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Identification of monthly municipal water demand system

based on autoregressive integrated moving average

model tuned by particle swarm optimization

Sahbi Boubaker
ABSTRACT
In this paper, a modeling-identification approach for the monthly municipal water demand system in

Hail region, Saudi Arabia, is developed. This approach is based on an auto-regressive integrated

moving average (ARIMA) model tuned by the particle swarm optimization (PSO). The ARIMA (p, d, q)

modeling requires estimation of the integer orders p and q of the AR and MA parts; and the real

coefficients of the model. More than being simple, easy to implement and effective, the PSO-ARIMA

model does not require data pre-processing (original time-series normalization for artificial neural

network (ANN) or data stationarization for traditional stochastic time-series (STS)). Moreover, its

performance indicators such as the mean absolute percentage error (MAPE), coefficient of

determination (R2), root mean squared error (RMSE) and average absolute relative error (AARE) are

compared with those of ANN and STS. The obtained results show that the PSO-ARIMA outperforms

the ANN and STS approaches since it can optimize simultaneously integer and real parameters and

provides better accuracy in terms of MAPE (5.2832%), R2 (0.9375), RMSE (2.2111 × 105m3) and AARE

(5.2911%). The PSO-ARIMA model has been implemented using 69 records (for both training and

testing). The results can help local water decision makers to better manage the current water

resources and to plan extensions in response to the increasing need.
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INTRODUCTION
In arid climate countries such as Saudi Arabia, reliable

municipal water demand modeling is crucial in both the

medium and long term. In fact, water demand is steeply

rising and consequently water utilities are invited to make

suitable decisions in order to ensure good planning and

management of scarce and limited water resources. Oper-

ational decisions are in general based on both the present

requirements and the expected demands. Water demand

can be viewed as a dynamic system and requires mathemat-

ically modeling. The developed models can be useful for

many purposes such as scheduling, diagnosis, management,

control and forecasting. In this paper, monthly municipal

water demand (MMWD) is posed as an identification
problem and an optimization procedure has been estab-

lished to solve it. The outlined model is used for

forecasting purposes.

This study is concerned with developing MMWD

models for the case study of Hail, Saudi Arabia, taking

into account historical records of water consumption as

unique explanatory variables. A wide variety of models

and methods have been used by researchers and water fore-

casting practitioners. Water demand forecasting problem

solving techniques can roughly be categorized into three

classes: (1) time-series stochastic methods (e.g. Zhou et al.

; Mohamed & Al-Mualla ; Almutaz et al. ;

Ngo & Bros ; Mehr & Jha ; McNown et al. ;
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Vantuch & Zelinka ); (2) artificial neural networks

(ANNs) (e.g. Ajbar & Ali ; Babel et al. ); and (3)

swarm intelligence optimization techniques (Chau ;

Huang et al. ; Sun et al. ; Aladag et al. ;

Nazari et al. ). According to the forecasting horizon,

small-scales (hourly, daily and weekly) approaches have

been investigated in, for example, Zhang ; Boughadis

et al. ; Adamowski & Karapataki ; Herrera et al.

; Adamowski et al. ; Adebiyi et al. ; Al-Zahrani

; Perea et al. ; and Tiwari & Adamowski . For

long-scales (annual) forecasting horizon, efficient frame-

works have been developed and their relative

performances measured (e.g. Zhang ; Khashei &

Bijari ; Sun et al. ; Almutaz et al. ; Babel et al.

; Donkor et al. ; Nazari et al. ; Ouda ; Yal-

cintas et al. ). Since this study is concerned only with

monthly water demand forecasting (e.g. Billings & Agthe

; Firat et al. ; Jalalkamali et al. ; Nasseri et al.

; Sudheer et al. ; Yasar et al. ; Ajbar & Ali ;

Aladag et al. ; Almutaz et al. ; Mehr & Jha ;

Babel et al. ; Akbari-Alashti et al. ; Beheshti et al.

; Bai et al. ), this paper presents and analyses a rela-

tively recent state-of-the-art. Particular attention is allocated

to models (mathematical descriptions of the problem),

methods (used to solve the problem) and results (obtained).

The study area, the performance measures and the case

study particular aspects are mentioned if available. Inspired

from Donkor et al. (), an annotated reference list of

selected papers related to monthly water forecasting prob-

lems is included in Table 1.

It should be concluded from Table 1 that the forecasting

obtained results are case-sensitive. In fact, the same method

does not provide the same results when applied to different

case studies. Moreover, the ANN technique seems to be the

most used alone or combined to other techniques such as

particle swarm optimization (PSO).

In this study, the MMWD forecasting problem is posed

as an identification framework where the error between

the observed (real) and the forecasted (predicted) water

demands is to be minimized. From an optimization point

of view, tuning the parameters of an ARIMA(p,d,q) model

is known to be hybrid since it involves mixed integer-real

decision variables. In fact, the presence of integer variables

(the orders of the AR and the MA parts) can lead to a
om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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combinatorial explosion, whereas the classical auto-regres-

sive integrated moving average (ARIMA) model tuning

(with known orders) can present a non-convex aspect and

thus classical solving algorithms can be easily trapped into

local minimum solutions.

The present paper proposes a new approach, referred to

as PSO-ARIMA, by mapping the ARIMA(p,d,q) parameters

to the particle position components in the PSO paradigm.

The decision variables are the integer-valued orders of the

AR and the MA parts and the real-valued coefficients of

the model. The proposed PSO algorithm is new since it

handles simultaneously discrete and continuous decision

variables. Moreover, the search-space limits are defined

such that the stability of the obtained model is ensured.

The proposed algorithm has the capacity of operating in

complex search-spaces with global optimization ability com-

pared to gradient-descent algorithms known to be local

search methods. The relative performance measures of the

proposed approach are first evaluated and then compared

with those of ANN and traditional stochastic time-series

(STS) approaches. Based on 69 records of MMWD collected

from Water Directorate of Hail Region, first an explanatory

analysis including the stationarity test of the time-series was

conducted through the so-called sample auto-correlation

function (ACF) study. Then, diverse ANN- based approaches

and different STS-approaches such as AR and ARIMA were

used to model the MMWD. Finally, the progressive develop-

ment of the PSO-ARIMA approach was detailed. The PSO

technique demonstrates high ability to provide mixed inte-

ger-real near-optimal solution for the ARIMA(p,d,q)

forecasting model. By comparing the statistical performance

indicators, the PSO-ARIMA is found to be the most parsimo-

nious in the sense that it allows the identification of both the

orders and the coefficients simultaneously. Moreover, it is

revealed to be insensitive to forecasting problem irregulari-

ties including linearity, convexity and stationarity. Other

features of the proposed PSO-ARIMA approach include

the facts that it is easy to understand, simple to program

(requires few lines of computer code) and that it operates

in a straightforward manner on the original time-series with-

out needing any pre-processing.

The remainder of the paper is organized as follows: in

the following section, the problem of MMWD modeling

and identification is formulated; followed by a section



Table 1 | Annotated reference of selected papers on monthly water demand forecasting

Reference Model/ purpose/method Location Explanatory variables Results

Donkor et al.
()

Literature review on urban water
demand from 2000 to 2010

– – Wide variety of models and methods
have been used. Applications differ
depending on forecast variable,
periodicity and case-sensitive

Yasar et al.
()

Application of nonlinear regression
(NLR) for forecasting monthly
water demand

Adana city,
Turkey

- Average monthly
water bill

- Total subscribership
- Temperature
- Humidity
- Rainfall
- Solar radiation
- Sunshine duration
- Wind speed
- Atmospheric

pressure

Water consumption in Adana city
will increase from 3.84 million m3

in 2009 to 4.99 million m3 in 2020.
MWD is affected particularly by
the total number of subscribers and
the atmospheric temperature

Babel et al.
()

Use of future climatic and socio-
economic previously forecasted
data for forecasting monthly water
demand using ANNs

Bangkok - Gross Provincial
Product

- Population
- Number of

household
connections

- Evaporation
- Relative humidity
- Minimum

temperature
- Maximum

temperature

- Good prediction accuracy (AARE of
4.76%)

- Maximum temperature and
evaporation affect the MWD

Firat et al.
()

Evaluation and comparison of ANN
techniques for MMWD

Izmir, Turkey - Average monthly
water bill

- Population
- Number of

households
- Gross national

product
- Monthly average

temperature
- Monthly total

rainfall
- Monthly average

humidity
- Inflation rate

The Generalized Regression NN
(GRNN) was found to be the best
model when using the monthly
water bill, the population and the
average temperature as the most
significant explanatory variables

Ajbar & Ali
()

Use of ANN for predicting monthly
municipal water consumption

Mecca city, Saudi
Arabia

- Historic records
- Estimated visitors’

distribution
- Household income
- Persons per

household
- City population
- Maximum monthly

temperature

ANN approach is found to be better
than the econometric model.
Moreover, it particularly captures
the effect of the number of visitors
since Mecca is a holy town visited
by people for religious reasons

(continued)
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Table 1 | continued

Reference Model/ purpose/method Location Explanatory variables Results

Nasseri et al.
()

Forecasting monthly urban water
demand using extended Kalman
filter (EKF) and genetic
programming (GP)

Tehran, Iran Historic records of
monthly water
consumption

Using hybrid EKF and GP is suitable
for calibrating water demand using
historic records of the water
consumption itself

Baheshti et al.
()

Forecasting monthly rainfall using
the centripetal accelerated particle
swarm optimization (CAPSO)
combined to ANN

Johor state,
Malaysia

- Month number
(1–12)

- Rainfall in the last
month

- Rainfall of the
current month in
the last year

- Rainfall of the
month in the last
2 years

- Average of the
month rainfall in
the last 5 years

- Average rainfall of
the month during
the last 10 years

The use of the hybrid model
combining the CAPSO and the
ANN increases the accuracy,
in particular when the original data
are pre-processed

Buykyildiz
et al. ()

Estimation of the change in lake
water level by artificial intelligence
methods including PSO-ANN,
SVR, MLP, RBNN and ANFIS

Lake Beysehir,
Turkey

- Monthly inflow
- Lost flow
- Precipitation
- Evaporation
- Outflow

SVR model is found to be the best
model when compared to other
methods. It provides results with a
coefficient of determination R2

of 0.9988

Sudheer et al.
()

Use of a quantum behaved PSO to
determine the SVM coefficients in
order to estimate groundwater
level R

Rentashintala,
India

Historic records SVM-QPSO is better than ANN in
terms of RMSE (0.43), R2 (0.94)
and efficiency (0.84)

Mehr & Jha
()

Analysis of monthly rainfall data
using time-series based
approaches: ARIMA and
forecasting for the next 12 years
for different district towns

Mahanadi River
Basin, India

Historic records The ARIMA(1,0,0)(0,1,1)12 is found
to be the most suitable for
forecasting monthly rainfall for the
upcoming 12 years in 38 towns

Billings &
Agthe
()

Use of state-space approach versus
multiple-regression for forecasting
monthly urban water demand

USA - Average monthly
water purchased
per household

- Average monthly
temperature

- Monthly
precipitation

- Marginal price of
water

- Block rate subsidy
- Real income per

capita

Mean absolute error of forecast
ranges from 7.4 to 14.8%.
State-space is found to be better
than the multiple-regression model
on the studied water demand set

Akbari-Alashti
et al. ()

Evaluation of developed discrete
time-series in flow forecasting
models: ARMAX, ANN, GP

East Azerbaijan
province, Iran

- Precipitation
- Previous runoffs

GP is found to be the more precise
model with R2¼ 0.7 and
RMSE¼ 0.172

(continued)
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Table 1 | continued

Reference Model/ purpose/method Location Explanatory variables Results

Jalalkamali
et al. ()

Forecasting groundwater level in a
well using neuro-fuzzy and ANN

Kerman plain,
Iran

- Air temperature
- Rainfall
- Groundwater level

NF and ANN techniques are good
choices for predicting groundwater
level

Wang et al.
()

Three hybrid stochastic models have
been used for predicting available
water resources, water demand
and water use

Urimqi, China - Historical records The results are assumed by the
authors to help managers and
policy-makers to have a clear
understanding of regional water
supply and demand trend as well
as the water utilization structure in
the future

Bai et al.
()

Grey relational analysis model is
used for forecasting monthly
reservoir inflow

Anhui, China - Historical monthly
data

The proposed approach is more
accurate than traditional
techniques
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briefly discussing three tools for solving the problem,

namely, ANN, STS and PSO. In the penultimate section,

the practical implementation of the presented method-

ologies is detailed. Special emphasis is allocated to the

PSO-ARIMA approach. Concluding remarks and rec-

ommendations are summarized in the final section.
MMWD MODELING-IDENTIFICATION PROBLEM
FORMULATION

In this study, the MMWD is viewed as a dynamic system.

Thus, an experimental analysis, referred to as identification,

should be performed. A mathematical model is derived from

measurements (observations in the case of forecasting pro-

blems). For such a purpose, the system inputs and outputs

are gathered and a relationship between them has to be

performed. According to basic system theory concepts,

the dynamic system models are of two types: parametric

and non-parametric. The parametric models are considered

in this study. The structures of the developed models

are known in advance and their synthesis parameters are

to be tuned optimally such that an error function is

minimized.

Given N observations of the MMWD, y(t), t¼ 1:N; The

set of observations is divided into two sub-sets, model devel-

opment and model validation. The first sub-set is composed

of N1 records and the second one is composed of the
://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
remaining N2 observations. The block diagram of the model-

ing-identification procedure is shown in Figure 1.

The MMWD model is a mathematical description

assumed to produce similar behavior as the MMWD

dynamic real system. The p previous values (obtained via

the delay operator q–1) of the system output, y(t), are fed

respectively to the model and to the system itself. The esti-

mated value, ŷ(t), the observed value, y(t) as well as their

difference, ε(t), are introduced to the model identifier

block (Bidwell ; Aitmaatallah et al. ). This block is

intended to estimate the unknown model parameters by

minimizing the least squared error function between the

system and its model respective outputs.

In this study, the model identifier has been implemented

using respectively ANN, AR, ARIMA and PSO-ARIMA

approaches. The following section will describe the theoreti-

cal and practical aspects of these methodologies.

The good fit of the forecasted values is measured via the

mean absolute percentage error (MAPE), the coefficient of

determination (R2), the root mean squared error (RMSE)

and the average absolute relative error (AARE) defined as

follows:

MAPE ¼ 100
N

XN
t¼1

jbyt � ytj
�y

(1)

R2 ¼ 1�
1
N

XN

t¼1
(yt � ŷt)

2

1
N

XN

t¼1
(yt � �y)2

(2)



Figure 1 | Block diagram of the modeling-identification procedure for the MMWD dynamic system.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
t¼1

(yt � ŷt)
2

vuut (3)

AARE ¼ 100
N

XN
t¼1

yt � ŷt
yt

����
���� (4)

where ŷt is the forecasted water demand, yt is the tth actual

water demand, �y is the mean water demand and N is the

number of observations.
PROPOSED METHODOLOGIES

Time-series

A time-series of municipal water demand is defined as a set

of values that occur over a period of time in a certain pat-

tern. Under the assumption that the time-series behavior

(pattern) will persist in the future, this approach has been

widely used in forecasting water consumption (Mohamed

& Al-Mualla ; Donkor et al. ). A strong tool used

for this purpose is the Box-Jenkins methodology (BJM;

Araghienajad ). Before identifying the model structure

and its parameters, a preliminary exploratory study has to

be conducted. As the Box–Jenkins methodology is appropri-

ate for stationary time-series of medium to long length, the
om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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first step in using this approach is to measure the autocorre-

lation between successive values. From the so-called sample

ACF, it should be easy to define the model order. Univariate

ARIMA(p,d,q) model has been demonstrated through var-

ious researches to be useful for analysis and forecasting of

municipal water demand (Bidwell ; Herrera et al.

; Herrera et al. ; Vafeiadis et al. ). If y(t) is the

stationary MWD at time t, then its ARIMA model is defined

as follows:

y(t) ¼ C þ a1y(t� 1)þ � � � þ apy(t� p)þ e(t)

þ b1e(t� 1)þ � � � þ bqe(t� q) (5)

where C is a constant value, a1, . . . , ap are the coefficients of

the autoregressive (AR) part and p is its order; b1, . . . , bq are

the coefficients of the moving average part and q is its order.

e(t) is a white noise sequence following normal distribution

with 0 as mean and 1 as standard deviation (Herrera et al.

). In this study, some experiments have been conducted

using only the AR component of the ARIMA model. Once

the stationarity of the TS is studied, differencing the original

TS will be required. The level of differencing is in general

determined by examining the ACF plots. If the ACF of the

time-series values either cuts off or dies down quickly, the

TS can be declared as stationary until this level of differen-

cing. Otherwise, the process of differencing has to be

continued until obtaining the stationarity (Ngo & Bros

). Once the values of p, d and q are determined, the
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coefficients C, a1, a2, . . . , ap, b1, b2, . . .bq have to be esti-

mated. As proposed in the literature (Araghienajad ),

the maximum likelihood estimation process as outlined by

Box and Jenkins is used in order to estimate the last coeffi-

cients. The final step in Box and Jenkins methodology is

the diagnostic checking of the model by studying the auto-

correlation plots of the residuals. If both the ACFs and the

partial auto-correlation function are small, then the model

is declared to be adequate, otherwise, the process is repeated

by re-adjusting the values of p and q (BJM; Tutunji et al.

).

ANNs

The ANN has been widely used as a popular tool for MWD

forecasting (e.g. Ajbar & Ali ; Babel et al. ). It was

in some cases used as a unique framework, but in themajority

of cases it has been coupled with other techniques, such as

wavelet-transform and PSO. ANNs are defined as universal

and highly flexible approximators for diverse time-series

going from the fields of cognitive science to engineering.

The concept of ANN is an attempt to imitate the human

brain functioning (Babel et al. ). A network of artificial

neurons is organized in layers. A collection of inputs is intro-

duced to the process’s units (neurons). In each layer, the

neurons are fully interconnected via weights. The weighted

inputs are then introduced to a transfer function, which con-

verts them to an output. Choosing the ANN architecture,

determining the number of neurons and choosing the appro-

priate activation functions are the most important steps in

designing an ANN. Distinct architectures, learning methods

and performance can be found elsewhere (e.g. Talib et al.

; Firat et al. ; Adamowski & Karapataki ). In

this study, ANNs with different structures have been used

inmonthlyMWD forecasting. Details for this aimwill be pro-

vided later.

PSO

The PSO algorithm was first introduced by Kennedy and

Eberhart in 1995. It is categorized as one of the population

based swarm intelligence techniques such as Genetic Algor-

ithms (GA), Ant Colony (AC), etc. Parameters tuning of the

algorithm, its variants and its applications can be found
://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
elsewhere (e.g. Clerc & Kennedy ; Delvalle ;

Wang et al. ; Boubaker et al. ; Buyukyildiz et al.

). PSO is preferred in many applications for its simpli-

city, its universal aspect and the fact that it does not

require any regularity of the studied problem (continuity, dif-

ferentiability and convexity). Although it has been used in

forecasting electric load (e.g. Huang et al. ; Nazari

et al. ; Saravanan et al. ), its use in water demand

forecasting remains limited.

In the present study, we intend to take benefit from the

features of the PSO to forecast the MWD in Hail region.

MWD forecasting is posed as (or transformed into) an

optimization problem. This problem is defined as in

Equation (6):

min!
X

f(~X) (6)

PSO is based on the concept of gradually evolving a

swarm of possible solutions for an optimization problem

(Trelea ). The potential solution is coded as the position

of the ith particle in the d-dimensional search space:

~Xi ¼ (Xi
1, Xi

2, . . . , X
i
d) (7)

Let X1, X2, . . . , Xd be the decision variables and k the

iteration index of the optimization problem (6). During the

search process, each particle in the swarm adjusts its pos-

ition through a velocity operator defined as:

~Vi
kþ1 ¼ wk � ~Vi

k þ c1 × rand1[~Pi
k � ~Xi

k]þ c2 × rand2[~Gi
k

� ~Xi
k] (8)

where:
• c1, c2 are two constant factors, named cognitive and

social coefficients

• rand1, rand2 are random numbers in the [0,1] range

• ~Pi
k is the best previous position of the ith particle

• ~Gi
k is the best previous position of the whole swarm

• wk ¼ wmax � (wmax �wmin=kmax) × k is a weighting func-

tion, known to ensure balance between search-space

exploration and exploitation (Boubaker et al. )
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• wmax and wmin are respectively the maximum and the

minimum value of wk.

The position vector of the ith particle is then given by

Equation (9):

~Xi
kþ1 ¼ ~Xi

k þ ~Vi
k (9)

From the expertise about the MWD forecasting pro-

blem, one can define the search-space limits. Components

having values out of their limits are reset through a confine-

ment mechanism. The first step in using PSO to solve the

problem (6) is to adopt a suitable mapping between the par-

ticle position in the swarm evolution concept and the vector

of the MWD forecasting problem synthesis parameters.

Note that for this problem, the decision variables set is

case-sensitive and that it depends on the nature of the avail-

able data, the forecasting horizon and the adopted model

structure. More details will be provided when dealing with

the progressive development of the chosen models based

on PSO.
RESULTS AND DISCUSSION

MMWD is in general known to be affected by socioeco-

nomic variables, such as monthly water bill, population,

number of subscribers, gross national product, etc. (Firat

et al. ), and by climatic variables such as precipitation

accumulation, relative humidity, air temperature, etc. More-

over, the historical values of the monthly water

consumption are among the explanatory variables that

affect the current consumption. Since the socioeconomic

and the climatic variables are non-available, we are limited

in this study to analyzing the monthly MWD as a function

of only its previous values. AR, ARIMA, ANN and PSO-

based approaches will be used in forecasting. The first

step consists on studying the stationarity of a TS composed

of 69 records of monthly MWD (from January 2010 to Sep-

tember 2015) collected from the General Directorate of

Water in Hail Region. As proposed by Box–Jenkins meth-

odology, determining whether the monthly MWDTS is

stationary (data set having a constant mean and variance)

(Boughadis et al. ) is required for modeling STS
om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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forecasting using ARIMA models. The ANN models

require a pre-processing of the original records in order

to normalize them in the interval [0,1]. This process will

be discussed in detail when dealing with the ANN

approaches. Through a suitable mapping between PSO

and the monthly MWD forecasting model, an algorithm

to determine both the ARIMA model parameters and

orders will be detailed. The simulations carried out in

this study are performed using Matlab 2013b package

and implemented on an Intel® Core™ i3-3110 micropro-

cessor with a clock of 2 GHz as frequency and 4 GB of

RAM. The relative performances of the proposed PSO-

ARIMA approach were evaluated using the performance

indicators introduced respectively in Equations (1)–(4).

They are then compared with those of the AR, ARIMA

and ANN-based approaches.

Study area

Hail region (Saudi Arabia) is located in a semi-arid area

(coordinates 27W310N, 41W410E) (Figure 2). It has a continen-

tal desert climate characterized by hot summers and cold

winters. Its climate is also known to be milder than other

Saudi cities due to its higher altitude (HAILWIKI). This

region has a population of approximately 593,308 as per

the population and Household Census 2010’s results.

Rapid urbanization causing intensive use of water resources

leads to chronic water supply problems (Ouda et al. ).

The demand for municipal water is steeply rising in Hail

region (probably as in other Saudi regions) (Chowdhury

& Al-Zahrani ). The General Water Directorate of

Hail region is responsible for the production and distri-

bution of municipal water. Hail region is fed from two

principal treatment-pumping stations (Figure 3). Al-Shuqaiq

Field is located 25 km from Hail city and produces around

70,000 m3/day of water to feed Hail city (30,000 m3 for

approximately 322,000 people). The remaining quantity is

fed to about 500 villages in Hail region. Al-Shuqaiq field

is composed of 43 wells, a collection and purification

station and pumps to send water to Al-Salf reservoir

(120,000 m3) and Bzakha reservoir (100,000 m3). Al-Shu-

qaiq field has been chosen for the low levels of salts in

the water and for being the most rich water location in

the region. Bzakha was chosen for being the reservoir



Figure 2 | Geographic location of Hail region, Saudi Arabia.
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location because of its high altitude (1,275 m from the sea

level). Al Humaima station feeds the old distribution

system in Hail city. Around 40,000 m3/day are fed to,

respectively, Al-Samra mountain reservoir (20,000 m3)

and Uqda reservoir (20,000 m3). Hail is located at an
Figure 3 | Municipal water distribution sytem in Hail Region, Saudi Arabia.

://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
altitude of 900 m above sea level, so water is distributed

without pumping (gravity).

Hail city districts are fed with municipal water using

valves operated manually according to a weekly fixed sche-

dule (GDWHR ).



Table 2 | Performance indicators (trainingþ testing) of BP-FF-ANN models of MMWD in

Hail region

Model MAPE (%) R2 RMSE (m3) AARE(%)

BP-FF-ANN (1) 10.6534 0.7426 4.3552 × 105 9.2345

BP-FF-ANN (2) 11.8427 0.6629 4.9971 × 105 10.1552

BP-FF-ANN (3) 6.5671 0.9115 2.5753 × 105 6.3571

BP-FF-ANN (4) 11.3592 0.6691 4.7912 × 105 9.8243

BP-FF-ANN (5) 12.9392 0.5581 5.7695 × 105 10.8166

BP-FF-ANN (6) 17.1062 0.2380 7.6783 × 105 14.2835
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Evaluation of ANN techniques for monthly MWD

modeling

In this section, various ANN techniques such as feed-for-

ward (FF) and radial-basis have been evaluated via

numerous performance indicators in modeling future

MMWD in Hail region (Leva et al. ). The first step in

using an ANN-based approach is to optimize the architec-

ture of the ANN such that the relationship between the

inputs and the outputs is well captured. For this aim, a

number of tests have been conducted using different ANN

architectures, activation functions and training algorithms

(Adamowski et al. ). The inputs of the ANNs considered

here are the MMWD of the previous months. The data set is

divided into two sub-sets, training and testing. For all simu-

lations, the firstN1¼ 40 records are used for training and the

remaining N2¼ 29 records are used for model validation.

Choosing the ANN architecture is the most consuming

time step when using ANNs in prediction. The best architec-

ture is decided here by trial and error procedure. After

several trials, the best ANN structure is found to consist of

an input layer, two hidden layers and one output layer.

The optimal numbers of neurons are found to be, respect-

ively, 60 (for the input layer), 16 (for each one of the two

hidden layers) and 10 (for the output layer). Linear acti-

vation functions are used for the input and the output

layers whereas logarithmic-sigmoid activation function is

used for the two hidden layers. The BP-FF-ANN has been

trained using the Levenberg–Marquardt, the resilient back-

propagation and the gradient Powell–Beale algorithms.

The last one is found to provide better results than the two

others.

We define the order of the BP-FF-ANN as the number of

inputs for comparison purpose against other techniques.

The maximum number of previous monthly MWD used as

inputs is set to six. So, six BF-FF-ANN algorithms are trained

and tested. The obtained results are depicted in Table 2.

All the models were developed in the same conditions

(architecture and training parameters). The unique differ-

ence is the number of inputs. The BF-FF-ANN(3) was

found to provide more accurate monthly MWD forecasts

than the other similar approaches. The best model was a

function of the MWD of the three previous months. In

fact, it had the lowest value of the MAPE (6.5671%), the
om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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highest value of the coefficient of determination

R2 (0.9115), and the lowest RMSE (2.5753 × 105m3) and

AARE (6.3571%). It is observed that the model’s perform-

ance indicators degrade when the model order increases.

At the beginning, the ANNs were trained using the original

monthly MWD. The results were very poor since the acti-

vation functions have to operate in the range [0, 1].

Consequently a scaling procedure was used. The original

data were divided by 107. We can notice here that this trans-

formation should not change the mean or the data

distribution and that other normalization approaches can

be used to re-scale the original data. The plot of the best

BF-FF-ANN(3) predicted versus observed monthly MWD

in Hail region is shown in Figure 4. It can be seen that

this ANN-based approach presents high ability to track the

consumption trend and seasonality.

Exploratory analysis

As mentioned before, predicting a time-series based on a

static analysis of a time set is conducted in general through

the Box–Jenkins methodology. The condition of stationarity

has to be fulfilled (Vantuch & Zelinka ). A time-series is

said to be stationary if it does not present any trend or sea-

sonality through time (Ngo & Bros ). The monthly

MWD set (composed of 69 records) presents the autocorre-

lation function (ACF) depicted in Figure 5.

It is shown that the ACF dies down extremely slowly,

then it should be considered as non-stationary. The original

TS is then differenced d times until a stationary set is

obtained. Usually, one difference of the data set is sufficient.

By examining the plot of the ACF function of the differenced

TS (see Figure 6), one can observe that it cuts off fairly



Figure 4 | Forecasted vs. observed monthly MWD (cubic meter) for Hail region obtained with BP-FF-ANN(3).

Figure 5 | Autocorrelation function of the original time-series of monthly MWD.

Figure 6 | Autocorrelation function of the once-differenced time-series of monthly MWD.
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quickly. The parameter d in the ARIMA(p,d,q) is then set to

1. The size of the differenced TS becomes 68.

AR models

The Econometrics toolbox of Matlab has been used as the

modeling tool for the ARIMA STS studied in this paper

(the AR model is considered as a particular case of

ARIMA with q¼ 0). The selected and calibrated models

are used for simulation and forecasting. The ‘arima’ function

is used to specify the model and the ‘estimate’ function is

used to estimate the model polynomial coefficients. These

two functions assume that the model orders (p and q) are

determined in advance. The ‘estimate’ function uses the

maximum likelihood principle which finds the maximum

probability density function corresponding to the optimal

values of the model parameters.

The first experiment conducted here is to model the

monthly MWD in Hail region using only the pure AR part

of ARIMA(p,q,d). The current monthly MWD is defined as
Table 3 | Performance indicators (trainingþ testing) of AR models for MMWD in Hail

region

Model MAPE (%) R2 RMSE (m3) AARE (%) AIC

AR(1) 5.7864 0.9017 2.6728 × 105 5.7260 24.0842

AR(2) 5.7585 0.9238 2.7115 × 105 5.4833 24.9739

AR(3) 5.4007 0.9201 2. 31191 × 105 5.3800 24.0005

AR(4) 5.5501 0.9203 2. 4240 × 105 5.6355 24.0661

AR(5) 5.6534 0.9209 2. 1412 × 105 5.3555 24.1219

Figure 7 | Hydrograph of the forecasted vs. observed monthly MWD (cubic meter) for Hail reg

om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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a function of time-lagged previous elements. Five different

models, respectively of orders 1, 2, 3, 4 and 5, are tested

and compared according to the MAPE, R2, RMSE, AARE,

and AIC performance indicators. The results are summar-

ized in Table 3 and the plots of the forecasted and the

observed monthly MWD is depicted in Figure 7 (only the

graph of the best AR model is presented here).

From the results of Table 3, it can be observed that the

AR(3) model performed better than the other models with

the lowest MAPE (5.4007%), the highest R2(0.9201) and

the lowest Akaike information criterion (AIC) (24.0005).
ARIMA(p,1,q) models

In order to construct the best ARIMA(p,1,q) model, the

orders p and q need to be determined. Many combinations

of the couple (p,q) have been tested and evaluated accord-

ing to the four previously defined performance indicators.

The one-step-ahead forecasting is considered here. Four

models along with their coefficients and performance indi-

cators for both training and testing data are shown in

Table 4.

It has been found that the ARIMA (1,1,1) is the most

parsimonious model among all the tested models. Moreover,

ARIMA(1,1,1) is judged to be adequate even when the non-

stationary TS observations are used. Figure 8 illustrates the

forecasted against the observed monthly MWD in Hail

region obtained by ARIMA(1,1,1). This model is found to

perform better than all the other models in terms of the per-

formance indices (lowest MAPE, RMSE and AARE and
ion obtained with STS – AR(3) model.



Table 4 | ARIMA (p,1,q) results

Model

Parameters Performance indicators (trainingþ testing)

C a1 a2 a3 b1 MAPE (%) R2 RMSE (m3) AARE (%)

ARIMA (1,1,1) 16287 0.6611 – – 0.3563 6.1491 0.9119 2.5508 × 105 5.4566

ARIMA (2,1,1) 21846 �1.0202 �0.0202 – 0.9394 8.3298 0.7744 4.1149 × 105 9.1475

ARIMA (3,1,1) 356,581 0.5744 0.3190 �0.2738 �1 7.9462 0.7124 4.6811 × 105 9.2233

ARIMA (1,0,1) 346,677 0.8467 – – �0.2257 7.0535 0.8962 2.8557 × 105 7.5595

Figure 8 | Forecasted vs. observed monthly MWD (cubic meter) for Hail region obtained with STS-ARIMA(1,1,1) model.
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highest R2). It can be concluded that although it is designed

for linear data, the ARIMA model has the ability to capture

non-linear behavior and produce relatively good fit for fore-

casting water demand. Intuitively, ARIMA(1,1,1) has the

least number of parameters allowing it to acquire the mini-

mum AIC. Consequently, it should be the best model

according to the AIC performance indicator.

Since the original time-series, y(t) is not stationary, it has

been differentiated once. The new once-differenced time-

series (Z(t)¼ y(t)�y(t�1)) is found to be stationary (see

above under ‘Exploratory analysis’). Considering that

Equation (5) operates only on stationary time-series, y(t)

has to be replaced by Z(t). Thus, Equation (5) on Z(t)

becomes Z(t)¼Cþ a1Z(t�1)þ e(t)þ b1e(t�1). By substitut-

ing Z(t)¼ y(t)�y(t�1) and Z(t–1)¼ y(t�1)–y(t�2), the

monthly MWD forecasting model is then given by the

following equation:

y(t) ¼ 16, 287þ y(t� 1)� 0:6611(y(t� 1)� y(t� 2))

þ 0:3563e(t� 1)þ e(t) (10)
://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
PSO–ARIMA(p,d,q) models

Since MMWD in Hail region is derived from a stochastic

process known to be highly non-linear and eventually pre-

senting irregularities, the resulting modeling-identification

problem is classified as hybrid and difficult to solve. This

problem presents a high level of algorithmic complexity.

In such conditions, we have to resort to the PSO technique

to address the modeling aspect of future water consump-

tions underlying on the limited available data (Parsopoulos

& Vrahatis ).
Swarm model definition

The first step in a PSO-based approach is to ensure the map-

ping between the PSO world and the problem to be solved.

As it has been mentioned before, the one-step-ahead value of

monthly MWD can be modeled using the ARIMA(p,d,q)

Box–Jenkins methodology. The ARIMA(p,d,q) model

defined in Equation (5) is adopted here and both the
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identification and estimation steps are performed by PSO.

The position vector is then defined by Equation (11):

~X ¼ [C p a1 a2 . . .apapþ1 . . . apmaxq b1b2 . . .bqbqþ1 . . .bqmax ]

(11)

This encoding scheme presents the particularity that it

contains, simultaneously, integer and real-coded variables.

C, a1, a2, . . . , ap, b1, b2 . . .bq are real-coded variables, p

and q are integer variables. To avoid unnecessary compu-

tations, the maximum values for p and q respectively

pmax, qmax are set to 5. Therefore, once p and q are known,

all the coefficients between apþ1 and apmax (respectively

between bqþ1 and bqmax ) are set to 0. The search-space

limits are defined in Table 5.

Since we have no idea about the magnitude of the

ARIMA model coefficients, the objective function f in

Equation (12) has been minimized by the ‘fminunc’ (uncon-

strained minimization function of the optimization toolbox

in Matlab) with different initial guesses (because it is a

local gradient-based minimization function). Values of C

have been found to range from approximately 10,000 to

350,000 and the coefficients a1, a2, …, ap, b1,b2, …, bq are

found to be between �1 and 1.
Fitness function evaluation

Let Xi
�!

¼ [C(i)p(i)a(i)1 a(i)2 � � �a(i)p a(i)pþ1 � � �a(i)pmaxq
(i)b(i)1 b(i)2 � � � b(i)q

b(i)qþ1 � � �b(i)qmax ] be the ith particle position, and then the qual-

ity of this particle is evaluated through its fitness function.

The objective function adopted in this study is the squared
Table 5 | Search-space limits

Parameter Min Max Nature Meaning

10�4 ×C 1 35 Real Scalar constant in the linear time-
series model as defined in
Equation (5)

p,q 1 5 Integer Degrees of the compound AR and
the compound moving average
(MA) polynomials

a1,…, ap �1 1 Real Coefficients of the AR polynomial

b1,…, bq �1 1 Real Coefficients of the MA
polynomial

om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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error between the observed and the forecasted values for

the monthly MWD defined in Equation (12) (Hu ):

f(~X(i)) ¼
Xt¼N1

t¼1

(y(t)� ŷ (t))2

ŷ(t) ¼ C(i) þ
Xh¼p(i)

h¼1

a(i)h × y(t� h)þ
Xl¼q(i)

l¼1

b(i)l × e(t� l)

þ e(t) (12)

One of the features of the PSO-based approach is that it

does not require any computation of the objective function

derivatives. The PSO concept is based in particular on the

computation of the objective function itself.
PSO–ARIMA(p,d,q) procedure for modeling monthly
MWD

The PSO–ARIMA(p,d,q) approach for modeling monthly

MWD in Hail region is described as follows.

(1) Set the PSO synthesis parameters as follows: wmax¼
0.95, wmin¼ 0.35, nb_part¼ 20, c1¼ c2¼ 0.75, maxI-

ter_nb¼ 100.

(2) Load the historical records of the monthly MWD in

Hail region from an excel file (y(t), t¼ 1:69).

(3) Generate a white-noise signal (e(t), t¼ 1:69).

(4) Set the iteration index to k¼ 1.

(5) Initialize the swarm particles randomly within the

search-space limits as defined in Table 5.

(6) For each particle, compute the fitness function as

defined in Equation (12) using the N1¼ 40 records.

(7) Determine the index of the best particle among the

swarm and set ~G(i) to the position of this particle.

(8) Set the personal best of each particle ~P(i)
k to its current

position.

(9) Increment the iteration index k¼ kþ 1.

(10) Update the position of each particle according to

Equations (8) and (9).

(11) As p(i) and q(i) are integer variables, round them off to

the nearest integer values over {1, 2, 3, 4, 5}.

(12) If one of the real-coded variables comes out of the

search-space limits defined in Table 5, confine it by

resetting within the search-space.
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(13) Compute the fitness function for each particle accord-

ing to Equation (12). Compare the current fitness of

each particle to its previous personal best fitness. If

there is improvement, then set ~P(i)
k ¼ ~X(i)

k .

(14) Determine the index of the best particle in the swarm

and update ~G(i) accordingly.

(15) Test the stopping criterion, if not reached loop to Step

9. If reached, record ~G(i) as the best solution.

Adaptation procedure for the real and integer decision
variables

In this subsection,more emphasis on steps (10) and (11) of the

PSO-ARIMA procedure is put forward to clarify the adap-

tation procedure used to simultaneously handle the real and

integer variables of the studied forecasting problem. By refer-

ence to Equation (11) for the position vector and to Table 5 for

the meaning and limits of the position components, the fol-

lowing example is considered. Assume that at the kth

iteration, the decision variables vector of the ith particle is

given by Xk
i ¼ [29 × 104, 2.11, 0.7, �0.8, 3.2, �1.7, 3.11, 3.92,

0.05, �0.2, 0.17, 4.5 2.73] (this vector is the result of step

(10)). Since p and q are integer variables, the second and

the eighth related values are rounded-off to the nearest integer

numbers. p¼ round-off (2.11) ¼ 2 and q¼ round-off (3.92)¼
4. Consequently, a3¼ a4¼ a5¼ 0 and b5¼ 0. As a result of the

adaptation procedure (output of step (11)), the ith particle

position vector is then given by Xk
i ¼ [29 × 104, 2, 0.7, �0.8,

0, 0, 0, 4, 0.05, �0.2, 0.17, 4.5, 0].

Numerical results

The simulations were performed in a Matlab environment

using our proper code. The data set was divided into a mod-

eling sub-set (composed of 40 records) and a validation sub-

set (composed of the remaining 29 records). The PSO algor-

ithm was conceptually stochastic. For this reason, 300 runs

were carried out and the results of the best run are depicted

in Table 6. The corresponding best solution is given in

Equation (13):

~G ¼ [(2:9996 × 104) 1

� 0:3277 0 0 0 0 1 0:8193 0 0 0 0] (13)
://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf



Figure 9 | Actual vs. forecasted monthly MWD (cubic meter) in Hail region obtained with PSO-ARIMA(1,1,1) approach.
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Since the optimal values obtained for p and q are equal

to 1, all the coefficients a2, . . . , a5 and b2, . . . , b5 are equal

to 0. The best model is then expressed as in Equation (14):

y(t) ¼ 2:9996 × 104 � 0:3277y(t� 1)þ 0:8193e(t� 1)þ e(t)

(14)

The performance of both training and validation data

sets considered together as well as the training and vali-

dation data sets considered separately are summarized in

Table 6. The results of the best BP-FF-ANN(3), AR(3),

STS-ARIMA(1,0,1) using the original records and the STS-

ARIMA(1,1,1) using the stationarized records are included

in the same table for comparison.

The graph of the actual and forecasted monthly MWD is

depicted in Figure 9. The convergence characteristics of the

optimal PSO-ARIMA structure are depicted respectively in
Figure 10 | Convergence of the best RMSE function along with the identification process.

om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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Figures 10–13, which reveal that the values of the best fit-

ness function decreases along with a constant value since

the iteration 30 (from an optimization process of 100 iter-

ations). Similar behaviors are shown for, respectively, the

optimal p, q, a1 and b1. In fact, all these parameters converge

to their optimal values reported in the optimal global sol-

ution (Equation (14)).

As shown in Figure 13, the behavior of the whole swarm

along with the iterations is shown respectively for iteration

1, 20, 50 and 100. The proposed PSO-based approach

drives the swarm to a steady state (for the optimal a1 and

b1). The remaining optimal parameters behave similarly.
Comparative analysis and concluding remarks

According to the obtained results, it has been shown that the

used PSO synthesis parameters are effective for modeling



Figure 11 | Convergence of the (a) AR part order p and (b) MA part order q.

Figure 12 | Convergence of the AR part coefficient a1 and the MA part coefficient b1.
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the monthly MWD in Hail region. The set of parameters

have been used successfully for other engineering problems

such as those presented in Zhang (), Huang et al. ()

and El-Telbany & El-Karmi (). The unique exception

concerns with c1 and c2. In fact, c1¼ c2¼ 2.05 (as in the

cited papers) conduct to a severe oscillating behavior. In

this study they have been set to 0.75. Moreover, the
://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
PSO-based approach has the advantage of simultaneously

handling real-coded and integer-coded decision variables.

Thus the identification of the AR part order and MA part

order of the ARIMA model and the estimation of the poly-

nomial coefficients are performed together in a unique

framework. This can save time in design compared to STS

and ANN-based approaches. The proposed PSO-ARIMA



Figure 13 | Convergence of the whole swarm for a1 and b1: (a) swarm initialization (iteration 1), (b) swarm evolution (iteration 20), (c) swarm evolution (iteration 50) and (d) swarm

convergence (iteration 100).
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approach should be the preferred approach (over ANN and

STS) due to its simplicity without needing data pre-proces-

sing (data re-scaling in ANN and stationarization in STS).

The comparative results in Table 6 reveal that the PSO-

based approach outperforms both ANN and STS

approaches in terms of the four computed performance indi-

cators (a MAPE of 5.2832%, an R2 of 0.9375, an RMSE of

2.2111 × 105m3 and an AARE of 5.2911%) for the global

data sets and for the training and validation data sets con-

sidered separately. The testing phase is the one that is

more representative of the actual performances of the

model in a real application framework and the RMSE is

the most significant performance indicator because it

represents the objective function to be minimized. The

value of the RMSE for the PSO-ARIMA in the testing

phase (2.2111 × 105 m3) is better than the RMSE of the

STS-AR(3) in the same phase (2.3119 × 105 m3). By comput-

ing the relative difference between the two values, it has

been found that the PSO-ARIMA is 4.36% better than the

STS-AR(3).

In terms of monthly MWD profile tracking, all the devel-

oped models present a whole behavior characterized by

forecasted values that follow the actual values relatively

closely.
CONCLUSIONS AND RECOMMENDATIONS

In this paper, an approach based on an ARIMA model com-

bined to the PSO as an identification tool was developed
om http://iwaponline.com/jh/article-pdf/19/2/261/391183/jh0190261.pdf
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and applied to the forecasting of one-month-ahead munici-

pal water demand in Hail region, Saudi Arabia. The

modeling–identification problem included integer-valued

(model orders) and real-valued (model coefficients) decision

variables. It was then considered as a hybrid complex optim-

ization problem for which classical optimization techniques

suffer from combinatoric explosion (for the discrete aspect)

and high ability to be trapped into local minimum points

(for the continuous aspect). The proposed approach has

the advantage of optimizing integer and real variables simul-

taneously. Moreover, it has been shown to operate

efficiently in complex search-spaces and converge to near-

optimal solution in a reasonable computation time. Since

the PSO is a conceptually stochastic optimization algorithm,

300 runs have been carried out using 69 records of monthly

water demand. From the results of the best PSO-ARIMA run

reported in this paper, this approach has been shown to out-

perform BP-FF-ANN, STS-AR and STS-ARIMA based

solutions in terms of four performance indicators namely

the MAPE, R2, RMSE and AARE for both training and test-

ing data sets.

More than being relatively better in term of forecasting

accuracy, the proposed PSO-ARIMA approach should be

preferred for being insensitive to the forecasting problem

irregularities including convexity and differentiability. In

addition, the PSO-ARIMA does not require any data pre-

processing (data re-scaling in ANN and data stationarity in

STS).

Forecasting monthly MWD is classified as medium-

range; it can participate to efficient operation and
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management of an existing water supply system. Hail water

utilities can take benefit from the results of this study to

develop efficient plans for optimized system operation and

ensure balancing between water need and supply. The devel-

oped monthly MWD in Hail region are fundamental in

taking decisions in water management issues. Establishing

efficient pricing policies, planning new system developments

and optimizing sizes and operation procedures of the supply

system (pumps, reservoirs) are among these issues. Results

obtained for monthly MWD by similar studies (Firat et al.

; Babel et al. ) demonstrated that using other expla-

natory variables (such as population statistics, water bill,

subscribers’ number, climatic variables, etc.) can improve

forecasting results accuracy.

To study the effect of climatic changes on monthly

MWD, other ways can be explored. In particular, for Hail

region, two periods (summer and winter) will be considered

separately. If sufficient metering devices are available, the

living levels in different cities of Hail town will be taken

into consideration. A future issue will be based on forecast-

ing climatic and socio-economic variables first and after that

use them to forecast water consumption.
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