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Introduction: Alzheimer’s disease (AD) is a progressive and debilitating 
neurodegenerative disorder prevalent among older adults. Although AD symptoms 
can be  managed through certain treatments, advancing the understanding of 
underlying disease mechanisms and developing effective therapies is critical.

Methods: In this study, we systematically analyzed transcriptome data from temporal 
lobes of healthy individuals and patients with AD to investigate the relationship 
between AD and mitochondrial autophagy. Machine learning algorithms were used 
to identify six genes—FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5—
for the construction of an AD prediction model. Furthermore, AD was categorized 
into three subtypes through consensus clustering analysis.

Results: The identified genes are closely linked to the onset and progression 
of AD and can serve as reliable biomarkers. The differences in gene expression, 
clinical features, immune infiltration, and pathway enrichment were examined 
among the three AD subtypes. Potential drugs for the treatment of each subtype 
were also identified.

Discussion: The findings observed in the present study can help to deepen the 
understanding of the underlying disease mechanisms of AD and enable the 
development of precision medicine and personalized treatment approaches.
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1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by a 
progressive decline in memory and cognitive function. The underlying mechanisms of AD 
require further elucidation in spite of considerable research on the subject, and current 
therapeutic options are limited (Lane et  al., 2018). Recently, alterations in cellular energy 
metabolism, including defects in mitochondrial function, were reported to influence AD 
pathogenesis (Moreira et al., 2010; Wang et al., 2020).
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Mitochondrial autophagy, also known as mitophagy, is a crucial 
cellular process involved in maintaining cellular homeostasis and 
energy metabolism. Mitophagy is a process of selective degradation 
through which damaged or surplus mitochondria are targeted for 
removal, thereby promoting mitochondrial turnover and preventing 
the accumulation of damaged mitochondria (Kim et  al., 2007). 
Reportedly, AD is characterized by the accumulation of damaged 
neuronal mitochondria and increased oxidative stress caused as a result 
of the impairment of mitophagy (Smith et al., 2000; Manczak et al., 
2006; Kerr et al., 2017; De Gaetano et al., 2021). In addition, mitophagy 
dysfunction inhibits ATP production and activates AMPK. Excessive 
activation of AMPK further reduces ATP production and induces tau 
protein phosphorylation, which is crucial for Aβ synaptic toxicity. 
Additionally, impaired mitophagy has a negative impact on microglia. 
Microglia play a key role in clearing neurotoxic protein components; 
however, when mitophagy is impaired, microglia cannot effectively 
phagocytize and remove Aβ plaques, resulting in the accumulation of 
Aβ (Leuner et al., 2012; Fang et al., 2019; Song et al., 2021); these are 
typically considered characteristic features of AD. Furthermore, 
mitophagy is known to be affected by AD-associated genetic mutations, 
including those in the presenilin 1 gene (Martin-Maestro et al., 2017), 
highlighting a direct connection between AD and mitophagy. 
Promoting mitophagy can improve cognitive function in AD animal 
models, and drugs targeting the mitophagy pathway may have 
therapeutic potential for the treatment of AD (Cen et al., 2020, 2021; 
Chen et al., 2021; Liang et al., 2021; Wang et al., 2021).

These findings highlight the fact that the relationship between AD 
and mitophagy has progressively garnered attention as an important 
field of research with immense potential to improve the current 
understanding of the underlying mechanisms of AD and to develop 
novel therapeutic strategies.

The purpose of the present study was to gain a deeper understanding 
of the relationship between AD and mitophagy through a systematic 
analysis of transcriptomic data from the middle temporal gyrus (MTG) 
in healthy individuals and patients with AD. Machine learning 
algorithms were utilized to construct prediction models for AD based on 
27 mitophagy-related genes (MRGs). These models were evaluated in 
terms of their performance through multiple validation techniques, 
including receiver operating characteristic (ROC) curves, calibration 
curves, nomograms, decision curve analyses (DCA), and external 
datasets. Additionally, three subtypes of AD were developed through 
consistent cluster analysis, the biological functions, and pathways specific 
to each subtype were compared, and interpatient differences were 
analyzed in terms of age and sex in each subtype. Weighted gene 
co-expression network analysis (WGCNA) was used to obtain hubgenes, 
and the Connectivity Map (CMap) database was utilized to identify 
potential small molecule drugs that may target each subtype.

2. Materials

2.1. Data acquisition and processing

The NCBI Gene Expression Omnibus (GEO) public database1 was 
used to search for gene expression data, and these data were obtained 

1 https://www.ncbi.nlm.nih.gov/geo/

using the “GEOquery” R package. The data comprised two datasets, 
GSE109887 (GPL10904 platform) and GSE132903 (GPL10558 
platform), which were merged to form a total of 130 and 143 samples 
from healthy individuals and patients with AD, respectively. The 
samples were collected from the MTG, a site of early AD pathology 
(Ray and Zhang, 2010; Chen et al., 2022). Merged data were processed 
to eliminate batch effects from different platforms and to normalize 
the data using the “sva” package. A principal component analysis 
(PCA) was subsequently performed to assess data combinations. The 
performance of the prediction model was validated using the GSE5281 
dataset (GPL570 platform), which contained 74 and 87 samples from 
healthy individuals and patients with AD, respectively, and the 
samples were obtained from several brain regions including the 
entorhinal cortex, hippocampus, medial temporal gyrus, posterior 
cingulate, superior frontal gyrus, and primary visual cortex.

The mitophagy-associated gene set “REACTOME_MITOPHAGY.
v7.5.1.gmt” was procured from the Reactome database. Meanwhile, 
the gene set “BIOCARTA_INFLAM_PATHWAY.v7.5.1.gmt,” which 
is associated with inflammation factors, was acquired from the 
Biocarta database.

2.2. Gene set variation analysis

The gene set variation analysis (GSVA) was performed using the 
“GSVA” R package to investigate the differences in the expression of 
MRGs between patients with AD and healthy individuals and between 
subtypes of AD. The results were visualized using the “ggpubr” 
package to clearly demonstrate the variations in gene expression.

2.3. Identification of differentially 
expressed MRGs

Differential gene expression between samples was determined 
using the “limma” package, with a stringent criterion of p < 0.05. The 
MRGs with differential expression in patients with AD were 
determined by taking into consideration the intersection of the 
differentially expressed genes (DEGs) and MRGs. The DEGs were 
visualized as a volcano plot and heatmap generated using the “ggplot2” 
and “pheatmap” packages, respectively.

2.4. Construction and validation of 
prediction models

The 27 MRGs were screened using the random forest method, and 
the characteristic genes were selected according to the minimum 
cross-validation error achieved from the ntree = 1,000 iteration. The 
importance score of the selected characteristic genes was subsequently 
evaluated. The selection process was made more specific through the 
application of a stepwise regression algorithm (Gu et al., 2022) to the 
top  10 genes. The prediction models were established through 
multifactor logistic regression and the graphical representation of the 
model was depicted using the forest plot obtained from the R package 
“forestplotter.” Screening and modeling processes were implemented 
using the “randomForest” and “caret” R packages, respectively. ROC 
curves were constructed using the R package “pROC,” and the area 
under the ROC curve (AUC) of the prediction model was determined. 
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Furthermore, a nomogram model was established using the “rms” R 
package. The predictive power of each characteristic gene was 
quantified by assigning a predictive power score, and the total score 
represented the sum of the predictive power scores for all 
characteristics in the prediction model. The predictive power of the 
line graph model was evaluated by using calibration curves and DCA 
(Lai et al., 2021). The validity of these results was verified with an 
external dataset.

2.5. Analysis of immune infiltration and 
expression levels of inflammatory factor 
genes

The relative proportion of infiltrated immune cells was quantified 
using the MCPcounter algorithm. MCPcounter is a transcriptomic-
based quantitative method that measures the absolute abundance of 
eight immune cell populations (T cells, CD8 T cells, Cytotoxic 
lymphocytes, B lineage, NK cells, Monocytic lineage, Myeloid 
dendritic cells, and Neutrophils) and two stromal cell populations 
(Endothelial cells, Fibroblasts) in heterogeneous tissues. The method 
relies on cell type-specific gene expression values to derive an 
abundance score for each individual cell type and sample, allowing for 
direct comparison of cell type abundance across different experimental 
conditions. Additionally, the expression levels of inflammatory factor 
genes were analyzed in the samples from healthy individuals and 
patients with AD, as well as in subtypes, to detect differential 
expression. The correlation between MRGs and infiltrated immune 
cells and inflammatory factors was explored using Spearman’s 
correlation coefficient.

2.6. Consensus clustering analysis

Unsupervised clustering analysis was performed on the 143 
samples from patients with AD using the “ConsensusClusterPlus” R 
package according to the expression profiles of 27 MRGs. The 
K-means algorithm was utilized, with a maximum subtype number 
set at 10 (k = 10), a sampling ratio of 0.8, and 100 re-sampling times. 
The optimal number of clusters was determined through the 
evaluation of the cumulative distribution function (CDF) curve, 
tracking plots, consensus matrix, delta area, and consistent cluster 
score (>0.9) based on the results of consensus clustering.

2.7. Analysis of enrichment

The gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis of DEGs among subtypes was 
performed using the “clusterProfiler” R software package.

2.8. Weighted gene co-expression network 
analysis

Weighted gene co-expression network analysis was performed 
using the “WGCNA” R package for the identification of the hub genes 
for each subtype. The genes in the top  5,000 of median absolute 
deviation (MAD) were initially selected, and a similarity matrix was 

constructed by computing the correlation coefficients between each 
pair of genes. The soft threshold of 12 was subsequently used for the 
conversion of a similarity matrix into an adjacency matrix, and further 
into a topological overlap matrix (TOM) to evaluate the average 
network connectivity of each gene. The “blockwiseModules” functions 
(minModuleSize = 30, mergeCutHeight = 0.25) were used to categorize 
genes with similar expression profiles into modules, and each module 
was identifiable with a unique color. The module signature genes (ME) 
represented the gene expression profile of each module and facilitated 
the authors in accurately assessing the relationship with the phenotype. 
Module membership (MM) represents the relevance of the gene to the 
module through the correlation coefficient with the gene expression 
values and ME. ME and MM were used to identify crucial subtype-
specific modules.

2.9. Identification of potential small 
molecule drugs

Potential subtype-specific small molecule drugs for the treatment 
of AD were identified by obtaining the intersection of core genes and 
DEGs for each subtype. The top 150 upregulated and downregulated 
genes with the highest fold change were subsequently inputted into 
the Connectivity Map (CMAP) database.2 The purpose of this search 
was the identification of drugs with potentially beneficial effects on 
the treatment of AD according to subtype. The drug scores ranged 
from −100 to 100; a lower score indicated a greater potential for the 
drug in terms of its applications in the treatment of the corresponding 
AD subtype.

3. Results

3.1. Dysregulation of mitochondrial 
autophagy and activation of the immune 
system in AD

The expression profiles of 27 MRGs were compared between 
patients with AD and normal controls using the GSE109887 and 
GSE132903 datasets (Figures 1A,B). Typically, MRGs appeared to 
be downregulated in patients with AD (Figures 1C,D), and this result 
was validated by the GSE5281 dataset (Supplementary Figure 1A). 
Analysis of differential expression revealed 21 DEGs, of which 18 
were downregulated (TOMM20, VDAC1, TOMM70A, CSNK2A1, 
MAP1LC3A, FUNDC1, UBB, MAP1LC3B, UBC, TOMM5, CSNK2B, 
SRC, ATG5, PARK2, TOMM6, PGAM5, TOMM22, and TOMM7) 
and three were upregulated (UBA52, MFN2, and ATG12; Figure 1E, 
Supplementary Figure  1B). Correlation analysis revealed that 
TOMM20, PARK2, SRC, and CSNK2A1 were positively correlated 
with multiple genes from the 21 differentially expressed mitophagy-
related genes, while UBA52 and ATG12 were negatively correlated 
with multiple genes from the same gene set (Figure  1F). 
Inflammation factor expression analysis showed that CD4, CSF1, 

2 https://clue.io/query
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CSF3, IFNA1, and IL1A were downregulated in AD, whereas 
HLA-DRB3, HLA-DRB4, IL10, IL15, IL5, IL6, PDGFA, and TGFB3 
were upregulated (Supplementary Figure 1C). Analysis of immune 
cell infiltration using the MCPcounter algorithm showed that the 
proportions of T cells, cytotoxic lymphocytes, and monocytes 
increased in patients with AD, whereas that of NK cells decreased 
(Figure 1G).

3.2. Construction and evaluation of 
predictive models

Multiple machine learning algorithms (Random Forest, 
Stepwise Regression, and Multivariate Logistic Regression) were 
used to screen the 27 MRGs genes and construct a predictive 
model for AD. First, the 27 genes were inputted into the Random 

FIGURE 1

Differentially expressed mitophagy-related genes (MRGs) in Alzheimer’s disease (AD). (A) Principal component analysis (PCA) of GSE109887 and 
GSE132903 datasets before batch effect removal. (B) PCA of GSE109887 and GSE132903 datasets after batch effect removal. (C) The expression 
patterns of 27 MRGs are presented in the heatmap. Each row represents a specific MRG and each column represents a sample. The color gradient 
ranging from blue to red indicates low to high expression levels, respectively. (D) The box plot displays the GSVA scores of the MRG gene set across 
samples to observe the overall expression differences of MRG between healthy individuals and patients with AD. p values were estimated by Student’s 
t-test. ****p < 0.0001. (E) The volcano map illustrates 21 differentially expressed MRGs in AD, where a negative log2FC indicates downregulation and a 
positive log2FC indicates upregulation of the gene expression. (F) Correlation analysis between the 21 differentially expressed genes. Red and blue 
represent positive and negative correlations, respectively. The depth of color represents different correlation coefficients. (G) The violin diagram shows 
the difference in infiltrated immune cells between patients with AD and healthy subjects. The horizontal axis represents the immune cell types, while 
the vertical axis denotes the scores calculated by the mcpcounter algorithm. p values were estimated by Student’s t-test. **p < 0.01, ****p < 0.0001.
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Forest classifier, and the correlation between the model error and 
the number of random forest trees revealed that the error rate was 
the most stable when using 698 trees (Figure  2A). The top  10 
genes, determined on the basis of importance ranking, were 
selected for further analysis using Stepwise Regression and 
Multivariate Logistic Regression (Figure 2B). The results of these 
algorithms showed that FUNDC1, MAP1LC3A, CSNK2A1, 
VDAC1, CSNK2B, and ATG5 were the six remaining genes 
(Figure  2C). Furthermore, their odds ratios were < 1, which 
suggested that they could be  considered protective factors for 
AD. The predictive performance of these six genes was verified 
through ROC analysis (AUC = 0.887; Figure 2D), and a validation 
set ROC analysis (AUC = 0.843; Supplementary Figure 2A), which 
highlighted the model’s excellent performance in terms of 
predicting AD. A scoring model was consequently established to 
evaluate the probability of AD based on the expression of the 
abovementioned six genes (Figure  2E). Calibration and DCA 
curves were constructed and analyzed using the validation set, 
and the Apparent line and Bias-Corrected line in the calibration 
curve appeared to have a good fit with the Ideal line (Figure 2F, 
Supplementary Figure  2B). The DCA curve showed that the 
model had higher net profit when all the selected feature genes 
were used (Figure 2G, Supplementary Figure 2C), indicating that 
the model is reliable for predicting AD. Correlation analyses were 
subsequently performed between these six feature genes and the 
coding genes of amyloid precursor protein (APP) and tau protein 
(MAPT); these genes are closely associated with AD development 
and progression. The results showed that the expression of these 
six genes was positively correlated with both APP and MAPT 
(Supplementary Figures 3A,B), suggesting that these genes have 
exceptional predictive value for AD.

3.3. Identification of mitochondrial 
autophagy subtypes in AD

The consensus clustering method was applied to samples from 
patients with AD based on the expression profiles of 27 MRGs. The 
best clustering number was K = 3 (Figure  3A), based on a 
comprehensive evaluation of the CDF curve (Figure 3B), delta area 
(Figure 3C), tracking plot (Figure 3D), and consistent cluster score 
(Figure 3E). Differences in the expression of mitochondrial autophagy 
genes, clinical features (age and sex), and diagnostic model efficacy 
among the three subtypes were displayed using a heatmap (Figure 3F). 
The GSVA indicated that the overall expression of MRGs for the 
clusters was as follows in descending order of magnitude: clusters 1, 
2, and 3 (Figure 3G).

The expression of specific genes—including PARK2, ATG5, 
FUNDC1, TOMM20, and VDAC1—was significantly lower in clusters 
2 and 3 than in cluster 1 (Figure 3H). Furthermore, the AD prediction 
model constructed in the present study showed a higher predictive 
ability for clusters 2 and 3 than that for cluster 1 (Figure 3I). Moreover, 
patients with AD in cluster 3 were significantly older than those in 
cluster 2 (Figure 3J). In terms of sex, the number of female patients 
progressively increased from clusters 1 to 3; the number of female 
patients in cluster 3 was significantly higher than the number of male 
patients (Figure 3K).

3.4. Differences in immune infiltration of 
the subtypes of mitochondrial autophagy

The MCPcounter algorithm was used to analyze immune 
infiltration across three subtypes. The heatmap displayed the overall 
differences in immune infiltration among three subtypes (Figure 4A). 
Specifically, the infiltration levels of B lineage, myeloid dendritic cells, 
neutrophils, and T cells gradually increased from cluster 1 to 3. 
Additionally, the infiltration level of monocytic lineage in clusters 2 
and 3 was significantly higher than those in cluster 1. Conversely, the 
infiltration levels of NK cells in clusters 2 and 3 were significantly 
lower than those in cluster 1 (Figure 4B). In terms of inflammatory 
factors, cluster 1 exhibited significantly lower expression levels of 
CD4, HLA-DRB3, IL10, PDGFA, and TGFB3 in contrast to clusters 2 
and 3; however, IFNA1 and IL1A were markedly upregulated in 
cluster 1. Furthermore, Cluster 3 displayed the lowest expression levels 
of HLA-DRA, HLA-DRB4, L11, IL1A, IL6, and TGFB2, whereas L10, 
IL5, and PDGFA were significantly upregulated in cluster 3 
(Supplementary Figure 4A).

3.5. GO and KEGG enrichment analysis of 
three subtypes

Gene ontology and KEGG enrichment analyses were performed 
on DEGs of one subtype relative to the other two subtypes. The 
findings of GO enrichment analysis demonstrated that the subtypes 
examined herein exhibited distinct functional characteristics in terms 
of cellular growth, synaptic organization, and neuronal projection. 
Although all three subtypes shared certain similarities in the 
regulating processes related to neuronal projection extension and 
chemosynaptic transmission, the subtypes were different in terms of 
their specific biological processes. Cluster 1 was associated with 
regulation of binding, regulation of synapse structure or activity, and 
regulation of axonogenesis (Figure  5A), whereas cluster 2 was 
associated with regulation of nervous system development, 
developmental cell growth, and vesicle−mediated transport in synapse 
(Figure 5B). Cluster 3 was involved in positive regulation of cellular 
catabolic process, regulation of cell growth, and regulation of apoptotic 
signaling pathway (Figure  5C). Although clusters 1 and 2 shared 
certain functional characteristics, including protein complex 
oligomerization and protein localization to the plasma membrane, 
cluster 3 was predominantly different with regard to its involvement 
in the organic acid catabolic process and regulation of DNA-binding 
transcription factor activity.

Kyoto Encyclopedia of Genes and Genomes pathway enrichment 
analysis of the three subtypes enabled the identification of commonly 
enriched pathways across all three subtypes, including the 
dopaminergic synapse, lysosome, and salmonella infection pathways. 
Notably, each subtype exhibited its unique pathways. Cluster 2 was 
primarily enriched in pathways related to coronavirus disease 
infectious disease (COVID-19), epithelial cell signaling in Helicobacter 
pylori infections, focal adhesion, and synaptic vesicle cycle. In contrast, 
clusters 1 and 3 were associated with the tight junction and the wnt 
signaling pathways. Furthermore, we found that the rap1 signaling 
pathway was commonly enriched in clusters 1 and 2, whereas the 
pathways of neurodegeneration—multiple diseases were commonly 
enriched in clusters 1 and 3 (Figure 5D).
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FIGURE 2

The establishment and evaluation of the predictive model. (A) Cumulative residual distribution of random forest learning model. The horizontal axis 
represents the number of trees (decision tree classifiers), while the vertical axis represents the corresponding prediction error under that number of 
trees. The plot demonstrates the variation of prediction error of the Random Forest learning model under different quantities of trees. (B) Ranking plot 
depicting the variable importance in random forest. The MeanDecreaseGini index is used to measure the importance of feature genes in the model, 
where a higher value indicates a higher level of importance of that variable in the model. (C) Forest plot demonstrating the six variables selected 
through stepwise logistic regression screening. (D) Receiver operating characteristic curve evaluating the diagnostic performance of feature genes. The 
horizontal axis represents the false positive rate, while the vertical axis represents the true positive rate. A higher AUC indicates a higher accuracy of the 
model in diagnosing the disease. (E) Nomogram for predicting the risk of AD based on feature genes. The feature weight of six important feature genes 
is used as input variables, where the “Points” refer to the corresponding scores of each input variable, and the “Total points” denote the total score 
obtained by adding up the scores of all input variables. “Pr (group)” represents the risk score corresponding to the “Total points,” which indicates the 
likelihood of developing AD. (F) Calibration curve illustrating the calibration performance of a predictive model. The horizontal axis represents the 
predicted value, while the vertical axis represents the actual observed value. The closer the bias-corrected curve is to the Ideal dashed line, the higher 
the calibration performance of the model. (G) DCA estimates the clinical benefit of the nomogram. The plot shows a comparison of the net clinical 
benefits for different prediction models at different decision thresholds. The blue model, which is constructed using six feature genes, performs the 
best, with the highest net clinical benefit relative to the optimal treatment reference line.
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FIGURE 3

Identification of the subtypes of Alzheimer’s disease and differences between subtypes. (A) Consensus clustering matrix showing the clustering 
agreement between samples when k (number of clusters) = 3. (B) Representative cumulative distribution function (CDF) curve showing the clustering 
results for k (number of clusters) ranging from 2 to 10. (C) Relative changes in CDF delta area curves, which measure the stability of clustering across 
different values of k (number of clusters). (D) Tracking plot illustrating the classification of samples into different subtypes based on the clustering 
results obtained using different values of k (number of clusters). Each sample is assigned a different color based on its membership in different clusters. 
(E) Consensus scores for each subtype when k (number of clusters) ranges from 2 to 10. The x-axis represents the number of clusters, while the y-axis 
represents the consensus score for each cluster. A higher consensus score indicates a more robust clustering result. (F) Heatmap depicts the 
expression of 27 mitochondrial autophagy-related genes in three subtypes, with the addition of clinical information. The “Probability” shown in the 
color scale represents the likelihood that the patient be diagnosed with AD based on a diagnostic model constructed using six genes. (G) The boxplot 
displays the overall expression of MRGs among the three subtypes (cluster 1, cluster 2, and cluster 3). p values were estimated by Student’s t-test. 
****p < 0.0001. (H) The expression levels of 27 MRGs were compared between three clusters (cluster 1: n = 40, cluster 2: n = 70, cluster 3: n = 33) using 
Student’s t-test. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance. (I) Comparison of the diagnostic performance of the prediction 
models for the three subtypes (cluster 1: n = 40, cluster 2: n = 70, cluster 3: n = 33). p values were estimated by Student’s t-test. ****p < 0.0001; ns, no 
significance. (J) Comparison of the age of patients with AD in the three subtypes (cluster 1: n = 40, cluster 2: n = 70, cluster 3: n = 33). p values were 
estimated by Student’s t-test. **p < 0.01; ns, no significance. (K) Gender distribution of patients with AD in three subtypes.
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3.6. Screening of hub genes and prediction 
of small molecule drugs

Weighted gene co-expression network analysis was performed to 
identify key gene modules associated with each subtype of AD. By 
combining the R2 values and the Mean Connectivity values, a soft 
threshold of 12 was selected to construct a scale-free network 
(Figure  6A), and 12 modules were identified using hierarchical 
clustering. Each of these modules was represented through different 
colors, while the gray module represented unassigned genes 

(Figure 6B). Based on the correlation analysis between each module 
(excluding the gray module) and clinical features (clusters 1, 2, and 3), 
we selected the “brown” module as the core module for cluster 1, the 
“yellow” module for cluster 2, and the “green” module for cluster 3 
(Figure  6C). In order to identify hub genes in the core modules 
associated with each subtype, we used the KME (module eigengene-
based connectivity measure) value as a screening criteria. KME 
measures the inter-gene correlation within a module, and high KME 
values indicate that a gene is highly connected with other genes in the 
module and may act as a hub gene. By intersecting the hub genes 
identified by KME with the DEGs in each subtype, we determined the 
upregulated and downregulated genes that were most closely 
associated with each subtype. Because of the input limit of 150 genes 
for cMap, DEGs exceeding 150 were sorted using fold change, and 
only the top 150 genes were selected. By combining the findings from 
cMap analysis and relevant literature, we determined that the molecule 
with the lowest score was the most promising predicted drug for each 
subtype. Therefore, LY-278584, cetraxate, and embelin were 
considered predicted drugs for subtypes 1, 2, and 3, respectively 
(Figure 6D; Table 1).

4. Discussion

Alzheimer’s disease, a progressive and debilitating 
neurodegenerative condition, represents the most common cause of 
dementia among older adults (Hou et  al., 2017). It is a complex 
disorder and involves multiple etiological factors including genetic 
and environmental influences (Armstrong, 2013); additionally, the 
underlying mechanisms of AD remain unclear. Mitophagy in neurons 
is believed to critically influence AD pathogenesis (Chu, 2019); 
therefore, the potential of targeting MRGs for the treatment of AD 
should be explored owing to its significant importance in clinical 
settings. To this end, MRGs were used to construct a predictive model 
of AD and refine AD subtypes to further clarify the mechanism 
underlying the pathogenesis of AD, reveal the heterogeneity of AD, 
and provide new ideas and methods for understanding and treating 
AD. Transcriptome data from the MTG of healthy individuals and 
patients with AD were systematically analyzed to investigate the 
relationship between AD and mitochondrial autophagy. GSVA 
revealed that the overall expression of MRGs was downregulated in 
patients with AD. Specifically, 18 MRGs, including those involved in 
the TOM complex (TOMM20, TOMM70A, TOMM5, TOMM6, 
TOMM22, and TOMM7), were significantly downregulated, whereas 
only three genes (UBA52, MFN2, and ATG12) were upregulated. The 
TOM complex was reported to play a crucial role in mitochondrial 
protein transport and localization, as well as in the synthesis and 
maintenance of mitochondrial homeostasis (Wang et  al., 2021). 
Therefore, downregulation of the expression of this complex may 
result in mitochondrial dysfunction (Chai et al., 2018). In light of 
these findings, it is evident that changes in the expression levels of 
genes related to mitochondrial autophagy may play a critical role in 
AD development and progression.

Developing a predictive model for AD based on MRGs is a 
promising approach to elucidate the underlying mechanisms of AD 
and to develop new treatment strategies. Defects in mitochondrial 
autophagy were reported to critically influence AD pathogenesis. 
However, to the best of our knowledge, few studies have attempted to 

FIGURE 4

Immune infiltration of the three subtypes of Alzheimer’s disease. 
(A) The heatmap shows overall immune infiltration in the three 
subtypes. Blue represents relatively low levels of immune cell 
infiltration, while red represents relatively high levels of infiltration. 
(B) The violin plot shows immune infiltration in the three subtypes 
(cluster 1: n = 40, cluster 2: n = 70, cluster 3: n = 33). The x-axis 
represents different subtypes, while the y-axis represents the scores 
calculated by the MCPcounter algorithm. Immune cells with no 
difference in infiltration levels across the three cluster are not 
displayed. p values were estimated by Student’s t-test. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001; ns, no significance.
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systematically investigate the potential utility of MRGs in predicting 
AD. The purpose of the present study was to address this paucity of 
information through the use of using machine learning algorithms to 
identify six genes—FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, 
CSNK2B, and ATG5—out of 27 MRGs, to construct a prediction 
model for AD. FUNDC1 is a mitochondrial outer membrane protein 
that critically affects the regulation of mitochondrial quality control 
and metabolism. FUNDC1 is reported to play an important role in 
several diseases, such as cancer, cardiovascular disease, and 
neurological disorders, including AD (Chen et al., 2016). In an in vitro 
model of hippocampal neurons obtained from acquired epilepsy, low 
FUNDC1 expression significantly increased neuronal apoptosis 
(Zhang et al., 2023). The downregulation of FUNDC1 levels in cases 
of AD in particular may lead to mitochondrial dysfunction, 
accelerating the AD progression (Jetto et al., 2022). MAP1LC3A, also 
known as LC3A, is a protein associated with mitophagy and 
autophagy. This protein binds to autophagosomes formed during the 
autophagy process and participates in waste degradation after the 
fusion of autophagosomes and lysosomes (Cherra et al., 2010; Iriondo 
et  al., 2022). VDAC1—an ion channel on the mitochondrial 

membrane—is closely related to mitochondrial function and stability 
(Hiller et al., 2008). VDAC1 can interact with Aβ and phosphorylated 
tau, which are associated with the deposition and toxicity of Aβ, 
leading to mitochondrial dysfunction and cell apoptosis. In addition, 
VDAC1 has a critical role in neuronal development and synapse 
formation, which implies that it is potentially involved in AD onset 
and progression (Marin et al., 2007; Cuadrado-Tejedor et al., 2011; 
Manczak and Reddy, 2012; Reddy, 2013; Smilansky et  al., 2015). 
CSNK2A1 and CSNK2B encode the α and β subunits, respectively, of 
the protein kinase CK2, which plays a vital role in regulating Aβ 
deposition and MAPT phosphorylation in AD (Borgo et al., 2021). 
ATG5 is an important gene in the autophagy pathway; it participates 
in the formation and regulation of intracellular membrane structures. 
During the process of autophagy, ATG5 forms a complex with ATG12 
and participates in the formation and degradation of autophagic 
vesicles (Codogno and Meijer, 2006; Walczak and Martens, 2013). The 
autophagy pathway was reported to play an important role in AD 
onset and progression (Li et  al., 2010), and ATG5 is thought to 
be closely associated with the occurrence and development of AD. In 
light of this information, multiple validation techniques were used in 

FIGURE 5

Enrichment analysis results of the three AD subtypes. (A) Bar plot of the biological process GO analysis results for Cluster 1, with the biological 
processes unique to this cluster highlighted in bold. (B) Bar plot of the biological process GO analysis results for Cluster 2, with the biological processes 
unique to this cluster highlighted in bold. (C) Bar plot of the biological process GO analysis results for Cluster 3, with the biological processes unique to 
this cluster highlighted in bold. (D) The bubble plot shows the KEGG pathway analysis results for the three subtypes (clusters 1, 2, and 3) combined, 
with pathways unique to each subtype highlighted in bold.
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the present study to evaluate the performance of these models. Across 
different datasets, the AUC values were 0.887 and 0.843, respectively. 
Our models demonstrated high predictive capability for 
AD. Furthermore, we found a positive correlation between these six 
genes and the genes encoding APP and MAPT, suggesting that 
FUNDC1, MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5 have 
the potential to be used as reliable biomarkers to successfully establish 
AD diagnosis.

Consistent cluster analysis was used to classify AD into three 
subtypes based on the expression profiles of MRGs, and the differences 
between these subtypes were analyzed in terms of gene expression, 
clinical features, immune infiltration, and pathway enrichment. 
Notably, MRGs exhibited significant differences among the three 
subtypes. Among the six diagnostic genes, FUNDC1 and VDAC1 
showed significant differences in terms of their expression in each 
subtype, both genes showed the highest expression levels in cluster 1, 

FIGURE 6

Prediction of small molecule drugs for the three subtypes of Alzheimer’s disease. (A) The left panel shows the indices of the scale-free topological 
model fit for different soft threshold powers, while the right panel displays the corresponding mean connectivity values for each soft threshold power. 
(B) Cluster dendrogram of genes. The leaf nodes (i.e., the bottom-most nodes) of the cluster dendrogram represent individual genes or small clusters, 
while the top of the tree represents the overall expression pattern of all genes in the gene set. (C) Correlations between different modules and clusters. 
Each row represents a different gene co-expression module, and each column represents a different cluster. The values in the boxes represent the 
correlation coefficients, with red and blue distinguishing positive and negative correlations, respectively. The values in parentheses represent the 
significance value of p. (D) Molecular structures of predicted small molecule drugs: LY-278584, cetraxate, and embelin.

TABLE 1 Predicted small molecule drugs of each subtype.

Cluster Rank Score Name MOA

1 8,559 −99.58 LY-278584 Serotonin receptor antagonist

2 8,552 −96.64 Cetraxate Mucus protecting agent

3 8,552 −99.19 Embelin HCV inhibitor, XIAP inhibitor
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intermediate expression levels in cluster 2, and low expression in 
cluster 3. Considering that these diagnostic genes are protective 
factors for AD, a higher expression level is associated with a lower risk 
of developing AD. Moreover, high levels of FUNDC1 and VDAC1 may 
promote cellular autophagy (Xie et al., 2021; Liu et al., 2022), which 
could help eliminate the deposition of harmful proteins, including Aβ 
and MAPT. Furthermore, the predictive model presented in the 
current study appeared to be significantly better in terms of diagnostic 
performance for the subtypes with relatively low MRGs expression 
levels, i.e., clusters 2 and 3, than that for the subtype with higher 
MRGs expression levels, i.e., cluster 1.

The activation of the immune system is believed to alter central 
nervous system inflammatory mechanisms and increases amyloid 
protein load, which may lead to AD onset and progression (Heppner 
et al., 2015). In the current study, the analysis of differences in immune 
cells and inflammatory factors between patients with AD and healthy 
individuals showed that the proportions of T cells, cytotoxic 
lymphocytes, and monocytic lineage were increased in cases of AD, 
whereas NK cells were decreased. Regarding inflammatory factors, 
upregulated expression of HLA-DRB3, HLA-DRB4, IL10, IL15, IL5, 
IL6, PDGFA, and TGFB3 and downregulated expression of CD4, 
CSF1, CSF3, IFNA1, and IL1A was observed. Therefore, the immune 
system of patients with AD is dysregulated and may contribute to the 
pathological process of AD. Similar to the expression of MRGs, it is 
imperative to highlight that several immune cells—including B 
lineage, monocytic lineage, neutrophils, and T cells—exhibited 
significant intersubtype differences. The infiltration level was highest 
in cluster 3, followed by cluster 2, and lowest in cluster 1. Furthermore, 
the proportion of myeloid dendritic cells was significantly lower in 
cluster 1 than in cluster 2 and cluster 3. The exact role of B cells in AD 
requires further elucidation. Although B cells can produce 
immunoglobulins that slow the progression of AD, B cells in the brain 
may produce pro-inflammatory cytokines that promote AD-associated 
neuroinflammation and disease progression. Additionally, animal 
models have shown that B cell activation and infiltration in the brain 
are associated with AD, and therapeutic depletion of B cells can 
reverse AD progression (Kim et al., 2021). Neutrophils have been 
reported to influence AD progression by promoting Aβ pathology and 
cognitive impairment. The removal or inhibition of neutrophils in AD 
mouse models can significantly improve cognitive function, reduce 
Aβ plaque burden and neuronal damage, inhibit neuroinflammation, 
and restore cerebral blood flow and blood–brain barrier integrity. 
These results suggest that neutrophils are involved in the promotion 
of AD and are positively correlated with disease severity (Zenaro et al., 
2015; Dong et al., 2018; Stock et al., 2018). The role of T cells in AD 
remains unclear; however, animal experiments have revealed that 
cerebral amyloidosis promotes T cell infiltration (Ferretti et al., 2016). 
These findings are consistent with our research results, which 
indicated that infiltration levels of these cells are higher in patients 
with AD with lower levels of mitochondrial autophagy.

According to the results of GO and KEGG enrichment analysis, 
the three subtypes of AD exhibit differences in specific biological 
processes and pathways. In terms of biological processes, the three 
subtypes show distinct functional characteristics in terms of cell 
growth, synaptic tissue, and neuron projection. KEGG analysis 
revealed that cluster 2 is enriched in COVID-19, epithelial cell 
signaling in H. pylori infection, focal adhesion, and synaptic vesicle 
cycle. SARS-CoV-2—the causative agent of COVID-19—has the 

ability to attack the central nervous system (Desforges et al., 2019) and 
may accelerate brain aging and promote the development of 
neurodegenerative diseases (Ciaccio et al., 2021). Although a definitive 
correlation between SARS-CoV-2 infection and susceptibility to AD 
does not exist, the risk of AD was reported to be significantly increased 
in older adults with COVID-19 (Wang et al., 2022). Our results further 
support the potential link between AD and COVID-19. “Epithelial cell 
signaling in H. pylori infection” denotes the cellular signal transduction 
pathway activated by H. pylori infection, which is associated with 
chronic gastritis and gastric cancer (Naumann and Crabtree, 2004). 
Notably, a link between H. pylori infection and AD has been reported, 
with some studies suggesting that H. pylori infection may be implicated 
in the pathophysiology of AD (Doulberis et al., 2018). Accordingly, 
the enrichment of signaling pathways related to H. pylori-infected 
epithelial cells in Cluster 2 suggests their potential involvement in AD 
pathogenesis. Focal adhesions are a type of cell–extracellular matrix 
adhesion structure that plays a key role in biological processes such as 
cell movement, proliferation, differentiation, and signal transduction 
(Stupack and Cheresh, 2002; Mitra et al., 2005). Additionally, focal 
adhesions can regulate Aβ signal transduction and cell death in cases 
of AD (Caltagarone et al., 2007). The synaptic vesicle cycle refers to 
the process by which presynaptic cells store, release, and reuptake 
neurotransmitters in synaptic vesicles. This process is essential to 
ensure the release of neurotransmitters and to maintain synaptic 
plasticity (Sudhof, 1995); furthermore, it has been a popular area of 
research related to neurodegenerative diseases (Wang et al., 2017). The 
tight junction is a pathway enriched in Cluster 1 that critically 
influences the maintenance of the integrity of the blood–brain barrier 
(Liu et al., 2012). AD can reportedly affect the blood–brain barrier 
function in in vitro experiments by altering the expression and 
localization of tight junction proteins (Desai et al., 2007). Impaired 
blood–brain barrier function in patients with AD may affect the 
clearance of Aβ, thereby accelerating AD progression (Algotsson and 
Winblad, 2007). The Wnt signaling pathway is a unique pathway 
enriched in cluster 3 that plays a crucial role in regulating adult brain 
structure and function. Downregulation of Aβ-induced Wnt signaling 
is associated with disease progression in AD, and activation of Wnt 
signaling can mitigate Aβ neurotoxicity and protect neurons. 
Therefore, the Wnt signaling pathway may be an important target for 
designing therapeutic strategies for AD in the future (Inestrosa and 
Varela-Nallar, 2014; Wan et al., 2014; Tapia-Rojas and Inestrosa, 2018).

Weighted gene co-expression network analysis helped in the 
identification of hub genes associated with each subtype and inputted 
the differentially expressed hub genes into the cMap database to 
screen for small-molecule drugs. LY-278584 may be a potential small 
molecule drug for cluster 1, Cetraxate for cluster 2, and Embelin for 
cluster 3. LY-278584 is a type of 5-HT3 receptor antagonist, and the 
5-HT3 receptor is a neurotransmitter-gated ion channel located on the 
cell membrane that is highly expressed in the entorhinal cortex, 
hippocampus CA1 area, amygdala, substantia nigra, and brainstem. 
Antagonists of the 5-HT3 receptor are commonly used to treat nausea 
and vomiting and have also been found to have therapeutic effects on 
psychiatric disorders such as epilepsy, schizophrenia, and anxiety 
(Thompson and Lummis, 2007; Zhao et al., 2018). Importantly, 5-HT3 
receptor antagonists may also delay memory impairment and enhance 
cognitive function, making them potential drugs for improving 
memory impairment in patients with AD (Fakhfouri et al., 2019). 
Cetraxate is a mucosal protective agent that can inhibit the activity of 
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H. pylori and is commonly used as an anti-ulcer and anti-H. pylori 
drug (Kamada et  al., 2000; Wu et  al., 2004). Although there are 
currently no reports of cetraxate being used to treat AD, H. pylori may 
play a negative role in the development of AD, as it may enter the brain 
by disrupting the blood–brain barrier through circulating 
mononuclear cells and cause neurodegeneration (Doulberis et al., 
2018). Further research is needed to determine whether cetraxate can 
be used to treat AD. Embelin is a natural product that can inhibit the 
aggregation of amyloid proteins and reduce inflammation. In addition, 
it can cross the blood–brain barrier and has antioxidant properties, 
which can prevent neuronal oxidative damage by reducing lipid 
peroxidation, thereby highlighting its potential as a therapeutic drug 
for AD (Nuthakki et  al., 2019; Arora et  al., 2023). Furthermore, 
embelin has been reported to be  a potential drug for treating 
COVID-19 (Singh et al., 2021).

5. Conclusion

This study provides new evidence linking changes in MRGs 
expression levels to AD development and progression. The outcomes 
of the present study demonstrated that the overall expression of MRGs 
is downregulated in patients with AD, and six genes—i.e., FUNDC1, 
MAP1LC3A, CSNK2A1, VDAC1, CSNK2B, and ATG5—were 
identified that can be used to construct an AD prediction model with 
high predictive ability across different datasets. Furthermore, AD was 
classified into three subtypes based on MRGs expression profiles and 
the differences in gene expression, clinical features, immune 
infiltration, and pathway enrichment were analyzed among these 
subtypes. Despite our study is subject to limitations including 
relatively small sample sizes and a lack of experimental validation, the 
high heterogeneity of AD may lead to mitochondrial autophagy not 
occurring in all patients. Nonetheless, the results of the current study 
provide novel insights into the mechanisms underlying AD and 
emphasize the potential utility of MRGs in the diagnosis of and 
personalized treatment for AD.
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