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We develop a method for estimating the Hurst function of a multifractional Brownian motion, which
is an extension of the fractional Brownian motion in the sense that the path regularity can now vary
with time. This method is based on a local estimation of the second-order moment of a unique
discretized filtered path. The effectiveness of our procedure is investigated in a short simulation study.
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1. Introduction

Since the pioneering work of Mandelbrot and Van Ness (1968), self-similar processes and,
in particular, fractional Brownian motion have been widely used to model data that exhibit
long-range dependence and scaling phenomena. However, in certain situations occurring
either in the field of turbulence (Frisch 1999) or in biomechanics (Collins and De Luca
1994), a more flexible model is necessary in order to control the dependence structure
locally and to allow the path regularity to vary with time.

With such a perspective, a stochastic model leading to an important extension of
fractional Brownian motion has recently been developed. This model, called the
multifractional Brownian motion, was obtained in two different ways. Both involve
replacing the Hurst parameter H by a function of time within the two main stochastic
integral representations of fractional Brownian motion. The first representation is a mean
average approach and was proposed by Peltier and Lévy Véhel (1995). This leads to the
process denoted by (W(#))=0. The second one is a spectral approach introduced by Benassi
et al. (1998). This process is denoted by (W>(f)),=0. These processes are defined as follows:

Wh(0) = C{TEK(ZH(t))}I/ZJsz(S)dBl(S), (1)

with
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1
Si(s) = m{“ — 5| OV a(s) — |S|H(t)7l/2ﬂ]foo,0](5)},
itd) — 1
Wa(1) = C{K(2H<t))/2}1/2jR%agm, @

where C is a positive constant, B; and B, are two Brownian motions, and K is the function
defined on 10, 2[ by K(a)=TI(a + 1)sin(an/2)/n. The processes W; and W, are well
defined (i.e. square-integrable) if the function H(-) is Holderian of order 0 <7 <1 on [0, 1]
(the set of such functions is denoted by C7([0, 1])). Under these conditions, Cohen (1999)
proved the equality in distribution of both processes normalized in such a way that

E(W,(1)%) = E(Wa(1)%) = C 2|10,

From now on, a multifractional Brownian motion with Hurst function H(-) and scaling
parameter C, defined by (1) or (2), is denoted by (W (?));=o. As a Gaussian model, this
process can be defined as the only centred Gaussian process, zero at origin and with
covariance function defined for H# € C([0, 1]) and s, ¢ € [0, 1] by

2
E(W ()W (s)) = % (H(0), H(s){[f| O 4 s HOHHO — g — s HOTHO}, - (3)

where g is given by

g(H(1), H(s)) = K(H(1) + H(s)) ' {K(Q2H(1)K(2H(s)}"*. )

The covariance function can easily be obtained using the representation theorem for |u|* (see,
for example, von Bahr and Esseen 1965):

1 — cos(Au)

Aot da,VueR, 0 <a<2.

" = K@

R

Multifractional Brownian motion leads to a more flexible model since it satisfies our
fractional Brownian motion extension conditions.

The main objective of this paper is to develop and study an estimation procedure for
multifractional Brownian motion. This problem was partially examined by Benassi et al.
(1998), where an estimator of a continuously differentiable Hurst function is derived and its
consistency is proved. We seek to extend and complete their work by considering Hoélderian
Hurst functions (of arbitrary order 7 > 0) and by establishing limit theorems associated
with the functional estimators. These results constitute our main contribution and allow us
to construct confidence intervals, confidence bands and parametric tests.

Let us formulate the estimation problem. The identification of such a model is a difficult
task since the increment process of a multifractional Brownian motion is no longer
stationary, no longer a self-similar process, and its path regularity explicitly varies with
time. However, several nice properties of fractional Brownian motion still hold locally for
multifractional Brownian motion. Indeed, assuming that H € C"([0, 1]) and is such that
sup, H(t) < min(l, i), Benassi et al. (1998) proved that
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. W(t+ cu) — W(t
tim (¢ : H) @ L C(Buw)), s (5)
e—0* 2H() weR* ue

where B y;(u) denotes a standard fractional Brownian motion with parameter H(¢) defined
on RT. To estimate the Hurst function H(-) of a multifractional Brownian motion, this result
suggests the local adaptation of global methods used to identify a fractional Brownian
motion. The method we propose is a local version of the quadratic variations method studied
by Istas and Lang (1997), Kent and Wood (1997) and Coeurjolly (2001). It involves first
filtering the observations of a self-similar (or locally self-similar at 0) stationary Gaussian
process to weaken the dependence of the observations, and then estimating the empirical
second-order moment of the filtered series. For the fractional Brownian motion case, this
method exhibits nice properties: it produces estimators having rate of convergence that
achieve Cramér—Rao bounds (for fractional Brownian motion parameters) (Coeurjolly and
Istas 2001) and it is computationaly fast, numerically stable and behaves efficiently with
respect to the maximum likelihood for small sample sizes (Coeurjolly 2000, p. 35).

The rest of this paper is organized as follows. Section 2 introduces some notation and
defines the local H;-variations statistic. We prove some convergence results and apply them
to the identification problem in Section 3. We derive estimators of Holderian Hurst
functions, and prove their consistency and asymptotical normality. When C is assumed to
be known the estimators derived in Coeurjolly (2000) had higher convergence rate, but such
an assumption seems quite unrealistic. Our method is a local one and as such depends on a
neighbourhood size whose choice is discussed in Section 4, where a procedure to estimate
the optimal neighbourhood is proposed and studied. A simulation study is conducted in
Section 5 to explore the qualities of the estimators. Finally, proofs of different results are
presented in Section 6.

2. Local H,-variations of a multifractional Brownian motion

In this section we introduce some notation and derive convergence results for the local
second-order moment of the discrete variations of a multifractional Brownian motion. Later
on, only a path (W;).o,1j of a multifractional Brownian motion with Hurst function H(-)
and scaling coefficient C is considered, and our statistical model corresponds to its
discretized version (W) = (W(i/N))i=1..n. The Hurst function H(-) is assumed to be a
Holderian  function defined on [0,1], of order 0<#np=<1, and such that
sup,H(t) < min(l, n7). Denote by a a filter of length ¢+ 1 and of order p =1, that is, a
vector with real components such that

Zaqqi:O, fori=0,...,p—1,
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Let (V%) be the series obtained by filtering (W) with a, that is,

. ¢ .
al 7 J—4 .
V(N>:§ an(T>’ forj=¢+1,..., N—1.

q=0
For example, when a = (1, —1), (V%) represents the increments (W), and when a =
(1, =2, 1), (V) represents the second-order differences of (W). As Lemma 1 reveals,
filtering the discretized path of a multifractional Brownian motion allows the series to be

made locally stationary and the dependence structure between observations to be destroyed
locally. Now, denote by Vy.(t, a) the following random variable:

1 Ve/NY 1}
Vielt ) uN(r>j€%;(,){E(Vau/N)2) ’ ©
where Vy,.(f) denotes a neighbourhood of ¢ defined, for a parameter ¢ >0, by
Vye(®)={j=¢+1,...,N,|j/N —t| < ¢}, and where vy(?) = #Vy(f). From now on,
we define ¢ as a function of N, say ¢y, such that ¢ = ey — 0 and Ney — 400 as N — +o0.
The neigbourhood Vy () is sure to contain asymptotically an infinite number of points and
to be of length asymptotically zero. More precisely, we suppose the specific form below for
EN:

e =ey = kN “log(NY, withk >0,0<a<1,B€eR. (7

Remark. The statistics Vy((t, a) can be seen as the local H,-variations of a certain Gaussian
process (H, being the second Hermite polynomial defined by H,(f) = #> — 1).

We can now state convergence results for the local H,-variations of a discretized path of
a multifractional Brownian motion (almost surely and in distribution for the topology of
Skorohod).

Proposition 1. (i) Let t € [0, 1], let a be a filter of order p = 1, and let €y be of the form
(7). Then, as N — +o00, we have almost surely

Vne(t, a) — 0. (8)

(i) Let a be a filter of order p > H + 1/4, where H = sup,H(t), and let ey be of the
form (7). Then, as N — +oo, the following convergence in distribution on 10, 1[ holds:

V2NeyVye(-, a) — G, )

where G = {G(1), t €]0, 1[} is a centred Gaussian process with covariance function given
for s, t €10, 1[ by

cov(G(s). Gty — 2 3" Tz
, =7 T 07 (0)

Moreover, the function w°(k), defined for H €10, 1], is given by

(10)
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a 1 / ’
(k) = =5 > agaglg—q' + k7 (11)

7,9'=0

These two results are local versions of the ones obtained for the fractional Brownian
motion case (Coeurjolly 2001, Proposition 1). Note that a filter of order at least 2 ensures
asymptotic normality for all the values of the function H(:). For a filter of order 1 (i.e. the
filter a = (1, —1)), this convergence is available if and only if 0 < H < 3/4.

We now turn our attention to the identification of a multifractional Brownian motion and,
in particular, the estimation of the Hurst function using a method of moments.

3. Applications to the Hurst function estimation

Let us introduce, for m = 1, the filter defined, for i =0, ..., m/, by
P K2 if i = jm,
o, otherwise,

which is nothing more than the filter a dilated m times. Define

.\ 2
3 V(%) for ¢ € [0, 1]. (12)

on(®) ;5

SN,S(ts am) =

The interest of the sequence (a™),,= relies on the fact that 74, (0) = m** 7%,(0). By virtue of
Lemma 1, we have

m

C X 7%,(0)

E(Sne(t, a™)) = N2H(0)

+ O(&" log(N))

C X 7%,(0)

— ,2H(D)
=m NZH()

+ O(&" log(N)),

which can be restated as
log E(Swn (2, a™)) ~ 2H(t)log(m) + log(C X gn..(H(D))), as N — +oo.

Let M =2 be an integer. The above relation suggests estimating H(f) by a simple local
linear regression of Ly (¢, a, M) = (log(Sn (¢, a™))),,—,.._y on (log(m)),._, ., We obtain
a class of estimators, defined for 7 €]0, 1[ by

,,,,,

. A
Hy (t,a, M) = —— Ly (t, a, M), 13
N,E( a ) 2||A||2 N,E( a ) ( )
where A is the vector defined for m =1, ..., M by 4,, = log(m) — M’IZ%:I log(m). This
class is a local version of the one obtained for estimating the Hurst parameter of a non-
standard fractional Brownian motion (Coeurjolly 2001). Note that the functional estimator of
H(-) is clearly independent of the value of C.
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Proposition 2. Let a be a filter of order p > H + 1/4, where H = sup,H(t), M =2 an
integer, and assume ¢y is of the form (7).

(i) Then, as N — +oo, we have, for all t € [0, 1],

bias(Hy (1, a, M)) = O(e' log(N)), Var(I-AIN,g(t, a, M)) = (9(%)
N

and, almost surely, IfIN,S(t, a, M) — H(t). (14)

(ii) Assume ey is of the form (7) with a =1/2n+1) and <0. On 10, I[, the
following convergence in distribution holds:

V2Ney(Hy (-, a, M) — H()) — G, (15)

where G' = {G'(1), t €]0, 1[} is a centred Gaussian process with covariance function
given for t, t' €]0, 1[ by:

cov(G'(1), G'(t")) = 2 >

with 2(Hy, Hy, H3) the M X M matrix whose (m, n)th entry is

I (H®  H{) :
4||A|4A2< + ,H(t),H(t))A, (16)

()
2(Hy, Hy, H3)),,, =2 . mn=1,..., M.
( ,ZZ: w7 (0% (0)°
where
ml  nl
(D =YY agaglmg — ng' + jPY. (17)
q=0 ¢'=0
Remarks.

e Benassi et al. (1998) proved the consistency of H Ne (for the particular filter
(1, =2, 1)) under the condition that &y = (’)(N alog(N)ﬂ) with 0 < a < 1/2.

e The condition ¢ = 1/(2y+ 1) and 8 < 0 in (ii) ensures that 8N7 log(N)?> = o(Ney).

e To estimate H(f) we could have performed a weighted linear regression of Ly (¢, a, M)
on (log(m)),,_; . In this case, it is easy to derive a result similar to Proposition 2 by
locally adapting the corresponding result in Coeurjolly (2000, Proposition 2.5). We have
not done this here, because we believe that the gain is too small with respect to the

computational cost involved in the estimation of the covariance matrix 2.

4. Optimal neighbourhood

We now analyse the asymptotic behaviour of the mean integrated squared error (MISE) of
Hy, () — H(-). Such a criterion is widely used in functional estimation. Thanks to
Proposition 2, it is clear that the MISE (depending on &y) has the following behaviour:
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N

1
MISE(ey) = [E(JO{fIN,S(t) — H(t)}2d1> = o(eiy log(N)2> + 0(%)

Considering a discretized version of the MISE, say

1N/ (i i\
wo =57 (#ne(y) (7))
i=1

it is immediately evident that the asymptotic behaviour of E(Ry(€)) is the same as that of the
MISE. Let &} = argmin,, E(R,(¢,)). From (7), &t = K*~*log(n)’" and one can easily see that

* 1 *x
i

Define also

2
1 and MISE(e%,) = O<N72n/(2n+1) log(N)z/Q”“)),

, 1SN . (i 2. /i i
RN(‘(:):NZHN’S(N> _N;HN’S(N>H(N)'

i=1

Since the function H(-) is independent of &y, we have

argmin E(RYy(ey)) = argmin E(Ry(ex)) = O(N*Z”/@”“) log(N)2/<2"+”).
EN EN

The above asymptotic result suggests a natural procedure for estimating the optimal
neighbourhood. We propose estimating Ry (e) by

R’(e)—IZN:H i\? 2ZN:H Ay i
N _Nl-:l N,e N Nl-:l N, N N,e? N
where Hy > (i/N) is defined by

1

Hy o (i/N) = ——— Hy »(j/N 18
v, (IN) = gy /N)j%;m Ve (/) (18)

and represents the average of H v.2(-), in a neighbourhood of i/N of size (of the order of)
Né3, which is the functional estimation of H(-) calculated with a neighbourhood of the same
size. Now write

ok s D
£y = argmin Ry(ey),
ene€E

where the set £ is defined by

1
E= {(8/\/)]\/;1, ex = kKN “log(N)?, with <a<1,and f < —6}. (19)

2n+1
The set E is assumed to be discrete and to contain at most »” elements, for some p > 0.

The following result proves the almost sure convergence of Hy,+ towards H(7) and
proves its optimality in the sense that the average of the empirical risk calculated with €%,
is equivalent to E(Ry(€%)).
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Proposition 3. (i) For all t € [0, 1], we have almost surely, as N — +00,

Hyg, — H(1). (20)
(ii) As N — +o0,
E(Rv(é3) . )
— =1 e. E(Rv(£%)) = O N~21/Qn+D) 150( N)2/@1+D ) 71
E(Reiey) 0 o E(RWED) ( og(NPr). )

5. A simulation study

To generate a sample path of a standard multifractional Brownian motion discretized at
times i/N,i=1, ..., N, with covariance matrix Cp(), one can s1mp1y extract the square
root of Cry.. Then one generates Z ~» N(0, /) and estimates W := c (2 Z. This method
(which is exact in theory) is sufficiently fast for reasonable sample size N (which is the
case here since we chose N = 2500). For larger N, it becomes expensive in time and
memory, and is numerically unstable. We consider two types of Hurst function: a linear
function and a logistic one:

Hi(f)=0.1+ (0.9 —0.1), (22)
Hy(1) = 0.3+ 0.3/(1 + exp(—100( — 0.7))). (23)

We generate R = 50 series of length N = 2500. A Daubechies filter of order 4, a = Db4
(with two zero moments) is used to define H Ne- We fix the number of filters to M = 5. Let
us concentrate first on the optimal neighbourhood. For the sake of simplicity, we choose &
such that Ne is an integer. Define 2 = Ne, h* = Ne* and h* = Né*. Table 1 summarizes the
different estimates of h*, i*, E(Ry(¢*)) and E(R)\(¢%)).

Then we applied the previous procedure for each of the R = 50 paths to the estimation of
the Hurst function. Figure 1 displays the empirical distribution of the functional estimator
together with the true function and the estimated confidence bands (at a confidence level
1 —a =0.95).

6. Proofs

6.1. Local quadratic variations

Before analysing the asymptotic behaviour of Vy,(t, a), we need the following lemma
concerning the correlation structure of (V¢).

Lemma 1. Let a be a filter of order p = 1, let t, t' € [0, 1], let j € Vy (1), j' € Vn(t') and
let € = ey be of the form (7).
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Table 1. Theoretical and estimated optimal empirical windows and associated risks
(E denotes the empirical mean based on the 50 paths generated)

h* E(h") E(Ry(e") E(Ry(€")
H(1) linear 203 239.76 3.88 X 1073 3.631 X 1073
H(?) logistic 192 226 4.17 X 1073 3.91 x 1073

(1) We have, as N — +o0,

a ] a -], C2 a ! ¥
[E(V (N) 4 (ﬁ)) = yaoram T2 w20 =) X {1+ 0N log(N)},  (24)

where

1 ,
4, (k) = -3 Z agarlq —q + kI*".
4:4'=0

(1) Define Z(j) = % We have

(202 = 100 ) o g (25)
{”7{(;)(0)”‘;1(:')(0)}

(iii) Moreover, as k — +oo, we have m4,(k) = O(|k|*!1=2r), VH €]0, 1[.

Proof. (i) To compute the covariance function, the stochastic representation of a multi-
fractional Brownian motion is used. For the sake of simplicity, let us denote
C'(t) = C X K(2H(t))'/?/+/2. From (2) and the change of variables 1 = Nu, we obtain

(%) (%)

i i C'((j—q/N)C'(j —q)/N)
_ (elJ—u _ i(j'—qu _
"JRjz;aqaq(e DIC 1) INa[FCG-a o B
q.9

— A+ B,

where
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Figure 1. Empirical distributions for the functional estimators of two Hurst functions defined by (22)

and (23), and theoretical discretized confidence bands to the level 1 —a = 0.95.
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4 ’ 1ot
L o C'(HC'(t") du
_ (ellJ—u _ i(j'—q")u _
4= JR Z agay (e 1)(e 1) NHOFH@) [y [HOFH@)T?

4,9'=0
4 —H(n—H(1")
- g Si—ghu [N
BfJR Zoaqaq,(eu qu 1)(e i(j'—q")u 1)7|M‘H(t)+ﬁ(t')+l
9.9'=

C'((G—q/N)C((' —q')/N) N
X {| Nuu =] W HG =) M= = H() C'(HC(#) ¢ du.

Since the filter is of order at least 1,

! /
(el J—@u —i(j'=qu _ _ i(j—J'+q'—qu ,
g aqay (e 1) (e 1) = e agay,
4.94'=0 4.9'=0

which allows us to rewrite A4 as

4
A= NHOHOC(C () Y agay du

J el(J=J'+4'—qu
4,9'=0 R |

u|H(t)+H(t’)+1

l
— H(H)—H(t 2 ’ .y .| H H(t'
:_%N o= e Z agaglg —q' +j —Jl O+ H(E)
4.94'=0

CZ a . .
- WﬂH(t)/ZJrH(t')/z(J =)
Since H € C"([0, 1]),

‘Nu|H((j*‘])/NFH(I)JrH((j'*fI')/N)*H(l') =14 0(87\] 10g(|Nu|)), (26)

c (JT") — () +OE) and C (’T") — O + O, @7)

Equations (26) and (27) enable the following upper bound to be obtained for B:

c? B .
B < NH(t)+H(t')”H(z)/2+H(t')/2(J _1)0(87\/ log(N))

) o ¢ el(J—J'"+q' —qu ,
+ C (t)C (f ) Z aqaqf (JRW log(|u|)du) X O(EN).
4,9'=0

In a neighbourhood of 0,

| (] j’ ’ ,q)ll (‘ |) (| |2 ”() ”( r) (| |))
: ; aq |u|H(t)+H(f,)+l g g :
q.9

Thus we can conclude that
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. . -r C2 ]

(i1)) The proof is trivial.

(iii) We refer the reader to Coeurjolly (2001, Lemma 1) for the proof of the asymptotic

expansion of %,(k).

Proof of Proposition 1(i). Let us define

. VG N)

2())=—""—7
D =BG w7

and let H, the second Hermite polynomial defined by H,(u) = u? — 1. We obtain

1
E(Vne(t, @) = > E(HAZ()HoAZ()),

2
oN( ;S

From Lemma 1(ii),
E(Ha(Z( ) Ha(Z( ') = 2E(Z( j)Z(j'»z

”H(z)(J

1 1 i .
”H(;)(O) { + O( og(N))}, as N — 400

Thus, as N — +o0,

ﬂ]—[(;)(]
Ve
E(Ve(t, a)) ~5 (t)zz ﬂ‘fq(t)(o)

(J)?
(uN< 1 —|j |> 2.0

1 ﬂ‘;-[(t)(j)z
= O .
(UN ) U\;UNU) i (0

Lemma 1 gives the upper bound 7%, ,( /) < O(] j|*""=*7). Thus,
[E(VN,&(t’ a)2)

T N (e

O<1>, if p>H()+1/4 (e if p=2or p=1and H(t) <3/4),
vn(1)
ooty i
N O< o) > if p=1and H(1)=3/4,
1 .
O(,wmm)a if p=1and H(t) > 3/4.

O

(28)
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Therefore, for all p=1, and for all H(t)€]0, 1[, there exists a > 1 such that
E(Vne(t, a)?) = O(wn(t)~*). We adapt a result of Doob (1953, p. 492) giving a condition
for which the empirical mean of a stationary (centred discretized) process tends almost surely
to 0. Let Vyy ) = Ve(t, a). , 72

Let o' € R and m €N be such that aa’ >1 and vy(f) > m*. We have ECV ()
= O(m™**). If (Wn),,=, denotes the sequence of integers defined by w,, = [m* ]+ 1, then,
for all € >0,

K?* 1

e2 maa’ !

P(|Vw,| >¢€) <

From the Borel-Cantelli lemma, we have, as m — +oo, I7Wm — 0 almost surely.
Furthermore,

VUV(’) -

VWm

2 1 Wontl 2
) <.t (Z HZ(Z(J)))
" J= W

Wm
E max —
W <SUN(DSWpi1 vn(t)

2

2 . ”l;[(t)(j, =)
=103 Wit =W — | J)———5—
W2 Z + |1 ﬂH(r)(O)z

[JISWmi1—=Wn

K (o~ _ K

s T <

2 2 2
w2 wi, m

K7 1
>e) =S ——,
) &2 m?

Therefore, for all € > 0,

Vi

P max V. -
(wmsuN(z)sz VO on(t)

and by Borel—Cantelli lemma

— w —
Vowy — ﬁ Vi, — 0, almost surely as m — —+o0.

Thus, we have the almost sure convergence of VUN(,) since I7nm — 0 almost surely and since
vy(t) > m® .
Finally, from previous computations, note that if p > H(f) + 1/4, then

2 T (J =)

s as N — +o0.
UN(t) jEZ ﬂ‘;—[([)(o)z

E(Vie(t, a)) ~

O
Lemma 2. (i) If p > H(t) + 1 /4, the following convergence in distribution holds:
Von(OVy(t, a) ~ N(0, a2(H(D), @), (29)

with
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A (H(D), @) =2 I T

30
ez LU G0

(i) Let d > 1 and let t,, ..., ty € [0, 1]. Then if p > H + 1/4, with H = sup,H(t), we
have

(Vort Vi, a). ... VoVt @) =5 GG, . 600, (G1)

where (G(ty), ..., G(td))T is a centred Gaussian vector, such that, for all i, j € {1, ..., d},

2
/2+ H(t; )/2( k)

cov(G(1), G(1))) =2 ’j’) /
( ! keZZ 11y O,)(0) -

Proof. (i) Recall that Z(j) denotes the random variable V¢(j/N)/E(V“(j/N)*)"/?. From
Theorem 1 of Breuer and Major (1983, p. 429) adapted to non-stationary Gaussian vectors,
the necessary condition to obtain an asymptotic normality result for Vy (¢, a) is the squared
summability of E((j)Z(j+ j')), for all j/ € Z. But

D EZ(HZG + DY~ YO jO), as N — e
Jjez Jjez

The result is obtained using the fact that p > H(¢) + 1/4.

(ii) We treat the case d =2, since the case d > 2 can easily be derived. Define for
A, u € R and 1, 1, €10, 1[, the random variable Ty (4, ) = AV N (t1, a) + uVu (12, a).
Note that

1
Ty (L, 1) = AHN(Z Hy(Z(j
vl 1) UNUl)Aheva;m 220+ (t)%;m)ﬂ 2Z()2))
Ni< Z () Hy(Z( r)) + Z #U(fz)Hz(Z(jz))>
UNn J1EVN (1) J2€EVN (12)

where v(f) = limy_.,,Un(21)/Uy. Now rewrite Ty (4, #) as a simple sum:

vn(t)+on(t2)

Twelhs ) = o~ > gz,

j=1
where
= { (Wne(t)) ), iflsjs (),
(VNg(tz))/ oa(t)? if vy(t) <j<on(t))+on(ta),
and

() = {lU(ll)Hz(’), if 1 <j=<uvn(n)
2 uo(t)Hy()  if on(h) < j < on(t) + oy(t2).
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The function g; clearly has Hermite rank 2. Moreover, for j, j5 € {1, ..., vy(t1) + vn(12)}
(U < Jj¥), it follows from Lemma 1(ii) that
E(Z(j1)Z()3))
n.a Sk X
H(n;(]z J1) _ O(‘j;k _j;i<|2H(t|)72p)’ if jik,j; < on(t),
Th,)(0)
.7'[” O
v ) Tl 200 o e -2 if 5, 75 > ow(n),
— Tir1)(0)

otherwise.

T (J5 =)

(t1)/2+ H(ty)/2\ /2 1 . . _

1 2 7 _ O(|];k _];le(tl)+H(t2) Zp)’
{50 O30, }

Thus, for all j € {1, ..., vy(t;) + Un(t2)}, and since p > H + 1/4, we obtain

vy(t)+on(t)

E(Z(j%)2(j"%) = o).

j=1
From Theorem 1 of Breuer and Major (1983, p. 429) adapted to non-stationary Gaussieﬁm
vectors, there exists o2(#1, t;) such that, for all A, u€R, NeTy.A, u)—
N(0, 62(t1, 12)). As a conclusion, the vector (vox(i)V.e(ti, @), VON()Vie(t))' is

asymptotically Gaussian. Finally, from previous computations,

T el
cov(\/yN(tl)VNﬁ(tl, ), \/ON()V ot a)) PSPt QLT 52

57 T O, 0) -

O
To obtain the convergence in distribution of Vy (-, a) for the topology of Skorohod, we
need the following inequality, ensuring a tightness criterion.

Lemma 3. Let a be a filter of order p > H + 1/4 where H = sup,H(t), let r be an odd
integer greater than 4 and let t,t' € Iy,, = [{/N + ey, (N —1)/N —¢en]. For t € Iy.,,
let vy(t) =2Ney. Then

[E((zNeN)’/Z(VN,S(t, a)— Vyelt', a))r) = O(|t— 1'|™). (33)

Proof. Let vy = 2Ney. Let r = 4 be an integer and let t* = [N(¢ — #)]. Then

. R . U
[E(Uzv/z(VN,e(l, a) — Ve(t', a)) ) = U,/z[E{ Z Hy(Z())) — Ho(Z(j+ t ))}
N jEVN,s(I)

1 r
=—75 > > (DICIE(HAZ(y + 1) ... HA(Z(jg + (DHAZgs1) - HAZ(ji)).-

P
UN jiremjr =0

From the diagram formula (see, for example, Taqqu 1975),
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E(H(Z(jy + 1) ... Ho(Z(jg + ENHAZ(jgi1)) - - HAZ( ) = T1 + Ts,

where 7 (7T,) represents the terms obtained by the product of covariances (terms obtained by
the product of covariances to the power 2).
Up to permutations on indices, each term of 7 can be rewritten as

Ty 5 =EZG+ 202+ 1) - E(ZGgr + )2+ 1) - B2 ) Z2()
(34)

From Lemma 1, there exists K > 0, N; € N*, such that, for all N = Ny,

r/2 Z Tll aaaaa Jr

UN JlseeesJr

,/2 Z Ty (J2 = J1) -+ Ty (g _jq—l)ﬂ(;f(,)/z+11(,')/z(jq+1 —Jq) -
UN Jrvsir

- T Jr = Fr=0T b0 24 12 (it = Jr)
z/z > {Z”H(O/zw(rvz(/l — )T (J2 = 11)} e = e (35)
J2sesfr

Let A4;, A and 43 be the covariance matrices related to the operators nim), ﬂ‘;,(t,) and
T 24+ H(1)/20 and let O, be the set of squared matrices with terms satisfying
[(A)jr] < (1 + |k —j)7° a>0,c>0.

It is clear that 4y, 4, and 43 € O, »—27> Where H = sup, H(t). Moreover, Jaffard (1990) has
proved that Q, is an algebra, for a > 1. Thus,

A4 €0y, o Vi j=1,2,3

Iterating this argument leads to the existence of a matrix B € O, Py such that

r/2 Z T/l ,,,,, ]r r/2 Z(B)/’f’ r/2 1’

UN JlseesJr
Consequently,
r/Z > Z( 1)7CY X Ty — 0, as (N, &) — (400, 0). (36)
N Jlseesfr =

Turning now to the diagram formula and Lemma 1(ii), there exists K > 0, N, € N* such
that, for all N = N,
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V/ZZ( 1)7C? Z T, < KZ( 17ce

Uy =0  ji..
r H(r)  H()\' o o
XD {Alnaf(i'r q)S(z ) NSO N S
i=0,..., m'm(({ r—q)
gq—1 pair
(37
where

S(H) =Y _a4(j)> and Ny=(a—1)X(a—=3)X...x3xL
JjeL

Using (36) and (37), we verify that

, r/2
E(03 (Ve @) = Viult', @)") = 0{ (S(H(t)) 28 <%t) + H;’ )) + S(H(t’))> }

(38)

Let

U(t, t') = S(H(1)) — 28 (%t) H( )) + S(H(t")).

Using (11), we obtain:

u(, r)——Z ST ag - ag(lqn — g2+ IO

]GZ q15e-q4

XA{(q1 — a2+ jllgs — qa + DO — 1+ (lg1 — g2+ jl g5 — qa + jDTOHO — 1}

=—Z S ay e ag g — a2+ jl1gs — ga + ) OO
JEZ q15--5q4

X A{|t = ¢'Pog(lq1 — g2 + jl gz — qa + jD*(1 + o(1))}

= |t =P O(|jPHORIOA log(1 + | ).
jez

The series converges if p > H + 1/4. Consequently, U(¢, ') = O(|t — ¢'|*). O
Proof of Proposition 1(ii). Let r =2(1 + [1/n]). It follows from Lemma 3 that
E(@Nen) 2 (Vralt, @) = Viult's @) ) = Ot = 1]").

By Lemma 2 and since 717 > 1, we obtain the convergence in distribution, for the topology of
Skorohod, of Vy (-, a) towards the Gaussian process & with covariance function defined by
(10). O
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6.2. Identification of multifractional Brownian motion

For ease of presentation, let

Sye(t, @)
(t, @) = Ly o(t, @) — Xya(t) = log | N2H®D 2N D )
EN,é( s a) N,E( 5 a) Ma( ) Og< Czﬂ‘}{(t)(())

Proof of Proposition 2(i). Note that

t

Hy o (t, a, M) — H(t) = W(&N,s(h a™) e, > (39)
and that, almost surely
Sye(t, a™
n2o Sxells @) Vie(t, a™) + O(€% log(N)). (40)

C27%;,,(0)
From Proposition 1(i), we have that almost surely

oo Syt 4
C2%,(0)

therefore &y (¢, a™) 2%, 0, which implies the almost sure convergence of H Ne(t, a, M)
towards H(z). Observe, moreover, that E(Ey.(z, a™)) = O£ log(N)), so [E(I:I Nee
(1, a, M) — H(1)) = O(¢; log(N)), then that var(&y (1, a™) = O(vy()7'), and so var
(Hyo(t, a, M)) = O(Ney)™). 0

Before proving the convergence in distribution, we examine the finite-dimensional
convergence of our estimators.

Lemma 4. Let a be a filter of order p > H +1/4, M = 2 an integer and assume that ¢y is
of the form (7) with a = 1/2n+ 1) and f < 0. Let d = 1 and let t,, ..., ty € [0, 1]. Then,
writing By (1) = Hy (1, a, M) — H(7), we have

T 4
( UN(tls a, M)BN,[A{(tl)’ R UN(tda a, M)BN’[:[(td)) - (G,(t1)5 R G’(td))Ta (41)
where (G'(ty), ..., G’(td))T is a centred Gaussian vector such that, for all i, j, €
{1, ..., d},

cov(G'(1)), G'(1)) :4||A||4 > + 5

with Z(Hy, Hy, H3) the M X M matrix whose (m, n)th entry is

1 ATZ<H(n) H(t,-)’ Hr). H(tj)>A,

75 O
(S(H\, Hay H3)) 0y =2~ !

—_— mn=1,..., M,
ye 7, (O)Jr‘},3 (0)

with
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ml nl

(D= agagimg —nq' + jP,

4=0 ¢'=0

and where A is the vector defined for m =1, ..., M by A,, = log(m) — M’IZZZI log(m).

Proof. Let us concentrate on the case d = 1. From (40), we have almost surely

Ene(t, a™) = log (N“’“) %) = Vye(t, @")(1 + o(1)) + Ol Tog(N).  (42)
(s

Since @ =1/2y+1) and <0, it follows from (42) that /oy(H)En.(2, a™) tends in
distribution to the same limit as the random variable \/Un(?, a™)Vy(t, a™) and from
Coeurjolly (2001, Proposition 3) and Lemma 2(i) we obtain

(VoD Enelt, a™mor.an)” —— N(O, S(H(1), H(1), H(1)), (43)
where 2(H(t), H(t), H(t)) is the M X M matrix whose (m, n)th entry is
(Z(H(1), H(t), H(1))) )y = hm \/UN(t VONOEV N (8, a™)Vy (2, a™))

L(J)’ m,n:l,...,M,
T (O ,(0)
with
ml  nl
LA OEDY Z agay|mg —ng' + j*".
9=0 ¢'=

The results (39) and (43) ensure that /vy (2)(H ~.e(t, a) — H(t)) is asymptotically Gaussian.

The case d > 1 is easily deduced using Lemma 2(ii), which implies the finite-
dimensional Gaussian convergence of &y (-, @). We end with the following computation for
t, " €[0, 1]:

cov(+/ UN(t){I:IN,,S(t, a, M) — H(1)}, m{ﬁ]\/,g(t’, a, M) — H()})
T
~ TAFEV OV it o Vst a TP Vil a4

1 1o(H()  H() ,
H‘*I\AII“/1 2( +— s H(), H(¢') |4, as N —+oo.

Proof of Proposition 2(ii). Let r = 4 be an integer, and let ¢, t' €]0, 1[. By (42), we have
almost surely

(Eve(t, a™) —Ene(t', a™) = (Pne(t, a™) — Vi e(t', a™)(1 + o(1)) + O(ey log(N)).  (44)
Thus, if ey is such that « = 1/(2y + 1) and 8 < 0, we obtain
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E(2Nen) " {Ene(t, a™) = Ene(t', a™)}) = OE@Nen) Vet a”) = Vie(t's a™)}).
Choosing r large enough, we obtain, using Lemma 3, the convergence in distribution on the
range 10, 1[ of /2Nen&En (-, a™), and then of /2Ney(Hy (-, a, M) — H(-)) using (39).

O
Proof of Proposition 3. (i) In fact it is sufficient to prove that, for all # € [0, 1], almost surely

sup | Hy«(1)] — 0, as N — +o0.

ENEE

Let >0 and k£ =1 be an integer. We have, from (19) and from Chebyshev’s inequality,

[F"(sup Hy () — H(t)| = A) < n” sup P('F[N,g(t) — H(1)| = /1)
eyeEE eENEE
< s E((ﬁN,g(t) - H(t))2k>. 45)

Using (44) and the fact that « = 1/(2 4 1) and < 0, we have

E((Av () — H)™) = O(ﬁ>

Choosing k sufficiently large leads to the summability of >°, P(supe e x| Hy () — H(1)| = )
and to the result, using the Borel—Cantelli lemma.
(ii) Since €% = argminsNeElAQ}v(eN) and since ¢} € E, we have almost surely R}v(éjv)
< Ry(e%) and so E(Ry(£%)) < E(Ry(e%)). Now
[E(Rv(€3)) — ERv (e _ E(RN(€})) — E(Rn(e}y)) _ E(RW(ER)) — E(RN ()
E(Rn(e)) E(Rn(e)) E(Rn(e%))

< ERN(eR)) — E(Ry(e}y)) + E(Ry(e ) — E(R( N))
E(Rn (7))

since E(RN(e%)) — E(Ry(e%) = 0. Finally, we have

[ECRN(E3) — ERy (e _ - |E(Ry(en) — RN(SN))‘
E(Ry(e3)) exeE E(Rn(e%))

For ey € E, there exists Ny € N such that, for all N = Ny,

E(R(en) — Ri(en)) = NZO: <<HW (N> - (zlv»HN (JIVD
o)

(46)

Z\N

Z\L

Moreover,
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~ i i N 1 ~ FAYE J
(e (5) () = o, 2, e () ()

v AN
+#VN,Ez<i/N>,.€V§,./N)<H(N) H<N>>

- 0<s§y 1og(N)) + O(eiy) - O(SZN’? 10g(N)>. (48)
Combining (47) and (48), we obtain

E(Ri(en) — Riv(ew))

-0 (N277/(277+1)72a17 log(N)l”ﬂ”’z/(z”“)) '

E(Rv(e%))
Since 0 < =<1, the proof is achieved using the definition of the set £ (see (19), and
(46)). O
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