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Abstract

Predictive controllers can greatly improve the performance of energy systems in buildings. An important challenge of these con-
trollers is the need of a building model accurate and simple enough for optimization. Grey-box modeling stands as a popular
approach, but the identification of reliable grey-box models is hampered by the complexity of the parameter estimation process,
specifically for multi-zone models. Hence, single-zone models are commonly used, limiting the performance and applicability of
the predictive controller.
This paper investigates the feasibility of identification of multi-zone grey-box building models and the benefits of using these
models in predictive control. For this purpose, the parameter estimation process is split by individual zones to obtain an educated
initial guess. A virtual test case from the BOPTEST framework is contemplated to assess the simulation and control performance.
The results show the relevance of modelling thermal interactions between zones in the multi-zone building.

Keywords: Model predictive control, building modeling, grey-box modeling, multi-zone, BOPTEST

1. Introduction

Buildings use over 30% of the total final energy for all sec-
tors with space heating accounting for 36% of this amount in
the countries belonging to the Major Economies Forum [1].
Global building stock in 2040 could be 60% larger than today
in floor area for no increase in overall energy demand [2]. This
translates into a necessary enhancement of energy efficiency in
buildings where digitalization is a key factor as it supports ad-
vanced control strategies in building energy management sys-
tems.
Advanced controllers like model predictive control (MPC) have
proven to outperform the traditional rule based controllers by
enabling energy savings and higher thermal comfort [3, 4].
Moreover, MPC can be used to provide demand response ser-
vices to the electric grid when power-to-heat resources, like
heat pumps, are available at building level [5, 6]. The main
challenge when setting up an MPC controller is to identify a
model of the building system [7, 8] that is accurate and fast
enough at the same time, to be used for optimization.
Grey-box modeling has been extensively used for MPC, some
examples are [7, 9–16]. Their popularity arises from their con-
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venient trade-off between accuracy and computational tractabil-
ity [17, 18]. This modeling approach starts by building the
model structure from physical knowledge and then estimating
its parameters by using building operational data. The physics
of these models are simplified by using lumped parameters, i.e.,
parameters that represent the physical properties of not only one
specific component but of several components together. There-
fore, grey-box models combine the strengths of both worlds:
physics and data. Their physical properties give them physi-
cal consistency and intelligibility, and their data-driven nature
gives them adaptability.

However, the identification of individual parameters in grey-
box building models is hampered by the nature of the associated
non-convex parameter estimation process that is very likely to
drive the solution towards local optima. Hence, an accurate
initial guess of the parameters is crucial, but its calculation re-
quires expert involvement and building data that is often not
available. Moreover, parameter estimation of differential equa-
tions has been claimed to be computationally expensive and
therefore unsuitable for large-scale problems [19]. The prob-
lem can be reformulated as convex [20], but only at the cost
of losing physical interpretability of the parameters that need
to be merged together. This challenge is even larger for multi-
zone grey-box models where the number of parameters to be
estimated increases. For this reason, researchers often decide
to adopt single-zone grey-box models or black-box modeling
approaches instead [21]. However, multi-zone grey-box mod-
els are able to output one temperature estimate per zone with
the important advantage that it can be used by a predictive con-
troller to optimize the heating inputs to each zone individually,
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instead of committing the heat distribution to any predefined
and non-optimal sub-controller.
Two main approaches can be followed to identify multi-zone
models: first, a decentralized approach identifies a single-zone
grey-box model for each zone independently of the others. This
approach does not consider thermal interaction between zones,
which can hamper the accuracy of the models if there is a strong
inter-zonal thermal coupling. Second, a centralized approach
identifies a multi-zone model directly, which allows to take into
account thermal interactions of adjacent zones. A decentral-
ized model allows to decouple the parameter and predictive
controller problems among the different zones. Therefore, if
a centralized model shows no added value, the decentralized
approach may be more convenient to implement. Henceforth,
the term centralized model is used to refer to a multi-zone grey-
box building model according to the centralized approach, and
the term decentralized model to refer to a multi-zone grey-box
building model according to the decentralized approach.
Building models with a wide range of complexities have been
implemented and compared for MPC in buildings. Verhelst
et al., [22] showed that low-order models provide similar ac-
curacy to higher order models for both building and borehole
heat exchanger modeling. On the contrary, Picard et al. [23]
showed that low order models may not be able to capture com-
plex multi-zone dynamics. A direct comparison of the grey- and
white-box paradigms can be found in [24], where more detailed
white-box models are advised over low order grey-box mod-
els. Arendt et al., [25] compared white-, grey-, and black-box
models in a real test case and across different cross-validation
data sets. In this study the black-box models outperformed the
grey- and white-box models in 7 out of 8 considered simula-
tion tests. It was also found that low-order RC models are not
reliable for long-term prediction due to the error accumulation
over time. Additionally, restricting the model to a single or just
a few zones limits the controllability without harnessing the full
potential of the optimal controllers. Still, single-zone grey-box
models are commonly implemented in practice. Some exam-
ples are [14, 26, 27].
Although extensive research has been carried out on grey-box
building modeling in general, only a few studies focus on the
feasibility and benefits of identifying higher-order grey-box
models for multi-zone buildings. Agbi et al. [28] identified
a 13-zone grey-box building model, but the model parameters
were calculated from construction data and thermal properties
of the materials. Additionally, their work was focused on the
identifiability of the parameters and optimal experimental con-
ditions for training, paying little attention to the model struc-
ture. An insightful methodology was developed in [29] where
the coupling strength between zones was quantified to identify
potential grouping of zones in order to break down the prob-
lem into more sub-problems with lower estimate dimensions.
Furthermore, they reduced the parameter space of each zone by
analyzing the information matrix. This sophisticated method
was effectively validated in a nine-zone office building, but it
required a considerable amount of expert involvement and was
difficult to automate. In [27], a toolbox for grey-box system
identification was developed, but it was not tested for mod-

els with more than two thermal zones. A survey of control-
oriented thermal modeling of multi-zone buildings can be found
in [30] which highlights the advantages and disadvantages of
each modeling technique. In all cases, the performance was
investigated for simulation only, even though control perfor-
mance is a crucial test for the assessment of a controller model.
This paper explores the feasibility and benefits of the identifica-
tion of multi-zone grey-box models in an automated way, with-
out too much engineering effort. Additionally, it compares the
identified models in simulation and control performance. The
main research questions to be answered are:

• Is it possible to identify a higher-order grey-box model
for a multi-zone building without extensive expert involve-
ment, to be used in predictive control?

• What is the added value of a centralized multi-zone grey-
box model when compared against a decentralized and a
single-zone model?

• How sensitive is a higher-order grey-box model to the
training data length, to the boundary conditions, and to
variations in the estimated parameter values?

The remaining part of the paper proceeds as follows: Section 2
details the methodology that is followed for the identification of
multi-zone building models; Section 3 describes the simulation
building test case from the BOPTEST framework that is used to
implement the methodology; Section 4 elaborates on the results
and benchmarks the obtained centralized model with a decen-
tralized and a single-zone model. Finally, the main conclusions
are drawn in Section 5.

2. Methodology
2.1. Description of the methodology

The building models consider the thermal powers to each zone
as inputs and the indoor temperatures of each zone as outputs.
Hence, the modeling of Heating Ventilation and Air Condition-
ing (HVAC) systems are out of the scope of this work. A build-
ing zone is defined as a building space with a temperature mea-
surement and a controllable heating input, i.e., a thermal power
that can be directly or indirectly controlled. The coupling be-
tween the building envelope model and the model of the HVAC
system, if required, can be done in a later step, using the zone
thermal powers as interface between both.
The approach used to have a good initial guess of the model pa-
rameters is to systematically split the complexity of the problem
by zones while keeping the adjacent zone temperatures as ex-
ogenous variables. In this way, the problem is broken down into
tractable subproblems, as in a decentralized approach, while
keeping the thermal influence of adjacent zones, as in a central-
ized approach. Then, the zones are coupled together and the
results of each subproblem are used as an educated initial guess
that allows to estimate the parameters of the full model merged.
The approach incorporates scalability and is based on physical
checks and heuristics.
Only general building knowledge that can be provided by a non-
specialist is required to launch the process, namely the zone
volumes and the physically connected zones. Operational sys-
tem data is required as well to identify and train the model pa-



rameters. Particularly, it is assumed that historical data of the
following variables are available.

• Air temperature of each zone, Tz .
• Heat released to each zone, Q̇z .
• Internal gains of each zone, Ġz .
• Ambient temperature, Ta.
• Solar global horizontal irradiation, Q̇Sun.

A forward selection process compares the results among mod-
els of increasing level of complexity for each individual zone.
The RC architectures used in the forward selection inputs are
shown in Figure 1 without any adjacent zone temperature in-
put. These RC architectures represent a gradual refinement of
the zone model. The assumption that a limited set of RC mod-
els can capture the zone dynamics is supported by Reynders et
al. [11] who argued that only few model types are required to
represent the majority of buildings. The model complexities
range from only one thermal state to four thermal states, being
the zone air, wall, internal and embedded temperatures: Tz , Tw,
Ti and Te, respectively, where internal refers to internal walls,
and embedded refers to embedded pipes in the emission sys-
tem. The parameters to be estimated are the air, internal, wall
and embedded thermal capacitances, namely Cz , Cw, Ci and
Ce; as well as the thermal resistors for the wall, internal, in-
filtration and embedded: Rw, Ri, Rinf and Re; and the solar
transmittance gA. The initial thermal states are also allowed to
vary in the set of optimization variables.
Having a good initial guess for the optimization variables is
critical, even for the identification of each single-zone model.
A Latin Hypercube Sampling (LHS) method is used as a multi-
start method to explore the parameter space in the identification
of each single zone model. Each parameter of the sample gets
a random initial guess around a predefined physical value as-
signed from the little physical information provided. In partic-
ular, the initial guess of the air capacitance is estimated from the
volume of the zone. The rest of the parameters are given an ini-
tial value based on their nature and a much wider search space.
The thermal capacitances representing the air of the zones are
allowed to vary only one order of magnitude around the com-
puted physical value used as initial guess, whereas the other
parameters are allowed a much wider search space, namely of
six orders of magnitude around their initial guesses. Therefore,
only the air zone thermal capacitances are expected to keep their
strict physical meaning whereas the other parameters are more
abstract and often lumped representations of the building com-
ponents.
The parameter estimation problem minimizes the objective for-
mulated in Equation 1 and subject to the algebraic differential
equations derived from the model dynamics.

J =
Z
∑

z=1

∫ tf

t0

ez(t)
2dt (1)

In Equation 1, t0 and tf are the start and final time of the train-
ing period and e is the model deviation from the real system.
The Grey-Box Toolbox [27] is chosen to solve the parameter
estimation problem. The main reason for this choice is that

this toolbox relies on the JModelica platform [31] that allows
optimization from Modelica models. Mature libraries exist for
the development of complex building and HVAC components
in Modelica, like the Buildings [32] or the IDEAS [33] li-
braries. Predefined models of different building components
can be integrated from these libraries enabling a direct coupling
between the grey-box building envelope model and any HVAC
model available. Additionally, the Grey-Box Toolbox offers a
convenient workflow for comparison of different model struc-
tures and integrates the necessary functionality to implement
the aforementioned forward selection and LHS. The underly-
ing algorithm of JModelica uses direct collocation with CasADi
[34]. For more information on how the parameter estimation
problem is solved, see [27].
In the centralized approach, contrary to the decentralized ap-
proach, the physical connection of zones is introduced as an
input to the model identification process using a sparse con-
nectivity matrix. This information allows each zone to be opti-
mized with the temperatures of the neighboring zones as inputs
in every step of the forward selection process. The temperature
of each adjacent zone is included as an exogenous input and
considered perfectly known. A pure resistance branch R1C0 is
used to represent the coupling effect between these two zones.
A wide search space is allowed for the boundary thermal resis-
tors enabling large values for zones with low thermal coupling.
Each model attempt undergoes two validation tests that filter
out models that make no sense from a physical point of view.
The first test checks whether the heat flow is being used dy-
namically and the second test checks whether very large or very
small capacities are estimated. It is worth noting that the phys-
ical tests are former features of the Grey-Box Toolbox as well.
To estimate the model accuracy of each valid grey-box model
attempt of zone z, the Root Mean Square Error (RMSE) of the
simulation is calculated in auto- and cross-validation as defined
in Equation 2.

RMSEz =

√

∑M

k=1
(ez,k)2

M
(2)

Where:

ez,k = yz,k −mz,k ∀k ∈ 1, ...,M (3)

In Equation 2, ez,k are the residuals and M is the number of
measurements. In Equation 3, yz,k indicates the model output,
mz,k the measurement. All terms refer to zone z at time index
k. From all single-zone model attempts, the model showing
the lowest RMSE in auto-validation is chosen as the candidate
to represent the thermal zone. A summary of the process to
identify a single-zone model is represented in Algorithm 1.
Algorithm 1 starts by assigning the set of inputs Iz to the zone,
which include controllable inputs, disturbances, and the set of
adjacent boundary zone temperatures Tz . Line 3 starts the for-
ward selection by looping over the set S of all RC model struc-
tures shown in Figure 1. In line 4, a Latin Hypercube Sample
LHS of initial guesses is generated that inherits the parame-
ters from the set of parameters of the best model obtained so far
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(f) RC circuit of fourth order: Zone, Wall, Internal and embedded temperatures.
Zone infiltration is modelled as well in this case.

Figure 1: Grey-box model structures used for the forward selection.



Algorithm 1 Forward selection for zone z

1: Iz ← Tz, Q̇z, Ġz, Ta, Q̇Sun ⊲ Set inputs to the zone
2: Initialize Θ∗

z , RMSE∗

3: for s in S do ⊲ Every RC structure
4: LHS ← Θ∗

z ⊲ Inherit parameters
5: for Θ0 in LHS do

6: Θz ← Estimate from Θ0

7: Calculate RMSE
8: if RMSE < RMSE∗ then

9: Θ∗
z ← Θz

10: RMSE∗ ← RMSE
11: end if

12: end for

13: end for

Θ∗
z . Notice that the initial guess values of the air thermal capac-

itances are always generated from the provided zone volumes.
The zone parameters Θz are estimated from each initial guess
of the sample Θ0 and lines 7-10 validate and assess the result.
In the centralized approach, the outcoming parameters Θ∗

z are a
result of the optimization of each zone independently and con-
sidering the temperature input of the adjacent zones as perfectly
known. When simulating the model with all zones coupled to-
gether, the temperature inputs from each adjacent zone are not
an input anymore, but are subject to model mismatch. There-
fore, a final parameter estimation of the whole model merged is
necessary in the centralized case to balance the error propaga-
tion that may be induced by the interaction between the zones.
Even though this optimization is expensive because of the large
number of parameters to be estimated, it can be performed from
the educated initial guess of the parameters obtained from Al-
gorithm 1. For the thermal resistors coupling two zones, the
average of the values obtained from each zone is taken.
An example of a possible expected outcome of a three-zone
model is shown in Figure 2. In the example, a single state
RC structure represents the dynamics of zone 1. The model of
zone 2 includes the air temperature and the wall temperature.
The model of zone 3 includes the air temperature and the inter-
nal temperature. The decision on which RC structure to keep
for each zone is based on the process described by Algorithm
1. The parameters R12, R13 and R23 are the thermal resistors
coupling the zones. Their presence enables heat exchange be-
tween zones and constitute the difference with a decentralized
approach.

2.2. Run-time platform architecture

The aforementioned methodology accounts for a large number
of operations that linearly grows with the number of zones.
A LHS performs several optimizations per zone structure and
multiple zone structures are attempted per zone. Therefore,
the total amount of optimizations needed to identify a building
model is of the order of nxSxZ , being n the number of initial
guesses attempted in the LHS of each RC model architecture,
S the number of RC model architectures tested per zone, and
Z the number of zones in the building. In addition to the opti-

mizations, it is needed to perform the physical tests and the ac-
curacy comparison across all the different attempted zone grey-
box cases.

One of the main advantages of the approach followed by Algo-
rithm 1 is that the process of identifying each building zone can
be completely decoupled. This allows to run these processes in
parallel, removing the computational time dependency on the
number of zones. For this purpose, the functionality of identi-
fying a single zone is encapsulated within a Docker container
image which is a standard for environment specification to inte-
grate all software dependencies in a lightweight fashion, with-
out the overhead of a virtual machine. Kubernetes is a system
that enables orchestration among deployed Docker images. In
the envisaged application, one Kubernetes pod is a deployed
Docker image assigned to each building zone. An http request
sent to each pod with a zone identifier triggers the identifica-
tion of each building zone. The IPOPT software library [35]
for large scale nonlinear optimization is used to solve the pa-
rameter estimation problem at each pod. IPOPT implements an
interior point line search filter method leading to a sparse linear
system. The linear solver used to obtain the solution to the latter
system is key for the overall computational performance. For
this, the MA57 [36] solver from the HSL library [37] is used
since it is the most advanced in-core serial solver provided by
HSL [38]. For an in depth comparison between linear solvers
for IPOPT see [39].

The fact that the process runs in Kubernetes proves not only that
the process computational time is independent of the number of
zones, but also that the algorithm could be easily accommo-
dated as a web service. A graphical user interface could serve
as a gateway to the performed architecture. In this scenario
any user, not necessarily an expert, could provide the few pa-
rameters necessary to identify the building model, namely the
approximate air volume of each zone, and the physical connec-
tions between zones.

Figure 3 shows the run-time process. In the figure, the discon-
tinuous arrows indicate the http request that trigger the identi-
fication of a certain zone. The continuous arrows represent the
transfer of objects with information defining a building model:
thin arrows for single-zone objects and thick arrows for multi-
zone.
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Figure 2: Example of a centralized three-zone grey-box building model.
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Figure 3: Run-time platform architecture.

In a final step, the obtained parameters of each zone are gath-
ered and coupled together. For the centralized case, this latter

model merging all zones is used as an educated guess for the
final parameter estimation process in Pod N+1 of Figure 3. In
a decentralized approach there is no thermal coupling between
zones, and therefore there is no need to optimize the parame-
ters of a building model that integrates all zones, the first step
that optimizes the zones independently is thus sufficient in this
approach. As a results the output is a multi-zone model where
each building zone works independently from the others and its
indoor temperature estimate does not affect the estimate of the
other zones. Hence, in the decentralized approach the zones
simply co-exist in the same model without interaction.

3. Test case description
3.1. The BOPTEST framework

The Building Optimization Performance Test (BOPTEST) is
an open source initiative that facilitates the comparison of ad-
vanced control strategies in buildings. It provides a software
platform architecture that enables to read and overwrite sig-
nals in detailed simulation building models by an external con-
troller. It also features data forecast retrieval from the building
test cases and a module to compute key performance indicators.
The set of test cases is a common playground where researchers
and any advanced controller developer can test and unambigu-
ously asses their control strategies. The final goal is to throw
light on the best practices for advanced building control. More



details about the BOPTEST initiative can be found in [40].
The BOPTEST framework will provide ten emulator building
models, five with an air-based emission system more represen-
tative of the American building stock, and five with an hydronic
emission system more representative of the European building
stock. Each subset widely ranges in complexity from very sim-
ple residential single-zone buildings to very complex commer-
cial multi-zone buildings. At the time of writing, the BOPTEST
platform is under development and only two very simple test
cases are accessible through the BOPTEST repository. How-
ever, the authors have already access to the multi-zone residen-
tial hydronic building model that will be integrated within the
set of BOPTEST test cases. It is important to note that this
model is not yet officially integrated within the repository. This
means that slight changes could still be made towards the final
BOPTEST version.
In any case, the emulator envisaged in this paper has been pre-
pared following the BOPTEST standard and principles. This
means that all inputs to the buildings are meant to be realistic
inputs that could be accessible from a real building and that the
physics behind the model are meant to be representative of a
real building system.

3.2. Multi-zone residential hydronic building model

The emulator building model represents a residential French
dwelling compliant with the French Thermal regulation of
2012, i.e., the French national building energy regulation.
Therefore, the typology is defined to be representative of
French new dwellings. Its area is approximately 120 m2 and
consists of six thermal zones that are actively controlled and
two unheated zones. The actively controlled thermal zones are:
a living room, three bedrooms, a bathroom and a hallway. The
unheated zones are a garage and an attic. Figure 4 shows the
building layout and sketch of the hydraulic system.
Each building zone in the model includes conventional oc-
cupancy, heating, cooling, ventilation, lighting, and internal
loads. The building is considered occupied continuously by
four adults from 19:00 h until 10:00 h during four weekdays,
from 15:00 h until 10:00 h during Wednesdays, and all day
long during the weekends. The temperature set-points are de-
fined accordingly to provide thermal comfort during the occu-
pied period and include a night set-back. The internal loads
considered are mainly due to lighting and appliances and they
are defined according to the buildings thermal regulation of the
CSTB (Centre Scientifique et Technique du Bâtiment). There
is 30% reduction of the internal loads during nighttime.
The multi-zone residential building is heated using a gas boiler
and a hydronic distribution system. There is one radiator per
zone with a motorized valve controlled by a PI controller that
follows the air zone temperature set point. Only the hallway
zone has no valve and its hydronic circuit remains always open
to ensure that there is water flow. This is a typical layout that
avoids vacuum failures when all valves are closed while the
distribution pump is working. The distribution pump frequency
and the gas boiler load ratio are controlled through two inde-
pendent PI controllers to follow the temperature set point of
the living room. The boiler also includes an on-off controller

with a bandwidth of 0.5°C around the reference signal, an anti-
legionella security system, and an anti-short-cycling controller
that prevents the boiler from quickly switching states. No do-
mestic hot water is considered in this model.

Liv Ro1 Ro2 Ro3 Bth Hal

Liv Ro1 Ro2

Bth Ro3

Hal

Gar

14.4

8
.3

Figure 4: Layout of the multi-zone residential building and

sketch of the hydraulic system for the heat distribution. Gar,

Liv, Ro1, Ro2, Ro3, Bth, and Hal stand for garage, living room,

bedroom 1, bedroom 2, bedroom 3, bathroom, and hallway re-

spectively. The coloured elements in the scheme represent the

controllable components through the BOPTEST interface. The

dimensions are provided in meters.

The physics of this emulator are modelled using the Buildings
Modelica library [32] and integrate: dynamic wall heat transfer,
complex fenestration modeling, air infiltration to each zone
from ambient air based on constant mass-flow, thermal bridges,
inter-zone airflow exchange, inter-zone thermal conductivity,
and non-linear convection and radiation models. Particularly,
the main model components used from the library are: the
ThermalZones.Detailed.MixedAir for each building
zone, the Fluid.Boilers.BoilerPolynomial for the
boiler, and the
Fluid.HeatExchangers.Radiators.RadiatorEN442

for the radiators. The insulation levels are based on material
properties as defined in Table 1.



Wall type Description Transmittance

[W/(m2K)]

External Brick (200mm) and polystyrene
(80mm)

0.272

Floor Hollow block (150mm) and
polyurethane (60mm)

0.327

Ceiling Glass wool (200mm) 0.193
Fenestration Double glazing with argon and

PVC
1.40

Table 1: Material properties of the building emulator model.

In conclusion, the emulator building model integrates a deep
level of detail and is considered a high fidelity model able to
represent the dynamics of a real building and, therefore, it is
used as the real system to retrieve data and assess the control
performance in the envisaged application.

4. Results
This section identifies and compares different types of grey-
box building models for the test case described in Section 3.
The focus is the identification of a centralized model, but a de-
centralized and a single-zone grey-box model are identified as
well for the sake of benchmarking and comparison. First, the
methodology explained in Section 2 is implemented to iden-
tify a centralized model that integrates the thermal interactions
among the zones in the building. Second, the same methodol-
ogy is implemented but this time without inter-zonal thermal
interactions to identify a decentralized model. Finally, a single-
zone grey-box building model is identified using only tempera-
ture measurements of the living room as representative for the
overall building.
The performance of the models is assessed in both simulation
and optimal control. An open-loop simulation is performed,
i.e. without any state update during one month using cross-
validation data. The outputs of the model are compared against
the measurements and the residuals are evaluated. Additionally,
the influence of the training data length is investigated. For the
control performance assessment, the models are used as con-
troller models in the same model predictive controller for one
month of co-simulation. Key performance indicators obtained
from BOPTEST are used to assess the performance of each op-
timal controller when using the respective models. Finally, the
impact of making the controller models adaptive is studied by
retraining their parameters daily.

4.1. Identification of the test case grey-box building models

Data of the heat inputs and temperature evolutions of each zone
is required for the identification of grey-box building models.
In this study one week of data during the heating season is used
with the baseline controller working in the BOPTEST emulator.
The measurement data are thus data generated by a detailed
emulator model. No extra excitation is applied in order to study
how the identification process behaves in the business-as-usual
scenario where no additional costs are incurred due to building
excitation.
It is decided to use n=20 initial guesses for the latin hyper-
cube sample of each RC model structure attempted, and the

S=6 RC model structures of Figure 1 for the forward selection
of each zone. In this building with Z=6 thermal zones, the total
number of optimization problems to be solved for the hyper-
parameter optimization of Algorithm 1 is of 20x6x6=720, to-
gether with all subsidiary operations related to physical checks,
computation of key performance indicators and comparisons
among model candidates. The run-time platform architecture
described in Section 2.2 facilitates this task.
In the centralized multi-zone approach, a 36R20C model
is identified from the hyperparameter optimization process.
Adding up the solar admittance to the zones and the initial
states, the total number of estimated parameters is of 73. Each
of the parameters has a unique optimized value after parameter
estimation from an educated initial guess with all zones coupled
into a unique model.
In the case of the decentralized model, the identification pro-
cess results into a 18R18C model for the whole building with
a total of 60 parameters to train. In this case each parameter
has a unique optimized value as well, but these values come di-
rectly from the optimization of the parameters of each individ-
ual room since no optimization of the whole model is required
as there are no interactions among zones. Notice that the result-
ing decentralized model does not necessarily contain the same
number of states than the centralized one since the forward se-
lection procedure of Algorithm 1 may choose a different zone
structure depending on whether adjacent zone temperatures are
included as inputs or not.
Finally, the single zone model identified is a 4R3C model with
10 parameters in total, which corresponds to model "d" in Fig-
ure 1. Table 2 compares the identified models. It is worth not-
ing that, in all cases, from the obtained parameter values, only
the air thermal capacitances keep their strict physical meaning.
Other parameters like the thermal resistors of the building en-
velope or the internal heat capacitances can lose their physical
meaning due to their lumped nature and the wide freedom al-
lowed in the search space.

Model R C Total

Centralized 36 20 73
Decentralized 18 18 60
Single-zone 3 3 10

Table 2: Description of the grey-box models features, where R,

C and Total stand for the number of thermal resistances, ther-

mal capacitances and the total number of model parameters

trained.

4.2. Simulation performance assessment

The simulation performance is assessed in cross-validation with
a month of data that immediately follows the training pe-
riod. Figure 5 shows the temperature evolution in each of the
BOPTEST building zones along with the outputs in open loop
simulation of the centralized model described in Section 4.1.
These outputs come from an open loop simulation of the cen-
tralized model when reacting to the same set of inputs and dis-
turbances that were also applied to the BOPTEST building em-
ulator model. The vertical dashed line indicates the end of the



training period and beginning of the cross-validation period.
Figure 5 demonstrates that the obtained model is able to fol-
low the main dynamics of the system and allows to output a
temperature estimate for each of the six building zones. The fit-
ness is steadily worsening while stepping away from the train-
ing period where different boundary conditions apply. This is
caused by: 1. accumulation of the error over time due to the
lack of a state update in the open loop simulation, and 2. the
model is slightly over-fitted to the training data. The former
can be solved by implementing a proper state estimator, the lat-
ter strongly motivates the implementation of an online updating
of model parameters to adapt the model to the changing bound-
ary conditions.
In this section it is examined whether this steady bias can be
solved using a different training data length or if, on the con-
trary, a steady bias is inherent to the limited dynamics of grey-
box models. According to [25], grey-box models do not usually
require long data-sets, in fact, long training periods may lead to
overestimation of the thermal mass if the RC model is unable
to experience temperature variations. This section investigates
whether multi-zone grey-box models can benefit from longer
data-periods because of their higher model order. For this pur-
pose, a centralized multi-zone grey-box model is trained start-
ing from the educated initial guess already obtained in Section
4.1 and using a set of different training data lengths. Particu-
larly 3, 5, 7, 10, and 14 days are envisaged as training periods.
For the sake of conciseness, the time-series outputs of each of
the obtained multi-zone models are not shown. Instead, the
residuals of the models are computed according to Equation 3
and displayed in the boxplots of Figure 6. It should be noted
that the simulation period remains the same in all cases as for
Figure 5, i.e., one month and one week. Keeping the same
model structure, initial guess, and simulation period elucidates
the impact of the training period length in the multi-zone grey-
box model.
The residuals for all modelled building zones are shown in the
boxplots of Figure 6. This means that each boxplot of a multi-
zone model contains Z × M points, Z being the number of
zones andM the number of measurements.
From Figure 6 it is clear that longer training data periods nor-
mally lead to smaller fitting errors. The models based on train-
ing sets of 10 and 14 days are less biased, but no significant
difference is evident for training periods longer than a week.
One unanticipated observation is that the obtained parameter
set with a period of five days cannot properly follow the system
dynamics. This suggests that special care is to be taken of the
training set for multi-zone grey-box models, even when start-
ing from an educated initial guess of the parameters. Because
of the ill-posed optimization problem of the grey-box parameter
estimation problem, the solution is not unique and it is very sen-
sitive to data. Constraining the parameters with physics drives
the problem towards a more confined solution space and there-
fore improves the optimization problem properties.
Finally, the results of the centralized model are benchmarked
against those of the decentralized and single-zone models when
trained with one week of data. Again, the outputs of each model
are shown using a boxplot in Figure 7 during the training and

cross-validation data periods. Note that the boxplots of the
multi-zone models with Z = 6 are showing six times more
points than the one of the single-zone model where Z = 1.
The comparison of the models reveals that the centralized
model is slightly more accurate than the decentralized ap-
proach, suggesting that thermal interactions between zones
should be taken into account in multi-zone grey-box models.
The accuracy of the single-zone model does not significantly
differ from the accuracy of the multi-zone centralized model in
open loop simulation.

4.3. Control performance assessment

Only the simulation performance has been investigated so far.
However, the acid test for a controller model is to test its per-
formance when implemented into an actual building predic-
tive controller. Hence, this section analyzes the control perfor-
mance of a model predictive controller when using the central-
ized model identified in Section 4.1 as controller model. Then,
the performance is compared to the same predictive controller
when using the decentralized and single-zone models instead.
The performance is also compared to the in-place baseline con-
troller that comes along with the BOPTEST emulator building
model, which is a rule based control.
A co-simulation between the MPC and the BOPTEST model
is performed using the FastSim toolbox described in [16]. The
co-simulation starts the second week of the year, i.e. right after
the training period, and lasts for one month. A sampling time
of ∆t = 900s and an optimization horizon of 6 hours are used.
Shorter sampling times or longer optimization horizons have
not shown any improvement. These and other controller pa-
rameters are tuned from experience and according to the time
constant of the building. The temperature measurements re-
trieved from the BOPTEST framework are populated with arti-
ficial unbiased noise and a realistic standard deviation of 0.3°C,
which is within the measurement error of a regular temperature
sensor. A time-varying Kalman filter is implemented to update
the controller model states from the new measurements every
sampling time. Then, an optimization is performed, and the
principle of receding horizon is applied. The set of Equations
4 define the optimal control problem that is solved every time
step for the time period between the initial time ti and the end
of the prediction horizon th.

min
x,u

Z
∑

z=1

∫ th

t=ti

(uz(t)
2 + wδz(t))dt

dx(t)

dt
= f(x(t), u(t), d(t))

xz(t)− δz(t) ≤ xz(t) ≤ xz(t) + δz(t) ∀z ∈ 1, ...,Z

uz(t) ≤ uz(t) ≤ uz(t) ∀z ∈ 1, ...,Z

δz(t) ≥ 0 ∀z ∈ 1, ...,Z

(4a)

(4b)

(4c)

(4d)

(4e)

The optimal control problem is defined in Equations 4, where
uz(t) is the thermal power to zone z that should remain within
the lower uz(t) and upper uz(t) limits of the technical con-
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Figure 5: Open-loop simulation temperatures during training and cross-validation periods. The red curves show the output of the

centralized model for each building zone. The Black curves show the outputs of the BOPTEST emulator model and are considered

as measurements. The dashed vertical lines indicate the end of the training period and beginning of the cross-validation period.

The last subplot shows the ambient temperature.
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Figure 6: Simulation residuals in auto- and cross-validation

for the centralized model identified with different training data

period lengths. Notice that the residuals for all six zones are

grouped in each of the boxplots.

straints; xz(t) is the vector of thermal states of zone z in the
controller model; and δ(t) is the vector of slack variables for
the thermal discomfort, i.e., the allowed deviations from the
lower xz(t) and upper xz(t) comfort bounds. Notice that, even
though discomfort is enabled by Equation 4e, it is penalized
with a weight w that accounts for the different orders of mag-
nitude in the terms of the multi-objective function. This weight
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Figure 7: Simulation residuals in auto- and cross-validation

when using 7 days of training data for both multi-zone mod-

els: centralized and decentralized, as well as for the single-zone

model.

also prioritizes the comfort within the building rather than the
minimization of the energy use. The heat inputs are squared
in the objective function to avoid, to the extent possible, peaks
and abrupt variations in the heat inputs. This facilitates the post-
processing and enhances the overall efficiency of the controller.
Finally, f is the model of the building envelope identified in
Section 4.1 that estimates the evolution of the thermal states for



a given set of inputs u and disturbances d. For more information
on how this optimization problem is solved see [16].
The BOPTEST interface can interact with the emulator model
from an external controller by overwriting a set of predefined
signals. In this emulator, the signals that are accessible to the
external controller are the opening of the valves, and the desired
mass-flow-rate of the pump, as explained in Section 3.2. A con-
siderable effort is required to translate the optimized heat inputs
into the signals sent to the plant actuators. For this purpose,
the outputs of the optimization are post-processed in a subcon-
troller to provide the heat requested in each zone. Specifically,
the pump is switched on/off to work at its nominal value when
heat is requested and a PI controller in each zone valve tracks
the heat input computed by the MPC.
Again in the interest of benchmarking, a comparison of per-
formance is conducted when using a decentralized multi-zone
grey-box model, a single-zone grey-box model, and the in-place
baseline controller of the emulator model. This baseline con-
troller is based on a set of predefined heuristic rules and is rep-
resentative of a typical controller for this type of building. The
controller using the decentralized model optimizes the heat in-
put to each zone, but the internal model structure is different. In
the case where the single-zone is used as controller model, only
the heat input to the overall building is optimized. Then, this
heat is distributed among the zones assuming that the valves in
the building are static and that their opening position provides a
heat distribution proportional to the volume of each individual
zone. Therefore, perfect hydraulic balancing in the multi-zone
building is assumed for this particular case. The BOPTEST
setup allows a fair comparison under the same boundary condi-
tions.
The temperature evolution in each of the six heated zones for
each control strategy is shown in Figure 8. Particularly, Figures
8a, 8b, and 8c show the zone temperatures of the MPC when us-
ing the centralized, decentralized, and single-zone models, re-
spectively; Figure 8d provides the evolution of the zone temper-
atures when the baseline controller is implemented. The most
striking observation from the figures is that the least amount of
comfort violations is achieved with the MPC using the central-
ized model. The centralized model can see the effect of the ther-
mal interaction among the zones and therefore the MPC over-
heats some of the zones to keep all of them above the desired
minimum temperature. On the contrary, the MPC using the
decentralized model tries to maintain the temperature of each
zone as close as possible to the allowed minimum individually,
resulting in many more thermal violations that are particularly
critical if the model overestimates the temperature of any of the
zones leading to severe discomfort in that zone. This is the case
for the living-room, that shows a permanent discomfort of be-
tween 1-2°C, even though the whole heating capacity of this
zone is not entirely exploited.
Interestingly, the results of the MPC using the single-zone
model are particularly well-performant: it presents few comfort
violations compared to the MPC with the decentralized model,
and uses less overheating than the MPC with the centralized
model. The MPC with the single-zone model proves to accu-
rately determine the overall heat required to heat up the build-

ing, most likely because of a confident estimation of the few pa-
rameters of this model. This finding suggests that single-zone
grey-box models are suitable for MPC in buildings. Nonethe-
less, strong assumptions are taken. First, the heat distribution to
each individual zone is perfectly balanced among the zones in
the building which requires a hydraulic balance that may never
be perfect in reality. Moreover, the heat distribution will al-
ways be static unless a sub-controller is implemented increas-
ing the overall control complexity. Second, all zones follow the
same thermal regime meaning that the same zone temperature
set points are followed in all zones and variations would only
be possible again with the aid of a subcontroller. The MPC im-
plementation with a multi-zone model can automatically adjust
the optimal heat distribution towards the zones, even for cases
with different zone temperature set points.
A second co-simulation during the month of November is per-
formed to test the models in a validation period with boundary
conditions that differ more significantly to those of the train-
ing period. Figure 9 shows the ambient temperature and the
global solar horizontal irradiation for the two envisaged cross-
validation months.
A closer inspection of the results is also carried out for both
validation months by quantifying the discomfort and total op-
erational cost. The BOPTEST framework is used to calculate
these key performance indicators according to Equations 5.

D(t0, tf ) =
∑

z∈Z

∫ tf

t0

|δz(t)|dt,

C(t0, tf ) =
∑

i∈ξ

∫ tf

t0

pi(t)Pi(t)dt

(5a)

(5b)

D is the total discomfort in units of Kh; Z is the set of zones
in the multi-zone building; δz(t) is the slack or deviation of the
temperature of zone z at time instant t; C is the total operational
cost; ξ is the set of equipment in the system with an associated
energy use; pi(t) is the price for energy use of equipment i at
time t; and Pi(t) is the instantaneous power use of equipment i.
In our particular case, the two pieces of equipment using energy
are a thermal gas boiler and a hydraulic circulation pump of
the heating distribution circuit. The values of the discomfort
and the total operational cost are computed between the initial
t0 and final tf simulation times. The quantitative results are
shown in Figure 10 with circled markers.
The decentralized approach is the only one that presents higher
discomfort than the baseline controller for both validation
months. This indicates that single-zone and centralized multi-
zone models are more robust in the sense that they are unlikely
to incorporate dangling zones with critical discomfort for not
being properly modelled. The reason is that, in the centralized
and single-zone models, all building states are interconnected
ensuring more likely variations among the foreseen zone tem-
peratures.
The centralized and single-zone MPC controllers show a bet-
ter performance than the baseline controller even though this
building case is not particularly interesting for MPC as it does
not present large thermal inertia and is not exposed to dynamic
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(a) Centralized multi-zone grey-box model into a model predictive controller.
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(b) Decentralized multi-zone grey-box model into a model predictive controller.
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(c) Single-zone grey-box model into a model predictive controller.
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(d) Baseline controller

Figure 8: Temperature evolution in each of the six heated zones for different control strategies.
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Figure 9: Ambient temperature and solar irradiation for the two envisaged cross-validation periods.
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Figure 10: Comparison of control performance.

pricing. Particularly, the MPC using the centralized model in
January makes a 88.47% reduction on the thermal discomfort
when compared to the baseline controller by increasing the cost
only by 13.15%. The validation in November shows similar
results with a thermal discomfort reduction of 88.17% at an
extra cost of 10.77%. The operational cost of the MPC with
the single-zone grey-box model is approximately the same as
the baseline controller and the thermal discomfort is reduced
by 64.24% in January and by 66.67% in November. From the
optimization perspective, the results are favorable to the multi-
zone centralized model as it achieves a lower discomfort which
is more heavily penalized in the objective function through the
weight w at Equation 4a.

4.4. Online updating of parameters

In the previous sections the performance of static controller
models has been studied. The parameters were trained once
and remained constant over the full control period. This could

deteriorate the control performance if the parameters do not
suit to the continuously changing boundary conditions. In this
scenario erratic conclusions could be obtained on the grey-box
building model structures investigated in this paper.
To ensure that this is not the case, the models are made adaptive
over time. The objective is twofold: first, to guarantee that the
achieved conclusions are not dependent on the training period
but only on the model structure. Second, to study the potential
benefit of making these models adaptive. Two cases are envis-
aged: one where the objective function for parameter estima-
tion remains unmodified compared to 1, and another where the
objective function is modified to include aspects of the system
dynamics.

4.4.1. Unmodified objective function

This case uses the same objective function as in Equation 1 to
re-train the model parameters every day at time 00:00 using
the previous day as training data. Notice that the model struc-
ture remains always the same and that the optimized parameters
from the previous day are used as initial guess for every new re-
training.
The adaptation is made for all models of Section 4.3 that were
implemented into an MPC. Exactly the same control parameters
and period are used as in Section 4.3. The performance results
are shown in Figure 10 in the same color for each corresponding
control case but with a square-shaped marker. No significant
performance differences can be highlighted from each control
case when making the models adaptive. Even though the pa-
rameters undergo substantial changes over the control period,
the performance associated to each model structure remains al-
most the same, confirming the conclusions made in Section 4.3.
The controller in January with the single-zone model experi-
ences the largest improvement in the comparison against the
baseline controller, with an extra reduction of 3.65% in thermal
discomfort compared to the single-zone static model.
To demonstrate the large changes in the parameter values, Fig-
ure 11 presents the evolution of the adaptive thermal capaci-
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Figure 11: Evolution of the normalized thermal capacitance values for the air nodes when making an online updating of parameters

for both validation months: January (top) and November (bottom). Two types of results are shown for each of the three model

structures: the results with a squared marker indicate the use of an unmodified objective function; the results with a triangular

marker show the use of a modified objective function introducing a penalty for derivative deviations.



tance parameters of each of the zones normalized with their
initial value. This initial value is the one already used statically
in Section 4.3. Only the air thermal capacitances are presented.
The rest of the parameters do not have a physical meaning and
experience major changes, which makes the comparison more
difficult. The case with unmodified objective is again shown by
a squared marker. It is observed that there are parameters that
experience important changes, ranging from 5% up to 300%
of their original value. These large changes contrast with the
small performance variations seen in Figure 10, indicating that
the control performance is more intensively influenced by the
model structure than by the model parameter values.

4.4.2. Modified objective function

In this case the same daily updating scheme is maintained yet
modifying the objective function for parameter estimation to in-
troduce a penalty for derivative deviations. The intention is to
reward the models that best follow the system dynamics rather
than only get their outputs close to the absolute zone temper-
atures. The resulting objective function is shown in Equation
6

J ′ =

Z
∑

z=1

∫ tf

t0

ez(t)
2 +W

(

dyz(t)

dt
−

dmz(t)

dt

)2

dt (6)

In this objective function, an additional term accounts for the
derivative deviations of the zone model outcome yz(t) with re-
spect to the zone measured evolution mz(z). W is a weight to
balance both, the absolute and derivative terms of the objective.
The resulting optimized parameter values of the model thermal
capacitances are represented by the triangle markers in Figure
11. This graph shows that there is a tendency of the parame-
ters obtained with the modified objective function to reduce the
thermal capacity of the modelled zones as this leads to faster
model reactions and therefore better fitness with the data deriva-
tives. However, this still does not result in a significant im-
provement in control performance when compared to the online
updating of parameters with the unmodified objective function
as illustrated in Figure 10, where the results of the modified
objective function are again shown with a triangle marker.

5. Conclusion
Grey-box models have a large potential for optimal control,
which is reflected in their wide use. The use of physics and data
brings advantages from both sides, in the same way it brings
challenges. This paper proposes a methodology to facilitate the
identification of higher-order grey-box models for multi-zone
buildings following a centralized approach. The methodol-
ogy is implemented for an emulator building of the BOPTEST
framework and compared against a decentralized and a single-
zone model in both simulation and control performance.
The results show a relevant impact of the used training data
length. One week of data is enough to identify the multi-zone
building model. When comparing the models in simulation per-
formance, the centralized model slightly outperforms the de-
centralized model and shows similar accuracy as the single-

zone model.
In control performance the differences are more significant:
the decentralized model is the one exhibiting worst comfort
whereas the centralized model does not overestimate the tem-
perature in any zone which leads to the minimum possible com-
fort violations. The multi-zone centralized model also outper-
forms the single-zone model by achieving lower discomfort that
is more heavily penalized than the cost in the objective function.
However, the single-zone model shows a surprisingly good per-
formance, although a perfect hydraulic balance is assumed.
These results suggest that the thermal interactions among zones
should be modelled for multi-zone buildings, and that single-
zone models are suitable as well if the heat distribution to the
zones is properly balanced.
To test the generality of these findings, a daily online updating
of the parameters is carried out using both, an unmodified ob-
jective function and an objective function that includes penal-
ization for derivative deviations. The small variation in control
performance for all cases endorses the previous conclusions by
proving that the differences come from the model structures,
and not from the parameter values that significantly vary with
the training data.
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