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Abstract

Chikungunya virus (CHIKV) and the closely related onyong-nyong virus (ONNV) are arthri-

togenic arboviruses that have caused significant, often debilitating, disease in millions of

people. However, despite their kinship, they are vectored by different mosquito subfamilies

that diverged 180 million years ago (anopheline versus culicine subfamilies). Previous work

indicated that the nonstructural protein 3 (nsP3) of these alphaviruses was partially respon-

sible for this vector specificity. To better understand the cellular components controlling

alphavirus vector specificity, a cell culture model system of the anopheline restriction of

CHIKV was developed along with a protein expression strategy. Mosquito proteins that dif-

ferentially interacted with CHIKV nsP3 or ONNV nsP3 were identified. Six proteins were

identified that specifically bound ONNV nsP3, ten that bound CHIKV nsP3 and eight that

interacted with both. In addition to identifying novel factors that may play a role in virus/vec-

tor processing, these lists included host proteins that have been previously implicated as

contributing to alphavirus replication.

Author summary

Alphaviruses such as CHIKV and ONNV, cause severely painful human illnesses and are

capable of producing large outbreaks with endemic persistence. Half of the alphavirus life-

cycle is in mosquitoes, making it important to understand the molecular interactions

between the virus and the vector that influence the capacity of these viruses to spread.

This work identifies 24 vector proteins that may be responsible for restricting CHIKV

from infecting the subfamily of mosquitoes that ONNV, CHIKV’s closest relative, uses for

transmission. This is the first study to identify Anopheles host proteins that interact with
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alphavirus nonstructural protein 3. Understanding these virus/vector interactions is

important for identifying risk factors for viral transmission and potential mechanisms for

controlling vector infections by human pathogens.

Introduction

Chikungunya virus (CHIKV) is most closely related to onyong-nyong virus (ONNV). Both

alphaviruses cause an acute febrile illness with associated debilitating arthralgia that can persist

for months or years. ONNV, which is endemic in sub-Saharan Africa, caused one of the largest

arbovirus outbreaks known in 1959 to 1962, which affected over two million people [1–3].

CHIKV has also infected millions of people during reemergence events which led to the virus

spreading globally during the past two decades [4,5].

Despite only diverging a few thousand years ago [6], ONNV and CHIKV are vectored by

mosquito species that diverged during the Jurassic period [7], implying that these two alpha-

viruses did not co-evolve with ancient mosquitoes, but are the result of cross-species transmis-

sion. CHIKV is transmitted by Aedes species mosquitoes of the culicine subfamily, whereas

ONNV, atypically for an alphavirus, utilizes mosquitoes from the anopheline subfamily [8,9].

ONNV has been found to replicate in Aedes aegypti in laboratory studies, though it is not

thought to be a natural vector [10]. Previous work demonstrated that nonstructural protein 3

(nsP3) is responsible for the ability of ONNV to replicate in Anopheles mosquitoes [11]. In

that work, a recombinant CHIKV with the nsP3 of ONNV in place of the CHIKV nsP3 was

able to replicate in adult anopheline mosquitoes, whereas wild-type CHIKV could not.

Alphavirus nsP3 is less well understood than other products cleaved from the viral polypro-

tein. It is required for genomic negative strand RNA synthesis [12,13] and it can be found in

the cytoplasm and in stress granules, where it interacts with many host proteins including the

mosquito stress granule protein Rasputin [14–17]. Alphavirus nsP3 is composed of three

domains: the N-terminal macrodomain, the central alphavirus unique domain (AUD), and

the C-terminal highly variable domain (HVD). The macrodomain hydrolyses ADP-ribose

phosphate and binds polyadenylate and poly ADP-ribose [18–20]. ADP-ribosylation is used as

a cellular signal in many processes, including stress granule formation, DNA repair, gene regu-

lation, and apoptosis. The macrodomain of CHIKV nsP3 hydrolyzes mono ADP-ribose from

proteins and this catalysis is important for replication in both mammalian and insect cells, as it

allows nsP3 to rearrange stress granules [21–24]. The AUD is a zinc-binding domain that has

been implicated in RNA binding and replication [25]. The HVD has been most studied as a

protein binding domain and interacts with many host proteins [16,17]. Alphavirus nsP3 typi-

cally ends with an opal stop codon, which is read-through occasionally to produce reduced

amounts of the nsP4 RNA-dependent RNA polymerase compared with the other nonstruc-

tural proteins [26]. In some ONNV strains, the opal stop codon is replaced with a codon for

arginine, which affects ONNV multiplication [27,28]. The read-through products and the argi-

nine variants add six additional amino acids (LDRAGG) to the C-terminus of nsP3 before the

cleavage site that separates it from nsP4. ONNV and CHIKV nsP3 have 67% amino acid iden-

tity (75% similarity) with most of the differences falling in the HVD [29]. ONNV nsP3 is 569

amino acids long, from cleavage site to cleavage site. This is longer than the CHIKV nsP3,

principally due to a 52 amino acid insertion in the HVD (S1 Fig) [29]. Despite the differences

between viruses, nsP3 is a crucial determinant for alphavirus replication and pathogenesis

[12,13,30–33].
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ONNV is an understudied alphavirus, especially in characterizing the differences in mos-

quito-virus interactions that control ONNV/CHIKV species-specificity. This study identified

and catalogued the anopheline proteins that differentially bound ONNV and CHIKV nsP3s to

aid in understanding mosquito host factors that define specific virus infectivity.

Materials and methods

Cells and viruses

Anopheles cell lines Sua 4.0, 4a-2 [34], and MOS.55 [35] as well as Vero cells were provided by

the Diagnostic Laboratory of the Arboviral Diseases Branch, Division of Vector-Borne Dis-

eases, Centers for Disease Control and Prevention. Insect cells were maintained at 28˚C in

Schneider’s Drosophila Medium + 10% FBS with 100 U/mL penicillin and 100 μg/mL strepto-

mycin (Gibco 21720–024, 15140–122, and VWR 97068–085) in sealed flasks. CHIKV strain

37997 (GenBank AY726732), ONNV strain SG650 (GenBank AF079456), and CHIKV/

ONNVnsP3 were derived from plasmids pCHIK.b, pONN.AP3, and pCHIKV/ONNVnsP3

[11, 36]. In short, virus was rescued by T7 polymerase transcription and electrotransfection of

Vero cells as previously described [11]. Next generation sequencing (NGS) was performed to

produce sequence coverage of the CHIKV 37997, ONNV SG650, and CHIKV/ONNVnsP3

genomes from viral RNA purified from the Vero cell supernatant using the Ion Torrent Per-

sonal Genome Machine system (Life Technologies) and associated protocols [37]. In brief,

viral RNA was extracted with the QIAamp viral RNA mini kit (Qiagen 52904), DNaseI treated

(Invitrogen 18068015) and a cDNA library for each viral isolate was prepared using the Ova-

tion RNA-Seq System V2 (NuGEN) and the IonExpress Plus gDNA and Amplicon Library

Preparation Kit (Life Technologies) according to the manufacturer’s recommendations. Prior

to shearing using the IONXpress Plus Fragment Library Kit, gDNA quantity was determined

using a Qubit 2.0 Fluorometer (ThermoFisher Scientific) to optimize fragment lengths. Con-

structed libraries were barcoded using the Ion Xpress Barcode Adapter Kit (Life Technologies)

to allow for multiplexed analysis on the Ion Torrent PGM. To assess the base-pair size profile

as well as the quantity of amplified library, the sheared and purified cDNA library was analyzed

on a Bioanalyzer (Agilent Technologies). The cDNA template was then diluted to the appro-

priate molar concentration in distilled water. To prepare and enrich template-positive particles

from the cDNA library, the Ion OneTouch System Template Kit (Life Technologies) was used.

The enriched ion spheres were then sequenced using the Ion Torrent Personal Genome

Machine (PGM) Sequencer and the Ion Sequencing Kit, with a 318 Chip (Life Technologies).

The CLC Genomics Workbench 12.0 (Qiagen) software was used to run a de novo assembly of

the raw data reads into contigs.

Experimental infection of cell lines

Wells of 12 well plates were seeded with 3.2 x 105 cells of the three anopheline cell lines, Sua

4.0, 4a-2, or MOS.55. After plating for one hour at 28˚C, the medium was removed and

replaced with 400 μL medium (Schneider’s Drosophila Medium + 10% FBS with 100 U/mL

penicillin and 100 μg/mL streptomycin) with 3.2 x 104 pfu (MOI = 0.1) of ONNV, CHIKV, or

CHIKV/ONNVnsP3. After 1h of infection, the cells were washed with Dulbecco’s PBS and

1mL of fresh medium was added. Immediately, a 200 μL aliquot was removed for the 1h time-

point and stored at -80˚C. Subsequent timepoints were also 200 μL. Medium was added to

replace that removed.
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Titrations

Plaque assays were performed in duplicate on Vero cell monolayers in 6 well plates with

10-fold virus dilutions to determine titer. Plates were overlayed with 0.4% agarose DMEM +

10% FBS with 100 U/mL penicillin and 100 μg/mL streptomycin and incubated for 48h at

37˚C with 5% CO2. The cells were fixed with a 40% methanol, 0.25% crystal violet solution.

Plaques were counted and are reported as pfu/mL.

Cloning

pIE1prm/hr5/PA, which contains the hr5 enhancer, constitutively active strong promoter and

polyadenylation signal from Autographa californica multiple nucleopolyhedrovirus is suitable

for protein expression in many insect cells [38]. A series of PCR primers added ClaI and SalI

sites to ONNV nsP3 and CHIKV nsP3 from pONN.AP3 [36] and pCHIK.b [11], as well as

adding the start codon, HA tag (YPYDVPDYA) and controlling the stop codon (S1 Table and

S2 and S3 Figs). Amplicons were ligated between the ClaI and SalI sites in pIE1prm/hr5/PA. To

imitate the two C-termini produced by opal stop readthrough/arginine variant and the opal

termination, CHIKV and ONNV nsP3s with either an arginine or the opal stop codon were

made in case the C-terminus substantially affected binding. To add GFP, a PCR amplicon

from pGFP-HA [39] was inserted into the AatII to ClaI site of the HA-nsP3. Plasmid

sequences were confirmed by BigDye (ThermoFisher 4458688) Sanger sequencing on an ABI

3500xL or ABI 3130xl genetic analyzer (Applied Biosystems). Plasmids were purified by Endo-

Free Plasmid Maxi kit (Qiagen 12362).

Protein expression

For transfections, 2 x 105 cells were plated per cm2 of growth area. One day later, 0.52 μg plas-

mid DNA per cm2 and 2.08 μL/cm2 of FuGENE HD transfection reagent (Promega E2311)

were combined per the manufacturer protocol and added to the plates (see S2 Table for

details). GFP expression was verified by a Celigo Image Cytometer (Nexcelom). Two days post

transfection, typically ~40% of cells were expressing GFP.

Western blots

Transfected cells were scraped, washed twice with 0.5 mL Dulbecco’s phosphate-buffered

saline (DPBS) and lysed in 1% SDS, 50 mM DTT (ThermoFisher NP0009) at 70˚C for 10 min.

Loading dye was added and 10 μL of sample was loaded per well. Duplicate 4–12% NuPage

Bis-Tris SDS-polyacrylamide gels (ThermoFisher NP0322BOX) were run for actin and HA

blots. Western blots were performed as per the manufacturer protocol using MOPS SDS buffer

and PVDF (Thermofisher NP0001 and LC2005). IBlock (Thermofisher T2015) + 0.1%

Tween20 was used for blocking and antibody dilution. Anti-HA (Biolegend 901513) diluted

1:1000 and anti-actin (BD Biosciences 612656) diluted 1:3333 were used. An alkaline phospha-

tase goat anti-mouse antibody (Jackson Immuno Research 115-055-003) was diluted 1:5000 as

the secondary antibody. Blots were developed with BCIP/NBT Phosphatase Substrate System

(SeraCare 5420–0030).

Immunoprecipitation and mass spectrometry

Immunoprecipitation of GFP-HA-nsP3 proteins was carried out three days post transfection

on separate pools of Sua 4.0 cells from T25 flasks expressing one of the following: non-trans-

fected negative control, GFP-HA, GFP-HA-ONNV nsP3 opal, GFP-HA-ONNV nsP3 arg,

GFP-HA-CHIKV nsP3 opal, or GFP-HA-CHIKV nsP3 arg. Manufacturer protocols were
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used for Pierce Crosslink Magnetic IP/Co-IP Kit (ThermoFisher 88805) with anti-GFP 12A6

(DSHB-GFP-12A6) antibody. This monoclonal antibody was developed and distributed by the

Developmental Studies Hybridoma Bank, which was created by the NICHD of the NIH and

maintained at The University of Iowa, Department of Biology. The lysis and wash buffer con-

tained Halt Protease Inhibitor Cocktail (ThermoFisher 78425). The proteins of interest

(GFP-HA-nsP3 variants) and bound host proteins were precipitated from lysate for 1h at

room temp. All the samples were washed and were eluted with 100 μL of the HCl-containing

Elution Buffer. The HCl was neutralized with 10 mL of tris-containing Neutralization Buffer

from the Pierce kit. The proteins were preliminarily separated by SDS-PAGE and stained with

silver stain (Pierce Silver Stain for Mass Spectrometry, 24600). Each gel lane was sliced into 12

bands and subjected to in-gel digestion with trypsin following standard protocols. In short, gel

bands were destained using the Pierce silver stain kit, samples were reduced and alkylated, and

digested overnight with trypsin (Promega V5111) at 37˚C. The following day, tryptic peptides

were extracted with three washes of 60% acetonitrile, dried in a SpeedVac, and submitted to

mass spectrometry. The resulting tryptic peptides were analyzed by mass spectrometry using a

Orbitrap Fusion Lumos Tribrid Mass Spectrometer (ThermoFisher Scientific) interfaced with

an on-line EASY-Spray nanospray source (ThermoFisher Scientific) and a RSLCnano UPLC

(ThermoFisher Scientific) configured for nanoliter per minute flows. The RSLCnano was

setup with a desalting trap column (0.3 x 5 mm, 5 μm C18 PepMap 120A, ThermoFisher Sci-

entific) and a C18 EASY-Spray analytical column (0.075 x 250 mm, 2 μm, 120A, ThermoFisher

Scientific) with a column temperature of 35˚C. The tryptic peptides were separated using a

binary gradient of 0.1% formic acid in water (A) and 80% acetonitrile/0.1% formic acid (B).

The eluent from the analytical column was introduced into the mass spectrometer using the

EASY-Spray source operated at a spray voltage of 1700V with the inlet capillary temperature

set to 275˚C. The Lumos mass spectrometer was operated in data dependent acquisition mode

with a 3 second total cycle time. The parent mass spectrum (MS) was acquired using a m/z

range of 300–1500 at a resolution of 120,000 with a maximum ion injection time of 100 ms

and an AGC target of 200,000 ions. The fragment mass spectrum (MS/MS) was acquired using

an automated m/z range starting at 110 m/z using the “Rapid” scan mode of the ion trap with

a maximum ion inject time of 300 ms and an AGC target of 3000 ions using CID fragmenta-

tion at 35% normalized collision energy with a quadrupole isolation window of 1.6 Da. The

collected data was processed by Proteome Discover (v2.2.0.388, ThermoFisher Scientific)

using both the built-in Sequest HT search engine and our in-house MASCOT server (v2.6,

Matrix Science). The data was searched against a FASTA formatted protein list downloaded

from NCBI which corresponded to the Anopheles gambiae species complex (NCBI:txid44542)

[40]. To account for common contaminants, like human keratins, a list of common contami-

nating proteins were included in the search but were filtered out from the final identified pro-

tein lists. Putative names were assigned to proteins lacking descriptors using the closest clearly

named homologues identified by BLAST search [29]. To better understand the immunopre-

cipitation results, the accession numbers of interacting proteins were run through STRING

and exported to Cytoscape [41]. Protein homology between Aedes aegypti and Anopheles gam-
biae was calculated by BLAST when there was�98% coverage [29]. For these protein align-

ments with< 98% coverage the percent identity was manually calculated by summing

BLAST-determined identical amino acids divided by the Aedes protein amino acid length.

Results

ONNV can be transmitted by Anopheles species mosquitoes, but CHIKV, its closest known

relative, cannot [10,11]. Previous work had shown that CHIKV containing the nsP3 of ONNV

PLOS NEGLECTED TROPICAL DISEASES Alphavirus nsP3 interactions with mosquito proteins

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011028 January 25, 2023 5 / 19

https://doi.org/10.1371/journal.pntd.0011028


(CHIKV/ONNVnsP3; Fig 1A) had a substantial change in vector competence allowing

CHIKV/ONNVnsP3 to replicate in Anopheles gambiae mosquitoes, despite CHIKV genomic

material comprising the majority [11]. This indicated that nsP3 was primarily responsible for

alphavirus vector specificity between these two viruses. Another report identified MOS.55

anopheline cells as supporting ONNV but not CHIKV multiplication [10]. Studies were per-

formed to determine if this difference in replication was due to nsP3, as it was in live mosqui-

toes. To find the best cell culture model system, two other anopheline cell lines were also

tested: Sua 4.0 and 4a-2. The three anopheline cell lines Sua 4.0, MOS.55, and 4a-2, were

infected with CHIKV, ONNV, or CHIKV/ONNVnsP3 at an MOI of 0.1 in triplicate with sam-

ples collected daily across five days (Fig 1B). As these viruses are non-pathogenic to mosqui-

toes and generally do not form plaques in insect cell monolayers, no cell death or cytopathic

effects from infection were observed. Titrations on Vero cells showed that all three lines

restricted CHIKV replication while allowing ONNV and CHIKV/ONNV nsP3 multiplication,

though with varying efficacy. Of the three, MOS.55 cells showed the weakest phenotype, with

inadequate replication in general, and so were not selected for further experimentation. Sua

4.0 cells were selected for future experiments as they best supported growth for ONNV and

CHIKV/ONNVnsP3 and did not allow effective CHIKV multiplication.

A series of plasmids were constructed to express CHIKV and ONNV nsP3s in Sua 4.0 cells.

The pIE1prm/hr5/PA plasmid backbone was selected [38]; this plasmid consists of a

Fig 1. Anopheles cell lines infected with CHIKV, ONNV, and CHIKV/ONNVnsP3. (A) Viruses used in this study.

The structures of CHIKV, ONNV, and recombinant CHIKV/ONNVnsP3 that has a CHIKV backbone with the nsP3

from ONNV are shown. Adapted from [11]. (B) Growth curves of the above viruses (MOI = 0.1) in three anopheline

cell lines; Sua 4.0, 4a-2, and MOS.55. Experiment was performed in triplicate with titers assayed in duplicate for each

replicate. The mean and standard error are plotted.

https://doi.org/10.1371/journal.pntd.0011028.g001
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baculovirus promoter and polyadenylation signal which are suitable for robust protein expres-

sion in many insect cell lines. Three different N-termini were used. The shortest only had an

artificial methionine added to start translation. An N-terminally hemagglutinin-tagged (HA;

amino acids YPYDVPDYA) construct was made, as well as a N-terminally GFP-HA tagged

version. Since ONNV nsP3 can naturally have either an opal stop codon at the end of nsP3 or

an arginine codon that allows constitutive nsP4 translation, both versions were constructed

(Fig 2A) [27,28]. The nsP3 arg contains seven amino acids (RLDRAGG) before the nsP3-nsP4

cleavage site compared with the opal variant. At the site of cleavage between nsP3 and nsP4, a

stop codon was added in the plasmid. Expression was verified by western blot (Fig 2B) and by

fluorescence microscopy (S4 Fig).

To identify the anopheline proteins that interact with nsP3, nsP3 constructs with N-termi-

nal GFP-HA fusions were transiently expressed, immunoprecipitated with α-GFP antibody,

and the proteins precipitated were identified by mass spectrometry. A western blot against the

HA-tag provided relative quantitation of the precipitated bait proteins resulting in a score of

1.00 for GFP-HA-ONNV nsP3 opal, 0.74 for GFP-HA-ONNV nsP3 arg, 1.58 for GFP-HA-

CHIKV nsP3 opal, and 1.55 for GFP-HA-CHIKV nsP3 arg (S5 Fig). The peptides were com-

pared against the NCBI gambiae species complex protein collection (taxid 44542, approxi-

mately 53 000 proteins). GFP-HA and non-transfected cells were used as negative controls and

any proteins that immunoprecipitated with GFP-HA were excluded from the analysis of the

GFP-HA tagged nsP3 proteins. A total of 193 Anopheles proteins were identified (Fig 3A and

S3 Table). CHIKV nsP3 opal had the most proteins identified, 167, CHIKV nsP3 arg had 45,

ONNV nsP3 opal had 70, and ONNV nsP3 arg had 52. To identify the most promising candi-

dates, the opal and arg variants were treated as duplicate runs to select for reliably detectible

interactors. Of these, eight precipitated in the duplicate tests of both ONNV nsP3 and CHIKV

nsP3 (Fig 3B). Six were consistently in both ONNV nsP3 precipitations but not in CHIKV

nsP3 precipitations. Ten mosquito proteins consistently precipitated with CHIKV nsP3 but

not ONNV nsP3. Additional combinations were detected (Fig 3A), but interpretation of this

complicated data is less certain. In this category, eleven may be opal stop codon specific,

appearing for both CHIKV and ONNV nsP3, and two might be RLDRAGG C-terminus spe-

cific. Uniprot was used to help describe the identified proteins (Table 1) [42,43]. A couple of

the proteins detected, including Rasputin and coatomer subunit β, have been previously

reported as interacting with CHIKV nsP3, validating the results of this approach [14,15,44,45].

Several others have been reported with other alphavirus nsP3s, but not necessarily CHIKV or

ONNV nsP3 [16,17]. However, no published reports have compared the nsP3 interactomes to

characterize vector-specificity of these two alphaviruses.

The 24 proteins found in the duplicate precipitations were subjected to STRING analysis

and exported to Cytoscape [41,46]. There were no local network clusters larger than four pro-

teins; this four protein group consisted of ribosomal proteins. The replication factor C sub-

units were listed in the mismatch repair, DNA replication, and nucleotide excision repair by

KEGG. Overall, this approach did not reveal any larger functional patterns that would explain

why these proteins might interact with nsP3. Other STRING analyses with other combinations

of the precipitated proteins did not provide additional insight (S6 Fig).

Discussion

In this study, the intracellular determinants of vector specificity for alphaviruses were investi-

gated. To evaluate these vector-virus interactions, we utilized the close genetic relationship of

ONNV and CHIKV and the wide evolutionary divergence of their mosquito hosts. Previous

work indicated that the nsP3 alphavirus protein was responsible for this difference in
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Fig 2. Expression of recombinant nsP3s in Sua 4.0 cells. (A) Diagrams of the protein gene cassettes used in this study

that were expressed in anopheline cells. N-terminal variants were made with only the required start methionine, an

HA-tag, or a GFP-HA tag. Two different C-termini were made. The shorter variants contain an opal stop codon. The

longer variants have the opal codon replaced with arginine and encode seven additional amino acids to the protease

cleavage site, where nsP3 is cleaved from nsP4. Recombinant nsP3 has a stop codon at the cleavage site. (B) Western

blot against the HA-tag showing the alphavirus nsP3s expressed in Sua 4.0 cells. Actin was used as a loading control.

The negative control cells did not have any plasmid DNA transfected.

https://doi.org/10.1371/journal.pntd.0011028.g002

PLOS NEGLECTED TROPICAL DISEASES Alphavirus nsP3 interactions with mosquito proteins

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0011028 January 25, 2023 8 / 19

https://doi.org/10.1371/journal.pntd.0011028.g002
https://doi.org/10.1371/journal.pntd.0011028


infectivity in Anopheles mosquitoes [11] but the vector proteins involved in this process have

not been defined. Anopheles gambiae Sua 4.0 cells recapitulated the in vivo phenotype that

allows ONNV replication but restricts CHIKV. Finding this anopheline cell culture model sys-

tem suggested that the restriction against CHIKV does not require the complexity of a whole

mosquito and is mediated at the cellular or intracellular level. Using these cells, recombinant

nsP3 proteins were expressed, immunoprecipitated, and host proteins that interact with nsp3

proteins were identified.

The search for proteins responsible for controlling alphavirus-vector specificity identified

many molecules known to bind the nsP3s of other alphaviruses, or in other hosts. Known

Fig 3. Venn diagrams of anopheline proteins that interact with ONNV nsP3 or CHIKV nsP3. GFP-HA was used to

filter out proteins with non-specific binding. (A) Represents the number and overlap of proteins found in each

precipitation with the GFP-HA tagged alphavirus nsP3s with either the opal stop codon, or the arginine readthrough.

(B) Simplifies (A) by treating the opal and arginine variants as duplicates.

https://doi.org/10.1371/journal.pntd.0011028.g003
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nsP3 interactors in other host species include Rasputin, polyadenylate-binding protein

(PABP), WD repeat-containing protein 48 (WDR 48), and poly(ADP-ribose) polymerase

(PARP) [16,17,47]. Finding these known interactors implied that the technique used was effec-

tive, and that novel interactors and differentially bound proteins are worth additional investi-

gation. Completely novel interactors included cyclin-dependent kinase 1 (CDK1) and

huntingtin-interacting protein 1 (HIP1). Few studies exist on the vector protein interactions

with ONNV nsP3, let alone the determinants of vector specificity between ONNV and CHIKV

due to nsP3 [15].

Table 1. Proteins found in duplicate nsP3 precipitations. Percent identity between the anopheline proteins and the Aedes aegypti homolog were provided by NCBI’s

BLAST [29]. All homologs had 98% or greater query coverage, except for those marked by �. For these protein alignments with< 98% coverage the percent identity was

manually calculated by summing BLAST-determined identical amino acids divided by the Aedes protein amino acid length.

Putative name NCBI Accession Putative function Unique peptides

Identified

Exp. q-

value

Uniprot

ID

Identity to

Ae. aegypti
ONNV nsP3

specific

WD repeat-containing protein 48

homolog (WDR48)

XP_321784.3 regulates deubiquitination 2 0 Q7PXD9 84%

huntingtin-interacting protein (HIP1) XP_001689077.1 clathrin-mediated endocytosis,

pro-apoptotic

2 0 Q7PMU0 76%

cathepsin L XP_001689282.1 lysosomal protease 2 0 A7UVG1 87%

fermitin XP_320993.2 integrin cell adhesion 1 0.026 Q7PYQ2 87%

breast cancer metastasis-suppressor

1-like protein

XP_312215.3 HDAC1-dependent

transcriptional repression

activity

1 0.033 Q7QCM6 77%

28S ribosomal protein S22 XP_001237070.2 mitochondrial translation 1 0.043 A0NBG6 58%�

CHIKV nsP3

specific

polyadenylate-binding protein

(PABP)

XP_309558.3 RNA binding and translation 1 0 Q7QH99 78%

coatomer subunit β (COPB1) XP_321735.4 Golgi budding for retrograde

transport

4 0 Q7PXG9 89%

coatomer subunit β’ (COPB2) XP_318012.4 Golgi budding for retrograde

transport

4 0 Q7PMU5 90%

pyruvate dehydrogenase E1 subunit β XP_311527.2 catalyzes pyruvate to Acetyl-

CoA and CO2

1 0.005 Q7QDU3 91%

40S ribosomal protein S23 XP_003435869.1 translation 1 0.005 F5HMM2 100%

40S ribosomal protein S26 Q9GT45.2 translation 1 0.013 Q9GT45 97%

cysteine tRNA ligase XP_320253.2 attaches cysteine to tRNA 1 0.013 Q7Q069 80%

replication factor C subunit 3/5 XP_314028.3 DNA repair, DNA replication 1 0.013 Q7Q9N2 85%

replication factor C subunit 2/4 XP_312782.3 DNA repair, DNA replication 1 0.016 Q7QBM4 84%

α-1,4 glucan phosphorylase XP_317541.3 catalyzes phosphorolytic

cleavage of glycogen

1 0.043 Q7Q3L6 93%

Common to

both nsP3s

actin XP_315269.4 cytoskeleton 15 0 Q7Q7K6 99%

Rasputin XP_001688309.2 stress granules, ras and Rho-

mediated signaling

14 0 A7USH0 41%�

calcium-transporting ATPase

sarcoplasmic/endoplasmic reticulum

type

Q7PPA5.5 calcium pump 7 0 Q7PPA5 95%

GTP-binding nuclear protein XP_001687858.1 nucleocytoplasmic transport 4 0 Q5TX48 98%

cyclin-dependent kinase 1 (CDK1) XP_307878.4 cell cycle control 2 0 Q7QKF5 90%

60S ribosomal protein L28 XP_315433.4 translation 2 0.002 Q7PP83 61%�

60S ribosomal protein L8 Q9U9L2.2 translation 1 0.005 Q9U9L2 93%�

U6 snRNA phosphodiesterase XP_307963.4 U6 snRNA maturation 1 0.012 Q7QK92 48%�

https://doi.org/10.1371/journal.pntd.0011028.t001
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Proteins precipitated by both ONNV and CHIKV nsP3

The proteins found to bind to both ONNV and CHIKV nsP3 may not be bound in the same

way, or with the same affinity, and so could be the elements responsible for vector specificity.

It is also possible that CHIKV nsP3 binds but fails to relocate, utilize or inactivate these pro-

teins as required for alphavirus replication in Anopheles mosquitoes.

Rasputin and its mammalian homologues, Ras-GAP SH3 domain binding proteins

(G3BPs), have been well established as binding alphavirus nsP3s [14,15,30,44,45,48–50].

Anopheline Rasputin (814 amino acids) was identified in both the ONNV and CHIKV nsP3

precipitations, consistent with a recent report that both ONNV and CHIKV nsP3s co-localized

with Aedes Rasputin at similar levels [15]. The TFGDF repeats in nsP3 shown to interact with

Rasputin are conserved between ONNV and CHIKV [14, 30]. Interestingly, the amino acid

distance between the repeats is also conserved, but the amino acid immediately after the repeat

is different and then followed by four conserved amino acids (S1 Fig). Despite the surprisingly

low 41% amino acid identity between Aedes aegypti and Anopheles gambiae Rasputin proteins,

the NTF2-like domain (amino acids 8–134) [51–53], which binds nsP3 [14,30], is 95% identi-

cal [29]. Additionally, Rasputin is a key RNA-binding factor in stress granules. Stress granules

form when translation stalls and preinitiation mRNA-protein complexes accumulate. Stress

granules either resume translation or degrade the mRNA [17]. CHIKV nsP3 seems to prevent

authentic stress granule formation in mammalian cells, implying that stress granules could be

anti-togaviral [23, 49, 54]. It was reported that reducing Aedes albopictus Rasputin levels by

RNAi approximately doubled CHIKV titers without affecting RNA copy number in vitro.

Curiously, reducing Rasputin levels in vivo decreased the CHIKV infection rate, which leaves

Rasputin’s role in alphavirus multiplication unclear [14].

Actin was also found in all four nsP3 precipitations, but not in the non-transfected or

GFP-HA controls, implying that this may be an authentic interaction, rather than an artifact of

the precipitation. When actin has been found interacting with nsP3 in the past, it was also

found in negative controls, so was discounted as an important factor [55]. This finding sug-

gests reconsideration may be warranted. Actin is required for endocytosis of Semliki Forest

virus replication spherules from the plasma membrane and nsP3 was implicated in this process

[56]. However, as only 3 of the 376 amino acids are different between Aedes and Anopheles
actin and it was precipitated by both nsP3s, this interaction is not likely to dictate vector

specificity.

Cyclin-dependent kinase 1 (CDK1), a crucial cell cycle regulator, was found in all four pre-

cipitations, though not in the negative controls. CDK1 is downregulated by CHIKV infection

[57], and nsP3 could be the culprit. The kinases responsible for phosphorylating nsP3 are

unknown [58], so CDK1 is a potential candidate. There are no previous reports of nsP3 inter-

actions with CDK1. Despite precipitating with both ONNV and CHIKV nsP3s, it is plausible

that CDK1 is being utilized or inactivated by ONNV nsP3 in a way beneficial to alphavirus

replication that CHIKV nsP3 cannot manage due to differences in binding orientation or

localization.

CHIKV nsP3 specific proteins

Proteins specifically bound to CHIKV nsP3 may not be relocated and released as they are by

ONNV nsP3, keeping them from being utilized by the virus. Another potential mechanism is

that these proteins are targeted for degradation by ONNV nsP3, but CHIKV nsP3 is not able

to do that. Alternatively, CHIKV nsP3 may be bound by an antiviral anopheline protein that

inhibits crucial nsP3 functions.
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Polyadenylate-binding protein (PABP), a translation initiation factor commonly targeted

by viruses [59], was found in the CHIKV nsP3 precipitation. PABP shares 78% identity

between Aedes aegypti and Anopheles gambiae. PABP binds the polyadenylated 3’ end of

mRNA and recruits the eukaryotic initiation factor 4 complex, looping the mRNA and increas-

ing translation, while also preventing RNA degradation. It can also contribute to suppression

of gene expression when stalled translation complexes are nucleated by G3BP/Rasputin into

stress granules [59]. In complex with other factors, it can increase or decrease translation, pro-

tect the mRNA, or increase degradation. Human PABP was identified as binding VEEV nsP3

and is hypothesized to be important in increasing virus translation [60]. Since both ONNV

and CHIKV nsP3s precipitated Rasputin, but only CHIKV nsP3 precipitated PABP, it maybe

that CHIKV nsP3 is failing to disrupt or redirect constituents of the stress granules as required

for alphavirus replication.

Coatomer subunit β (COPB1) and coatomer subunit β’ (COPB2) were found specifically in

the CHIKV nsP3 immunoprecipitations. These two have 89% and 90% identity, respectively,

between Aedes aegypti and Anopheles gambiae. These proteins are two of the seven that com-

prise the coat of COPI vesicles, which transport proteins retrograde from the Golgi to the

endoplasmic reticulum [61]. COPB1 was previously reported to bind CHIKV nsP3 HVD in

Aedes albopictus cells [45]. Membranes, spherules, and cellular trafficking are critical aspects

of alphavirus replication and assembly complexes, so alphaviruses must manipulate some of

the cellular components involved.

Poly(ADP-ribose) polymerase (PARP; NCBI XP_312938.4; Uniprot Q7QBC7), which has

been shown to interact with alphavirus nsP3, signals for DNA repair, translational regulation,

and cell death by adding ADP-ribose moieties to proteins [45,47,62]. PARP has been found to

inhibit alphavirus replication via translational inhibition and is 70% identical in amino acid

sequence between Anopheles gambiae and Aedes aegypti [63,64]. However, PARP was exclu-

sively found to bind to the opal variant of CHIKV nsP3, and so is not on the list of the 24 most

promising proteins. The macrodomain of CHIKV nsP3 may counter the function of PARP in

human cells, where PARPs add ADP-ribose, and the macrodomain removes it from G3BP1

[23]. This mono ADP-ribose hydrolase activity is required for CHIKV replication in mosquito

and mammalian cells [22–24]. This circumstantial evidence suggests that in anopheline cells,

standard CHIKV nsP3 may be failing to counter PARP, either directly or indirectly, which

could result in increased CHIKV nsP3-PARP interaction.

ONNV nsP3 specific proteins

Proteins that coprecipitated only with ONNV nsP3 are the most likely candidates for control-

ling alphavirus vector specificity for anophelines. Presumably, ONNV nsP3 binds these

proteins to utilize them for virus replication, or to inhibit their potential antiviral properties.

Since CHIKV nsP3 does not bind these proteins, it cannot reassign them to facilitate virus

multiplication.

WDR48 regulates deubiquitination, is involved in DNA damage repair, and can be manipu-

lated by a herpesvirus protein to increase lysosome formation and degrade a cellular kinase

[65,66]. It has 84% amino acid identity between the two mosquito species of interest and pre-

cipitated solely with ONNV nsP3. This is consistent with the findings of Frolov et al. 2017, in

which the HVD of Sindbis virus (SINV) nsP3 precipitated WDR48 from mouse cells, but the

HVD of CHIKV nsP3 did not [48]. Kim et al. 2016 similarly found WDR48 interacting with

SINV nsP3 HVD in BHK cells [50]. As an important protein involved in ubiquitination-based

signaling, there is potentially a wide variety of cellular changes that could be induced by

manipulating this single target. Cathepsin L, a lysosomal protease, also coprecipitated with
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only ONNV nsP3, implicating viral manipulation of lysosomes as a potential mechanism that

ONNV alters to benefit itself.

HIP1, which is involved in endocytosis, precipitated only with ONNV nsP3 [67]. During its

control of clathrin bud sites, HIP1 is thought to bind actin, potentially creating a link between

actin, HIP1, and nsP3 [67,68]. HIP1 has also been implicated in changes to transcription and

oncogenesis and may aid coxsackievirus replication [69,70]. HIP1 has 76% identity between

Anopheles gambiae and Aedes aegypti, potentially explaining the differential interaction. The

implications for nsP3 manipulation of HIP1 remain unclear, but given its role in membrane

rearrangements, cellular trafficking, and apoptosis, there are many possible mechanisms by

which alphavirus control over this protein could benefit multiplication. HIP1 may be altering

pathways that in other experimental models are influenced by amphiphysins for the benefit of

alphaviruses, as both affect endocytosis and membrane trafficking. Previous reports indicate

that human amphiphysins and other SH3 domain-containing proteins interact with CHIKV

nsP3 via their SH3 domains [71–73]. Interestingly, we did not find anopheline amphiphysin

bound to any nsP3 variant, nor any protein with SH3 domains according to the NCBI Batch

Web CD-search tool [51–53]. The interaction of only ONNV nsP3 with HIP1 in anopheline

cells may allow ONNV to replicate in Anopheles and restrict CHIKV.

nsP3 interaction with translational components

Ribosomal proteins were found in different combinations bound to CHIKV and ONNV

nsP3s. Ribosomal proteins and PABP (CHIKV nsP3 specific) imply that nsP3 influences trans-

lational regulation, presumably as part of its quest to shut down host gene expression and

upregulate its own [74]. Ribosomal proteins have been identified in SINV and VEEV nsP3 pre-

cipitations in both mammalian and mosquito cells (reviewed in [16]), implying that nsP3 may

recruit ribosomes to improve selective translation of alphavirus RNA. CHIKV nsP3 HVD pre-

cipitated a number of human ribosomal proteins from both the mitochondrial and cyto-

plasmic ribosomes [45]. However, this is unlikely to be the source of vector specificity, as

ribosomal proteins were found in each condition. Of curious note, the S22 protein is a struc-

tural component of mitochondrial ribosomes, has only 58% identity between Aedes and

Anopheles, and only precipitated with ONNV nsP3. It is unclear if alphaviruses utilize mito-

chondrial ribosomes [75], though human cytomegalovirus does [76,77].

Limitations and conclusions

The immunoprecipitation and protein identification technique described above has several

limitations. Western blots against the HA-tag common to all nsP3 constructs were performed

to ensure that construct concentrations in the cells were not starkly different, but there was no

method of normalizing the final vector protein results of this system. The protein identifica-

tion was not quantitative, and a binary approach was used to categorize the differentially bind-

ing proteins. This did not address more subtle differences in binding kinetics, protein-

interaction orientation, or binding partner functionality. Another limitation was the relatively

low number of peptides identified per protein, though they still reached medium and high

confidences (a false discovery rate of< 5% or < 1%, respectively). However, this does not

guarantee that every interaction we found is authentic. A third limitation was that interacting

proteins were likely missing due to limits of detection, being in vitro instead of in vivo, and

using GFP as a filter. For example, an eIF4A-like protein (NCBI XP_318978.3; Uniprot

H2KMF4) was discounted because it was found in all precipitations, including both negative

controls. However, eIF4A protein is known to be recruited by VEEV nsP3 along with PABP as
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part of stress granule take-over, so it is not clear if ONNV and CHIKV nsP3s may have genu-

inely bound eIF4A [60].

The proteins that differentially interacted with ONNV or CHIKV nsP3 are strong candi-

dates for the cellular components that affect alphavirus vector specificity. Other identified pro-

teins, like actin, are likely not involved in determining vector specificity, but are crucial

components of the alphavirus lifecycle that are manipulated by CHIKV even in the absence of

successful multiplication. Many of the 24 candidates bind other viral nsP3s in other host con-

texts, which highlights the conservation of molecular interactions from humans to insects that

arboviruses must exploit. The low homology of insect and vertebrate proteins also can stymie

the infection, creating a barrier that arboviruses, uniquely, must overcome. Individual investi-

gation of the candidates found will further reveal the intricacies of vector specificity deter-

mined by alphavirus nsP3 and lead to potential means to control pathogen transmission. For

example, nsP3 interaction data has been used to design drugs that interrupt New World alpha-

virus nsP3-human cell interactions [47]. Understanding alphavirus-vector dynamics is a criti-

cal aspect of limiting transmission to humans.
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