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Abstract
Complex systems can significantly benefit from condition monitoring and diagnosis to
optimize operational availability and safety. However, for most complex systems, multi-fault
diagnosis is a challenging issue, as fault-related components are often too close in the
frequency domain to be easily identified. In this paper, the interpolated discrete Fourier
transform (IpDFT) with maximum sidelobe decay windows is investigated for machinery fault
feature identification. A novel identification method called the zoom IpDFT is proposed,
which combines the idea of local frequency band zooming-in with the IpDFT and
demonstrates high accuracy and frequency resolution in signal parameter estimation when
different characteristic frequencies are very close. Simulation and a case study on rolling
element bearing vibration data indicate that the proposed zoom IpDFT based on multiple
modulations has better capability to identify characteristic components than do traditional
methods, including fast Fourier transform (FFT) and zoom FFT.

Keywords: prognostics and health management, interpolated DFT, zoom IpDFT, Fourier
transform, characteristic component identification

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rapid development of complex systems such as power
plants, high-speed transportation vehicles and high-precision
machining centers has been emphasizing the need for condition
monitoring and diagnosis so as to maximize operational
availability and safety [1]. Therefore, research on prognostics
and health management (PHM) has attracted the interest of
industry and academia due to its great potential to address
these needs [2]. In the process of PHM implementation,
data preprocessing and feature extraction are the fundamental

4 Author to whom any correspondence should be addressed.

modules, since their outputs are used for system health
assessment and prediction [2, 3]. However, the complicated
structures and working conditions of complex systems may
result in multiple faults during their operation that produce
multi-frequency signals and lead to a challenging problem
called multi-fault diagnosis. In these situations, frequency
aliasing arises, and fault-related components may be too close
in the frequency domain to be effectively identified for further
feature extraction and diagnosis.

The identification of characteristic components is
fundamental and important for complex system feature
extraction and health assessment [4]. Along with the
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development of signal processing, more and more techniques
have been introduced to diagnose faults in machinery
[5]. The methods used for characteristic component
identification or fault character extraction usually can be
classified into frequency domain and time domain methods.
Time domain methods provide high frequency selectivity
and high estimation accuracy, but require computation-
intensive algorithms to determine the optimal model order
[6]. Frequency domain methods use the discrete Fourier
transform (DFT) to calculate the spectrum and estimate the
frequency parameters of a signal. On account of some
inherent drawbacks, the traditional DFT-based approaches
have some restrictions in practice. For example, it is hard to
obtain accurate frequency, amplitude and phase information
about synchronous vibration and its harmonic or subharmonic
components because of the leakage and the picket-fence effect
of the DFT spectrum [7].

In order to enhance the efficiency and accuracy of fault
diagnosis, it is crucial to improve the estimation accuracy of
amplitude, frequency and phase of signal for feature extraction
in the frequency domain. The method used to deal with
this problem is called ‘windowing’. One frequency domain
method often used for estimating multi-frequency signal
parameters under noncoherent sampling is the interpolated
DFT (IpDFT) method, which provides very accurate parameter
estimates. For example, Ramos and Serra [8] compared the
frequency algorithms of IpDFT, Chirp-Z transform, Hilbert
transform, STFT, CWT, MUSIC, Sine-fit and Kalman filtering.
They determined that the IpDFT algorithm is the most
precise, accurate and fastest algorithm. Rife and Vincent
[9] proposed a specific approach, called the interpolated
fast Fourier transform (IFFT), to dramatically improve the
accuracy of the FFT spectrum. Moreover, Jain et al [10]
proposed an approximate interpolation algorithm to obtain
accurate amplitude, phase and frequency information when
a rectangular window is employed. Shi et al [11] proposed the
general IFFT for diagnosing faults in large rotating machinery,
but the algorithm is very complicated.

The performance of the IpDFT method depends on the
window used [12], and it should be noted that the formulas for
estimating the parameters of a multi-frequency signal are very
complicated for most windows. Among all these windows, the
maximum sidelobe decay windows are frequently employed
in the IpDFT method. The IpDFT method with maximum
sidelobe decay windows leads to very accurate estimates, since
the parameters of a multi-frequency signal can be estimated by
analytical formulas [13, 14]. Belega and Dallet [15] proposed
accurate and simple formulas for estimating the variances of
the estimators of the parameters of a multi-frequency signal
obtained by the IpDFT method with maximum sidelobe decay
windows.

The goal of this paper is to investigate the potential
of the IpDFT with maximum sidelobe decay windows in
machinery (e.g., gearbox, bearing) feature extraction and
condition monitoring. An IpDFT-based method combining
the idea of local frequency band zooming-in (i.e. the zoom
IpDFT) is proposed in this research to further improve the
identification capability of multiple adjacent characteristic

components in the frequency domain, which is a challenging
issue for complex system condition monitoring and PHM.

The organization of this paper is as follows. Section 2
gives a brief description of the IpDFT. A novel method of
zoom IpDFT based on multiple modulations is proposed in
section 3 to solve the problem of high frequency resolution in
fault characteristic frequency identification. Section 4 further
investigates and validates the proposed method with rolling
element bearing vibration data. Conclusions are summarized
in section 5.

2. The interpolated DFT

2.1. The interpolated DFT with maximum sidelobe decay
windows

The maximum sidelobe decay windows are the cosine
windows. An H-term (H > 1) maximum sidelobe decay
window has the most rapidly decaying sidelobes, equal to
6(2H − 1) dB/octave. It can be defined as

w(m) =
H−1∑
h=0

(−1)hah cos
(

2πh
m

M

)
, m = 0, 1, . . . ,M − 1

(1)

where ah are the coefficients of the H-term maximum sidelobe
decay window [15] and M is the number of samples. ah can
be expressed as

a0 = CH−1
2H−2

22H−2
, ah = CH−h−1

2H−2

22H−3
, h = 1, 2, . . . , H − 1 (2)

where C
p
m = m!

(m−p)!p! .

The discrete-time Fourier transform (DTFT) of w(m) is
given by

W(λ) = sin(πλ)e−jπλej π
M

λ

H−1∑
h=0

(−1)h0.5ah

×
[

e−j π
M

λ

sin π
M

(λ − h)
+

ej π
M

λ

sin π
M

(λ + h)

]
, λ ∈ [0,M). (3)

For M � 1, the DTFT of the H-term maximum sidelobe decay
window can be written as [8]

W(λ) = M sin(πλ)

22H−2πλ
e−jπλej π

M
λ (2H − 2)!∏H−1

h=1 (h2 − λ2)
. (4)

Now, let us consider a multi-frequency signal x(t) with a
sampling frequency fs

x(m) = A0 +
K∑

k=1

Ak sin

(
2π

fk

fs

m + ϕk

)
,

m = 0, 1, . . . ,M − 1 (5)

where K is the number of frequency components; Ak , fk and
ϕk are, respectively, the amplitude, frequency and phase of
the kth component; A0 is the offset; and M is the number
of samples. In order to reduce the leakage error, x(m) is
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multiplied by a suitable window sequence w(m). Thus, the
DFT of the resulting signal xw = x(m)w(m) is given by

XW(λ) = A0W(λ)

+
K∑

k=1

Ak

2j
[W(λ − λk)e

jϕk − W(λ + λk)e
−jϕk ], λ ∈ [0,M)

(6)

where λ represents the normalized frequency expressed in bins,
W(λ) is the DTFT of w(m) and λk = fk

f0
, f0 = fs

M
.

If W(λ) exhibits sidelobes at a negligible level and if the
minimum distance between spectral lines is larger than the
main lobe band width (MLBW) expressed in bins, then for
λ ∼= λk , equation (6) becomes

XW(λ) ∼= Ak

2j
W(λ − λk)e

jϕk , k = 1, 2, . . . , K. (7)

The relationship between the frequencies fk and fs is given by

fk

fs

= λk

M
= lk + δk

M
, k = 1, 2, . . . , K (8)

where lk and δk are, respectively, the integer part and the
fractional part of λk with δk ∈ [−0.5, 0.5); lk is the index of
the largest discrete spectrum module corresponding to the kth
component. The IpDFT method is used to estimate δk . For
this purpose, αk is defined as

αk =

⎧⎪⎪⎨
⎪⎪⎩

|XW(lk)|
|XW(lk − 1)| , if − 0.5 � δk < 0

|XW(lk + 1)|
|XW(lk)| , if 0 � δk < 0.5

. (9)

From the above expression it follows that δk can be estimated
by

δ̂k
∼=

⎧⎪⎪⎨
⎪⎪⎩

(H − 1)αk − H

αk + 1
, if − 0.5 � δk < 0

Hαk − H + 1

αk + 1
, if 0 � δk < 0.5

. (10)

From (8) and (10) the frequency of the kth component can be
estimated by

f̂ k
∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
lk +

(H − 1)αk − H

αk + 1

)
f0, if − 0.5 � δk < 0

(
lk +

Hαk − H + 1

αk + 1

)
f0, if 0 � δk < 0.5.

(11)

Using (4) and (7), the amplitude of the kth component can be
estimated by

Âk = 22H−1πδk|XW(lk)|
M sin(πδk)(2H − 2)!

H−1∏
h=1

(
h2 − δ2

k

)
. (12)

From an accurate estimation of the phase associated with the
kth component, equation (7) is used in which the window’s
DTFT is computed by (13)

ϕ̂k = phase{XW(lk)} − πδk + π
δk

M
− π

2
sign(δk)

− phase{W0(−δk)} (13)

Table 1. Estimation of the parameters by the IpDFT.

Frequency (Hz) Amplitude Phase

The first f̂ 1 = 20.2869 Â1 = 1.5004 ϕ̂1 = 0.2898
component
The second f̂ 2 = 90.7004 Â2 = 2.0000 ϕ̂2 = 0.4976
component
The third f̂ 3 = 171.7000 Â3 = 1.7000 ϕ̂3 = 0.1002
component

where

W0(λ) =
H−1∑
h=0

(−1)h0.5ah

[
e−j π

M
λ

sin π
M

(λ − h)
+

ej π
M

λ

sin π
M

(λ + h)

]
,

λ ∈ [0,M)

sign(·) is the sign function, and

sign(δk) =
{−1, if − 0.5 � δk < 0

1, if 0 � δk < 0.5

2.2. Investigation of the IpDFT using a simulation example

In order to explore the accurate parameter estimation of a
multi-frequency signal by the IpDFT method with maximum
sidelobe decay windows, a simulated time domain signal
containing three components is analyzed as follows:

x(n) =
3∑

k=1

Ak sin

(
2πn

fk

fs

+ ϕk

)
+ rand(s),

n = 0, 1, . . . , N − 1 (14)

where A1 = 1.5, f1 = 20.3 Hz, ϕ1 = 0.3, A2 = 2, f2 =
90.7 Hz, ϕ2 = 0.5, A3 = 1.7, f3 = 171.7 Hz, ϕ3 = 0.1 and
rand(s) denotes normally distributed white noise. The original
sampling frequency is fs = 4096 Hz and the total number
of samples is N = 512. Table 1 shows the estimation of
the parameters of x(t) by the IpDFT method with maximum
sidelobe decay windows; f̂ k , Âk and ϕ̂k are the frequency,
amplitude and phase estimations of the signal, respectively.
The results in table 1 indicate that the IpDFT can estimate
the parameters of the signal with a high degree of accuracy
(as shown in table 1) through comparison with the actual
parameters (i.e. fk , Ak and ϕk) of the signal.

Generally, an important index of the spectrum analysis is
frequency resolution, �f , i.e. the minimum identifiable space
between two frequencies in the spectrum. The relationship
between frequency resolution, �f , sampling frequency, fs ,
sampling period, T , and the number of samples, N , can be
expressed as follows:

�f = fs

N
= 1

T N
. (15)

The FFT algorithm is a very commonly used spectrum analysis
method. In the FFT method, frequency resolution, �f , has a
strong impact on the accuracy of spectrum analysis. Take the
second component of the simulated signal described by (14)
as an example. That is, x2(n) = A2 sin(2πn

f2

fs
+ ϕ2), n =

0, 1, . . . , N −1. Let the number of samples N be 42, 128, 256,
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Figure 1. Comparison of bias of the frequency estimation.

512, 1024, 2048 and 4096. Define the bias of the frequency
estimation as

bias =
∣∣∣∣∣
f2 − f̂ 2

f2

∣∣∣∣∣ × 100%. (16)

Figure 1 shows the bias of the frequency estimation using the
FFT method and the IpDFT method under different numbers
of samples.

The experimental results indicate that the method of
IpDFT can estimate the parameters of the signal with higher
accuracy (i.e. very small bias) compared with the FFT,
especially when the number of samples is limited. The
same conclusion can be obtained in the estimation of bias
of amplitude and phase.

3. The zoom IpDFT

3.1. The problem of frequency resolution

In the process of multi-frequency signal analysis, it is
necessary to achieve very high resolution in the case where
the frequencies of certain components are very close. Assume
a simulated signal containing two frequency components (e.g.,
the frequencies are 110 and 112 Hz, and the amplitudes are 1
and 0.5, respectively). The simulated signal is given as

x(n) =
2∑

k=1

Ak sin

(
2πn

fk

fs

+ ϕk

)
+ rand(s),

n = 0, 1, . . . , N − 1 (17)

where A1 = 1, f1 = 110 Hz, ϕ1 = 0, A2 = 0.5, f2 = 112 Hz,
ϕ2 = 0 and rand(s) denotes normally distributed white noise.
The original sampling frequency is fs = 1024 Hz and the total
number of samples is N = 1024.

Figures 2(a) and (b) show the analysis results obtained
using the methods of FFT and IpDFT, respectively. As is
well known, the FFT can be seen as a rectangular window
DFT, and in this paper the IpDFT method is based on a cosine
window DFT called the maximum sidelobe decay window. In
the previous section, the IpDFT demonstrates high accuracy
in the estimation of signal parameters. However, it failed
to distinguish between two frequency components in this
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Figure 2. Comparison of the frequency estimation of small
difference components using the FFT and the IpDFT methods.

example compared with the FFT method. That is because
the main-lobe width of the maximum sidelobe decay window
is wider than the main-lobe width of the rectangular window in
the condition of the same window width, which leads to poor
frequency resolution with the IpDFT. In order to distinguish
the two frequency components with the IpDFT method, we
need to improve the frequency resolution.

According to equation (15), there are two approaches
to improve the frequency resolution. The first is to reduce
the sampling frequency, fs , and the second is to increase the
number of samples, N (i.e. the intercepted length of sequence).
The former reduces the analysis range of the frequency and
cannot improve the frequency resolution of the high frequency
band (of course, if the signal information in the high frequency
band is not important, a filter may be used to filter the
high frequency component, and then the proper low sampling
frequency can be taken). The latter must increase the length
of the data window, which not only affects operation speed,
but also demands larger internal memory storage capacity.

The increasing demand for computation time and memory
space with the IpDFT method is a challenging issue
for implementation of real-time condition monitoring and
diagnosis in embedded systems. Sometimes, such demands
cannot be met. Meanwhile, when the number of samples
of IpDFT does not change, the location of the frequency
point of the base-band analysis does not change either, and
the flexibility of the spectrum analysis is poor. Since the
base band of IpDFT has difficulty increasing the frequency
resolution, the zoom IpDFT is proposed in this paper. The
fundamental idea is to locally magnify certain bands of the
signal spectrum, i.e. to increase the spectral density locally
around a certain frequency of interest.

3.2. Basic principle of zoom IpDFT

The zoom FFT (ZFFT) technique is a very important method
in the field of spectrum analysis [16]. It is a kind of FFT
technique with frequency band expansion, and it is also known
as local spectrum enlargement. It can provide a local frequency
of interest with higher frequency resolution, just like a zoom
lens zooming in on a portion of a whole picture. The basic
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Figure 3. The implementation of zoom IpDFT based on multiple
modulations.

principle of the zoom IpDFT method is similar to ZFFT, with
the FFT being replaced by the IpDFT. The experimental results
in figure 1 indicate that the IpDFT is better than the FFT under
satisfactory frequency resolution conditions. Therefore, the
zoom IpDFT has the advantages of both higher parameter
estimation accuracy (like the IpDFT) and higher frequency
resolution (like ZFFT). This paper mainly discusses the zoom
IpDFT method based on multiple modulations.

The implementation of the zoom IpDFT can be
summarized by the steps shown in figure 3. The steps include
digital frequency shift, digital low-pass filtering, re-sampling,
IpDFT transforming and weighted correction.

Given the original sampling frequency, fs , the frequency
components over fs/2 of the continuous signal x(t) are first
eliminated via an anti-superposing low-pass filter, then re-
sampled with the frequency fs to get the discrete data x(n)

including N points. Suppose the central frequency of the local
band intended to be enlarged is f0 and the frequency bandwidth
is B. Then the second step is to carry multiple modulations
on the signal x(n), which is realized by multiplying the digital
signal x(n) by e−j2πnf0/fs . Therefore, the signal after the
frequency shift x0(n) can be expressed as follows:

x0(n) = x(n)e−j2πnf0/fs

= x(n) cos(2πnf0/f ) − jx(n) sin(2πnf0/f ). (18)

According to the frequency shift nature of the discrete Fourier
transform, the discrete spectrum of x0(n) is

X0(k) = X(k + L0) (19)

where L0 = Nf0/fs represents the order number of the
spectral line when the frequency is f0; X0(k) is the spectrum
after the frequency shift; and X(k) is the spectrum before the
frequency shift.
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Figure 4. Comparison of the frequency and amplitude estimation
using different methods.

Then, all of the frequency components of the signal are
filtered after the frequency shift except for a narrow band B
around f0 via a low-pass filter:

Y0(k) = X0(k)H(k) = X(k + L0)H(k),

k = 0, 1, 2, . . . , N − 1 (20)

where H(k) is the response of the low-pass filter. The output
time domain signal of the low-pass filter is

y0(n) = 1

N

N−1∑
k=0

Y0(k)W−nk
N = 1

N

N−1∑
k=0

Y0(k)e−j2πnk/N . (21)

Through re-sampling at a new sampling frequency, f ′
s =

fs/D, the frequency resolution is enhanced D times while
reducing the sampling frequency and keeping the original
length of record in seconds. That is, the multiple of refining is
D, and a new discrete signal xr(n) = y0(Dn) can be obtained
by this process. By applying the complex IpDFT computation
to the signal xr(n), the spectral line after refining can be
received with its central frequency as f0 and bandwidth as
B = fs/2D [16].

3.3. Comparison of the zoom FFT and zoom IpDFT using a
simulation example

In order to explore the parameter estimation accuracy of
a multi-frequency signal by the zoom IpDFT method with
maximum sidelobe decay windows, a simulated signal
containing four components is analyzed as follows:

x(t) =
4∑

k=1

Ak sin(2πfkt) + rand(s). (22)

Here, A1 = 1, f1 = 180.5 Hz, A2 = 2, f2 = 181 Hz, A3 = 3,
f3 = 181.4 Hz, A4 = 7, f4 = 181.9 Hz and rand(s) denotes
a normally distributed white noise. The original sampling
frequency is fs = 1024 Hz, the number of samples is N =
256 and D = 30. The central frequency of the local band,
f0, is 178 Hz. According to the equation B = fs/2D, the
bandwidth B is about 17 Hz. Figure 4 shows a comparison of
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Figure 5. Test rig for bearings.

frequency and amplitude estimation using the zoom FFT and
zoom IpDFT, respectively.

As shown in figure 4, both the zoom FFT method and
the zoom IpDFT method can increase the resolution of the
spectrum and obtain good results in frequency estimation.
However, for the zoom FFT, the frequency estimation result
is not clear compared with the zoom IpDFT, especially at the
first signal component frequency of 180.5 Hz. Figure 4 also
demonstrates that the amplitude estimation with the method
of zoom FFT is not accurate due to the energy leakage of
the base frequency. Thus, the amplitude error is larger
compared with the zoom IpDFT, and it cannot be used for
quantitative analysis. Overall, the zoom IpDFT can achieve
better performance in characteristic frequency identification.

4. Case study

In this paper, real motor bearing data picked up with a sampling
frequency of 12k Hz by an accelerometer placed at the drive
end of the motor housing were used to validate the proposed
method. Three kinds of bearing conditions were considered
in this case study, namely the normal condition, the inner
race fault condition and the outer race fault condition. The
accelerometers under the normal conditions and inner race
fault conditions were placed at the 12 o’clock position, while
under the outer race fault conditions, they were placed at the
6 o’clock position. The test rig is shown in figure 5. Single
point faults were introduced to normal bearings using electro-
discharge machining with a fault diameter of 0.007 inches and
a fault depth of 0.011 inches. The specifications of a bearing
are shown in table 2. The shaft rotation speed, fr , varied
from 1730 to 1797 rpm. The characteristic frequencies of the
bearing were calculated by the following formulas [17]:

fI = 5.4152 × fr (23)

fO = 3.5848 × fr . (24)

Here, fI and fO are the inner race fault characteristic
frequency and outer race fault characteristic frequency,
respectively. There is a total of 12 data sets, including 4 normal
bearings, 4 inner race fault bearings, and 4 outer race fault
bearings at different rotation speeds and work loads. Table 3
shows their corresponding characteristic frequencies.

Table 2. Motor bearing specifications (inches).

Inside diameter 0.9843

Outside diameter 2.0472
Thickness 0.5906
Ball diameter 0.3126
Pitch diameter 1.537

Table 3. Fault characteristic frequencies of bearing at different
rotation speeds and loads.

Motor load Motor speed Inner race Outer race
(HP) (rpm) fI (Hz) fO (Hz)

0 1797 162.2 107.4
1 1772 160.0 105.9
2 1750 157.9 104.6
3 1730 156.1 103.4

4.1. Identification of fault characteristic frequencies at a
motor speed of 1797 rpm and load HP 0

In this section, vibration signals, including normal bearing
data, inner race fault data and outer race fault data at a motor
speed of 1797 rpm and load of HP 0, are used to validate
the proposed method. Figure 6 shows the original vibration
signals of normal data, inner race fault data and outer race fault
data. In order to enhance the computing efficiency, each piece
of data with 0.2 s is selected for envelope spectrum analysis.
Figure 7 shows the identification of fault-related characteristic
components at 1797 rpm and HP 0.

Figure 7(a) shows no fault characteristic frequency
when the bearing was under normal conditions. However,
bearings with an inner race fault or an outer race fault
can be identified via their corresponding fault characteristic
frequencies (including harmonics), as shown in figures 7(b)
and (c). The estimations of these frequencies are almost
consistent with the corresponding theoretical calculations (see
table 3).

4.2. Identification of fault characteristic frequencies under
different working conditions

In this section, we consider the influence of different working
conditions, including different rotation speeds and different
loads. Figure 8 shows the analysis results using vibration data
from a bearing with an outer race fault under different working
conditions. It can be observed that the proposed zoom IpDFT
can identify the outer race fault characteristic frequency, fO ,
and its harmonics. In addition, figure 9 gives the analysis
results using a bearing with an inner race fault under different
working conditions, which also shows good potential for the
identification of a characteristic component, fI .

4.3. Comparison with the traditional FFT in fault
characteristic identification using the IpDFT

Usually, the number of samples should be chosen according
to expert experience, working condition or calculation speed
when utilizing the FFT or the IpDFT. A larger number
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Figure 6. The original signals at a motor speed of 1797 rpm and load HP 0.
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Figure 7. Identification of fault-related characteristic components in envelope spectra at 1797 rpm and HP 0.

of samples requires more computation time and memory
space, while a smaller number of samples may result in
a loss of accuracy. Thus, it is very important to identify
the characteristic component with the appropriate number of
samples. For comparison, vibration data at a motor speed

of 1797 rpm and load HP 0 were analyzed by FFT and
IpDFT, with the number of samples from 500 to 4000. In the
comparison study, only the primary characteristic frequency
and its amplitude were estimated for the sake of convenience.
In table 3, the outer race fault characteristic frequency is
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Figure 8. Identification of characteristic components of bearing with outer race fault in envelope spectra.

107.4 Hz, and the inner race fault characteristic frequency
is 162.2 Hz. The comparison results are shown in figures 10
and 11 for the bearings with an outer race fault and an inner
race fault, respectively.

Figure 10(a) shows a comparison of the characteristic
frequency identification of a bearing with an outer race fault
using the FFT and the IpDFT methods, which indicates
that the IpDFT can accurately identify the outer race fault
characteristic frequency and provide stable results with small
bias when the number of samples changes from 500 to 4000.
However, the FFT method has poor performance compared
with the IpDFT, and the bias is large for some numbers of
samples. Figure 10(b) shows a comparison of amplitude
estimation of characteristic frequency, which can represent
the severity of an outer race fault. As shown in figure 10(b),
the amplitude of the characteristic frequency with the IpDFT is
steady, but the amplitude with FFT fluctuates as the number of
samples changes. Figure 10(b) also shows that the amplitude
of the characteristic component with the IpDFT is larger,
which means that the energy leakage of the fault characteristic
frequency is less. Overall, the IpDFT can identify the outer
race fault characteristic frequency and reflect the severity of a
fault more accurately and steadily than the FFT.

Figure 11 shows a comparison of the characteristic
component identification of a bearing with an inner race fault
using the FFT and the IpDFT methods. In figure 11(a), the
characteristic frequency identification error with the IpDFT
at 500 samples is larger than the one with the FFT method,

which is mainly due to the fact that frequency aliasing
happens. However, the IpDFT can identify the inner race
fault characteristic frequency accurately and steadily when the
number of samples changes from 1000 to 4000. Thus, we can
get the same conclusion as from figure 10.

4.4. Fault characteristic frequency identification with zoom
IpDFT

Most mechanical systems are composed of many elements.
The fault characteristic frequency identification we discussed
above is a special case, with the fault in the bearing being
seeded artificially and uniquely (i.e. just one fault at any time).
However, multiple faults exist in many mechanical systems,
which means that there is a need for multi-fault diagnosis.
Furthermore, frequency aliasing arises, and the fault-related
frequencies are too close to be effectively distinguished under
certain circumstances. For example, the rotor winding fault is
a common failure mode in an induction motor. It is known that
the rotor winding fault results in an extra current characteristic
component with a frequency (1 ± 2 slip ratio) of fundamental
frequency. Under normal load conditions, the slip ratio is very
small (a few per cent, even less than one per cent). Therefore,
the frequency of the stator fundamental current is very close
to the frequency of the rotor fault current component [18].

If we want to identify two adjacent frequency components,
a large number of samples are required to get enough frequency
resolution with the IpDFT or FFT. However, a large number
of points may not always be available due to the restrictions
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Figure 9. Identification of characteristic components of bearing with inner race fault in envelope spectra.
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Figure 10. Comparison of characteristic component identification of bearing with outer race fault using the FFT and the IpDFT methods.
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Figure 11. Comparison of characteristic component identification of bearing with inner race fault using the FFT and the IpDFT methods.
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Figure 13. Comparison of characteristic component identification using the FFT, the zoom FFT and the zoom IpDFT.

of calculation speed and calculation ability for hardware.The
proposed zoom IpDFT in this research is an alternative when
dealing with such problems.

To explore the potential of the zoom IpDFT in bearing
fault characteristic identification, a signal x(t) is constructed
to simulate the existence of two components that are adjacent
in the frequency domain. The mixed signal x(t) is composed
of two parts: one is the raw inner race fault data, xi(t), at a
motor speed of 1797 rpm and load HP 0, and the other is a
masking signal, xm(t), that may come from the gear meshing.
The simulated signal, xm(t), and the mixed signal, x(t), can
be written as

xm(t) = A1(1 + A2 cos(2πf2t)) sin(2πf1t) (25)

x(t) = xi(t) + xm(t) (26)

where A1 = 0.435, f1 = 29.95 Hz, A2 = 0.75 and f2 =
158.4 Hz. Therefore, the frequency of the simulated masking
signal is 158.4 Hz, which is very close to the theoretical inner
race fault characteristic frequency of 162.2 Hz. The sampling
frequency of the simulated masking signal is 12 kHz.

Figure 12 shows the mixed signal and its components.
Figure 13 shows the analysis results of the mixed signal x(t)

with the zoom IpDFT method, together with a comparison
study using the FFT and the zoom FFT.

Figure 13(a) shows the results of characteristic frequency
identification using the traditional FFT method. The FFT
failed to identify two frequency components at 162.2 and
158.4 Hz. According to figures 13(b) and (c), both the
zoom FFT and the zoom IpDFT can identify the characteristic
frequencies. The performance of the zoom IpDFT is better
than the zoom FFT because the energy or the amplitude
of the characteristic frequencies has less leakage, and the

zoom IpDFT can provide more accurate information to reflect
the severity of a fault. It should be noted that the actual
characteristic frequency of the bearing inner race fault should
be around 161.8 Hz (according to figure 7(c)), and the zoom
IpDFT provides more accurate estimation of frequencies (i.e.
158.4 and 161.6 Hz) compared with the zoom FFT (i.e. 158
and 162 Hz).

5. Conclusions

In machinery condition monitoring, the identification of fault-
related characteristic components is a crucial step to realize
feature extraction for further diagnosis. In this paper, the
IpDFT with maximum sidelobe decay windows is investigated
for its identification of characteristic components in the
frequency domain. A novel method based on the IpDFT
is then proposed to combine the idea of local frequency
band zooming-in, which is called the zoom IpDFT. In this
process, the IpDFT with maximum sidelobe decay windows
can estimate the components of a signal accurately and stably.
The proposed zoom IpDFT based on multiple modulations
provides better performance in signal parameter estimation
with high accuracy and frequency resolution, especially in a
situation of multi-fault diagnosis in which frequency aliasing
exists and fault-related components may be too close in the
frequency domain to be effectively identified.

To validate the proposed zoom IpDFT method, a series
of experiments was conducted in this paper. It was tested
using vibration data collected from a motor bearing at a
rotation speed of 1797 rpm and a load of HP 0. The
method can identify fault-related characteristic components
in the frequency spectrum. It was then used to identify
the characteristic components at different loads and rotation
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speeds and the results showed good potential in characteristic
frequency identification. Comparison studies of the Fourier
transform and the IpDFT method using bearing vibration data
with inner race fault and outer race fault showed that the IpDFT
method can provide distinct results in characteristic frequency
identification with low frequency bias and accurate frequency
amplitude estimation. Later, a mixed signal containing
two adjacent fault characteristic frequencies was constructed
to compare the proposed zoom IpDFT with other methods
including the FFT and the zoom FFT. The comparison results
of the mixed signal using the FFT, the zoom FFT and the
zoom IpDFT indicated that the zoom IpDFT can identify the
two fault characteristics with good accuracy and frequency
resolution.

It should be noted that the vibration signals from rolling
element bearings usually exhibit pseudo-cyclostationarity,
which means that there exists stochastic variation in the
spacing of the bursts generated by the local faults on rolling
elements and races [4]. This effect causes random slip during
bearing operation, and leads to a certain degree of variation
in the frequency domain. Therefore, the proposed method in
this research is most applicable to the separation of discrete
frequency components, which is more popular in gear systems.
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