB) and 5 × 104. After the last exposure,

cells were trypsinized and prepared for transfection.

For miR-101 knockdown, cells were reverse trans-

fected with miRCURY LNA™ microRNA Power Inhibitor

and miRCURY LNA™ microRNA Power Inhibitor Nega-

tive Control A for negative control (Exiqon, Denmark)

using siPORT™ NeoFX™ Transfection Agent (Ambion,

Austria) according the manufacturer’s protocol. UVB

treated cells were trypsinized, counted, centrifuged and

re-suspended in 1.8 ml medium. Opti-MEM medium

was mixed with the miRNA inhibitor or control and

with the transfection reagent and incubated for 10 mi-

nutes at room temperature. The protocol was continued

as described above. For both, Power Inhibitor and Nega-

tive Control A 15 nM (day 4 and day 7) were used.

Transduction of cells by lentiviral particles

For transduction 5 × 104 human diploid fibroblasts

(HDFs) are seeded to 6-well plates the day before

(day 1). A multiplicity of infection of two together

with 8 μg/ml polybrene as transduction enhancer was

used in a total of one milliliter. The medium was chan-

ged the next day and selection was started at day 3. For

the selection of Ezh2 overexpressing cells 10 μg/ml blasti-

cidin, for Ezh2 knockdown cells 500 ng/ml puromycin

was used.

Bioinformatics analysis for predicting miRNA target genes

For miRNA target prediction the following tools were

used: TargetScan [64], PicTar [65], miRanda [66], PITA

[67], ElMMo [68], RNA22 [69], DIANA-microT [70]

and GenMiR++[71]. The predictions of these tools re-

flect miRNA:mRNA pairing, site location, conservation,

site accessibility, multiple sites and expression profile [72].

The results were visualized using in house developed tools
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(Genesis [73] and ClueGO [74]) as well as publicly avail-

able tools: Cytoscape [75].

Statistical analysis

We used limma package [63] for miRNA microarray

analysis. T-test and adjusted p-value were used to iden-

tify genes differentially expressed between control and

UVB treated cells. Furthermore, we also investigated the

linear relationship between miRNAs and their high con-

fidence target genes by using Pearson correlation coeffi-

cients. All analyses were done with the use of statistical

software programs R/Bioconductor.

Pathway analysis and network visualization

The data set obtained from the genome-wide RNA pro-

filing was uploaded to Ingenuity Systems (http://www.

ingenuity.com/) and pathway analysis was done. The

visualization of the network was done using the open-

source Cytoscape software platform [75] for visualizing

biomolecular interaction networks. The color and shape of

nodes are based on different node attributes available for

the analyzed dataset. The red triangles, purple circles and

orange diamonds in the network are indicating miRNAs,

target genes, and transcription factors, respectively. Edges

represent correlation between miRNAs and mRNAs, the

color of the edges designate the type of interaction. Red is

for positive and green is for negative correlation. The bio-

logical functions triggered by the miRNA through its tar-

get genes were visualized using ClueGO [74] a Cytoscape

plugin.

Additional files

Additional file 1: Figure S1. Growth characteristics of UVB treated cells.

Human diploid fibroblasts (HDF) were UVB treated in 10 cm dishes with

4000 J/m2 as described. (A) Cumulative population doubling (cPDL) of

UVB treated and untreated control cells were calculated at the indicated

time points as described in material and methods. (B) To determine the

senescence status of HDFs, cells were stained for SA-β-gal at day 9 after

the first irradiation. Bars indicate the relative percentage of SA-ß-gal-positive

cells (± SD); results were derived from three independent experiments.

(C) Protein was isolated from UVB irradiated and control cells at the

indicated time points. Defined protein levels were determined by

standard Western blot analysis. Experiments were performed in duplicates.

As were used, as indicated. As positive control for the right panel, lysates

from mock-transfected (U2-OS pX) and p16INK4A transfected (U2-OS p16)

U2-OS osteosarcoma cells were used, as indicated. cPDL: cumulative

population doublings; Co: control.

Additional file 2: Figure S2. Senescence status of HFF1 and PFF. HFF1

and PFF were UVB irradiated in 6-well lates with 3000, 3500, 4000, 4500

and 5000 J/m2 as described. (A) Cumulative population doublings (cPDL)

of UVB treated and untreated cells were calculated at the indicated time

points as described in material and methods. (B) Cells were stained for

SA-β-gal at d9 after the first irradiation to determine the senescence

status. Bars indicate the relative percentage of β-gal-positive cells (± SD);

results were derived from three independent experiments.

Additional file 3: Figure S3. Protein levels of UVB irradiated HDF.

Protein was isolated from UVB irradiated and control cells at the

indicated time points. Protein levels were analyzed by standard Western

blot. Experiments were performed in triplicates. In the lower panels,

controls for the Western blots are provided as follows: Left panel: p-p53

Western blot in untreated vs. cisplatin-treated HFF-1. Middle panel: Ezh2

Western blot in U-2OS cells transfected with pcDNA3-Ezh2 or empt

vector (EV), as indicated. Right panel: p16INK4A Western blot iin U-2OS cells

transfected with pcDNA3-p16INK4A or empty vector (EV), as indicated.

Additional file 4: Table S1. Genome-wide transcriptome analysis after

UVB treatment. RNA was isolated from UVB treated and control cells.

Genome-wide RNA profiling (microarray) was performed at different time

points. A cutoff of > 1.5 fold regulation was used for the result of day 7

and day 9 after UVB irradiation. * indicates significant changes in gene

expression at day 9, derived from three independent Affymetrix chip

experiments.

Additional file 5: Table S2. microRNA expression levels after UVB

treatement. miRNA was isolated from UVB treated and control cells.

miRNA expression levels were determined by Locked nucleic acid

(LNA)-miRNA microarray. A cut-off of > 1.5 fold regulation was used.

Adjusted p-values of ≤ 0.05 are in black colour.

Additional file 6: Figure S4. Validation of selected miRNA regulatory

interactions. miR-15a and miR-20a were overexpressed in HDF as indicated.

Extracts were prepared from cells overexpressing the indicated miRNAs and

probed with antibodies to RUNX1, CDKN2B, and RARB, as indicated.

Additional file 7: Figure S5. Depletion of Ezh2 induces premature

senescence in HDFs. Knockdown of Ezh2 was done with two different

constructs in HDFs as described. (A) cPDLs were calculated for Ezh2

knockdown cells and scrambled transfected cells. Data represents the

mean ± SD of three independent experiments. Representative standard

western blot analysis of Ezh2 knockdown. (B) SA-β-gal activity was

determined at day 9 after transfection. Bars represent the mean ± SD of

three independent experiments. cPDL: cumulative population doublings;

scr: scrambled shRNA; shRNA: small hairpin RNA.

Additional file 8: Figure S6. Ezh2 protein and mRNA levels after

lentiviral Ezh2 overexpression. HDFs were transfected with Ezh2 or GFP

overexpression virus. As an additional control HDF wildtype were used.

RNA and protein were isolated as described. For quantification of Ezh2

mRNA levels real-time qPCR was performed (left panel). Protein lysates

were subjected to SDS-page and analyzed for Ezh2 protein levels by

standard Western Blot. Number in brackets represent densitometric data.
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